APP下载

代乳粉添加甘露寡糖对7—28日龄湖羊羔羊胃肠道发育的影响

2020-02-27郑琛李发弟李飞周巨旺段鹏伟刘绘汇樊海苗朱威力刘婷

中国农业科学 2020年2期
关键词:小肠羔羊胃肠道

郑琛,李发弟,李飞,周巨旺,段鹏伟,刘绘汇,樊海苗,朱威力,刘婷

代乳粉添加甘露寡糖对7—28日龄湖羊羔羊胃肠道发育的影响

郑琛1,李发弟2,3,李飞2,周巨旺1,段鹏伟1,刘绘汇1,樊海苗1,朱威力1,刘婷1

(1甘肃农业大学动物科学技术学院,兰州 730070;2兰州大学草地农业科技学院,草地农业生态系统国家重点实验室/ 农业农村部草牧业创新重点实验室,兰州 730020;3甘肃省肉羊繁育生物技术工程实验室,甘肃民勤 733300)

【】探讨代乳粉中添加甘露寡糖(mannan oligosaccharides,MOS)对7—28日龄湖羊羔羊胃肠道生长发育的影响。选择同质性良好的7日龄湖羊公羔(双羔)30只,随机分为2组,每组15只,每只为1个重复,对照组羔羊饲喂不含MOS的代乳粉,试验组羔羊饲喂含0.2 % MOS的代乳粉,试验期21d。羔羊28日龄时,两个试验组各随机选择8只羔羊屠宰,取出消化道,称量各胃室和肠段包含内容物的质量和净质量,量取各肠段长度,用以计算各部位的相对质量和内容物分布,以及各肠段的相对长度。多聚甲醛固定皱胃胃底腺区及十二指肠、空肠和回肠中段的组织样品,测定组织形态和小肠上皮细胞凋亡率。采集十二指肠、空肠和回肠的黏膜样品,测定紧密连接蛋白1 (claudin 1)、闭锁小带1(zonula occludens-1,ZO-1)和闭锁蛋白(occludin)的mRNA表达量。除空肠相对长度外(%全肠长度,=0.040),MOS对羔羊胃肠指数(%活体质量)、胃肠相对质量(%全胃质量、%全肠质量和%全胃肠质量)、肠道相对长度(%全肠长度)、内容物相对活体质量(%活体质量)、胃肠内容物相对总胃/肠内容物及总胃肠内容物相对质量(%总胃内容物、总肠内容物、总胃肠内容物)、小肠上皮细胞凋亡率和小肠黏膜claudin 1蛋白mRNA的表达量均没有产生显著影响(>0.05),但MOS显著提高羔羊十二指肠绒毛高度和肌层厚度并显著降低绒毛宽度(=0.033,=0.047,=0.015),显著上调空肠ZO-1蛋白mRNA表达量(=0.028),此外,MOS有提高羔羊回肠绒毛高度、绒毛宽度和隐窝深度、皱胃肌层厚度及回肠occludin蛋白mRNA表达量的趋势(=0.075,=0.078,=0.085,=0.084,=0.052)。MOS对7—28日龄湖羊羔羊胃肠道相对质量、长度和内容物分布基本无显著影响,但可改善十二指肠和回肠绒毛及肌层的组织形态,维持小肠屏障功能,有利于提高养分消化率。

羔羊;甘露寡糖;代乳粉;胃肠道;发育

0 引言

【研究意义】胃肠道的结构是保障消化功能的前提,当组织形态发育正常及功能完善时,胃肠道中的营养物质才会被充分消化吸收[1]。反刍动物胃肠道发育受多种因素影响和调节,如年龄[2]、断奶[3-4]、饲粮类型[5-7]、肠营养素、激素和生长因子[8]等。饲喂幼畜时,除了需要提供高浓度的能量和养分以满足幼畜快速生长发育和器官发育的需要[9-11],还需要强化一些微量营养性和非营养性饲料添加剂以提高幼畜成活率和机体免疫力,益生菌和化学益生素就是目前幼龄动物养殖中常用的免疫增强剂[12]。化学益生素被定义为营养活性物质(Nutricine),是一种非药品类功能食品,虽然不具备直接营养功能,但可以维持肠道消化吸收功能,因而增强动物健康和生长发育[13]。【前人研究进展】甘露寡糖(mannan oligosaccharides, MOS)是化学益生素的一种,来自于酵母()细胞壁,富含甘露蛋白和β-葡聚糖等复杂碳水化合物等[14],广泛应用于养殖业以提高动物机体免疫机能并消除肠道病原菌[15-16]。在单胃动物和水产动物养殖中,添加MOS具有提高生产性能和促进动物健康的作用[17-20],也促进肠道发育,如前期和后期饲粮中分别添加0.2 %和0.1 % MOS可提高肉仔鸡小肠绒毛高度并降低隐窝深度[21],添加0.1 % MOS可显著提高仔猪小肠黏膜绒毛高度/隐窝深度值(V/C)[22],添加0.1 %、0.15 %和0.2 % MOS均可显著提高兔小肠绒毛高度[23]。【本研究切入点】MOS在反刍动物上的应用研究较少,主要是因为很多学者认为瘤胃微生物能够降解MOS,从而消除其保健功能。然而,有限的资料仍然显示MOS在反刍动物养殖中起到了一定的有益作用,如改善绵羊瘤胃健康[24]和提高抗氧化能力[25],提高羔羊血液免疫球蛋白水平[26]等,但MOS对幼龄反刍动物消化道生长发育的影响鲜见报道。鉴于MOS在单胃动物胃肠道发育中所表现出的积极作用,本研究提出假设,添加MOS对羔羊胃肠道发育也具有一定的影响,可为幼龄反刍动物的健康养殖提供帮助。【拟解决的关键问题】本试验以7日龄湖羊公双羔作为试验对象,研究代乳粉中添加MOS对羔羊消化道生长发育的影响,为幼龄反刍动物养殖中化学益生素的使用提供基础数据。

1 材料与方法

1.1 试验设计及动物

试验选用同质性良好的30只7日龄湖羊公双羔(选自甘肃省金昌中天羊业有限公司)作为试验动物,采用对照试验设计,将羔羊随机分为2个处理组,每组15只,每只为1个重复。羔羊分别饲喂对照代乳粉(北京精准动物营养研究中心,营养物质浓度见表1)或添加0.2 % MOS(SCIPHAR®,陕西森弗天然制品有限公司,纯度>90 %)的代乳粉。饲养试验持续21 d。

表1 羔羊代乳粉营养物质浓度(风干基础)

1)营养水平均为实测值The nutrient levels are measured values

1.2 羔羊饲养管理

羔羊出生的1—3 d内采食母乳,4日龄与母羊分离后奶瓶训饲代乳粉。7日龄清晨空腹称重,按组间体重无差异(对照组4.09 ± 0.66 kg,MOS组4.07 ± 0.61 kg)的原则将羔羊随机分为2组。8日龄时按试验设计饲喂羔羊,喂量为羔羊体重的2 %,每日饲喂4次,分别为6:00、12:00、18:00和24:00,代乳粉与水的比例为1:5。羔羊单笼饲养,自由饮水。

1.3 羔羊屠宰及胃肠道相关指标测定

羔羊28日龄时屠宰,宰前不禁食禁水,称量活重后立即颈静脉放血致死。打开腹腔后按照马仲华[27]的方法分离瘤胃、网胃、瓣胃、皱胃、十二指肠、空肠、回肠、盲肠、结肠和直肠。称量胃肠道各部位净质量和含内容物的质量,计算各部位的相对质量及其内容物分布。测量肠道各段的长度,计算相对长度。

1.4 组织样品采集及组织形态和小肠上皮细胞凋亡率测定

采集皱胃胃底腺区以及十二指肠、空肠和回肠中部约1 cm2的组织样品,转入多聚甲醛固定液中,在成都里来生物科技有限公司用H.E染色法和Tunel法观察胃肠道组织形态和测定小肠上皮细胞凋亡率。

1.5 小肠黏膜紧密连接蛋白mRNA表达量测定

采集十二指肠、空肠和回肠中段黏膜样品测定紧密连接蛋白1(claudin 1)、闭锁小带1(zonula occludens-1,ZO-1)和小肠黏膜闭锁蛋白(occludin)的mRNA表达量。提取样品总RNA,检测RNA浓度和纯度合格后将各样品RNA反转录为cDNA。使用Oligo 7.0设计引物,其中claudin 1和ZO-1参考LIU等[28]方法设计,引物长度分别为216和163 bp,occludin参考GenBank设计(NC_040267),引物长度为93 bp,以β-Actin为内参基因(NC_040362,长度97 bp)。RT-PCR使用20 μL扩增体系:10 μL 2×Biogold qPCR SuperMix(2×Biogold qPCR Mixture,浙江博而金科技股份有限公司),0.4 μL上下游引物,1 μL cDNA,8.2 μL ddH2O。RT-PCR在Roche LightCycler®480II进行,反应条件为:95 ℃预变性3 min,95 ℃变性10 s,60 ℃退火20 s,72 ℃延伸10 s,40个循环,72 ℃延伸10 min。目的基因的相对表达量用2-ΔΔCt法计算。

1.6 数据统计分析

使用SPSS 22.0对试验数据进行独立样本t检验,以≤0.05表示为差异显著,以0.05<≤0.10表示差异具有显著趋势。

2 结果

2.1 MOS对羔羊胃肠道相对质量的影响

2.1.1 羔羊胃肠指数 从表2可以看出,MOS对羔羊胃肠指数(%活体质量)并未产生显著影响(>0.05),仅有降低羔羊十二指肠指数的趋势(=0.066)。

2.1.2 羔羊胃肠相对质量 从表3可以看出,MOS对羔羊胃肠相对质量(%全胃质量、%全肠质量和%全胃肠质量)均未产生显著影响(>0.05),但饲喂含MOS代乳粉羔羊的大肠相对质量略高于对照组羔羊(>0.05)。

2.1.3 羔羊肠道相对长度 从表4可以看出,MOS显著降低了羔羊空肠相对长度(%全肠长度,=0.040),此外,MOS有增加盲肠相对长度的趋势(=0.094)。

2.2 MOS对羔羊胃肠道内容物分布的影响

2.2.1 羔羊胃肠内容物相对活体质量(%活体质量) 从表5可以看出,MOS对羔羊胃肠内容物相对活体质量(%活体质量)没有产生显著影响(>0.05)。

2.2.2 羔羊胃肠内容物相对总胃/肠内容物及总胃肠内容物相对质量(%总胃内容物、总肠内容物、总胃肠内容物) 从表6可以看出,MOS对羔羊胃肠内容物相对总胃/肠内容物及总胃肠内容物相对质量(%总胃内容物、%总肠内容物和%总胃肠内容物)均没有产生显著影响(>0.05),但采食含MOS代乳粉羔羊瘤胃内容物相对质量略高于对照组羔羊,而皱胃、盲肠和结肠内容物相对质量略低于对照组羔羊(>0.05)。

表2 MOS对羔羊胃肠指数的影响

表3 MOS对羔羊胃肠相对质量的影响

表4 MOS对羔羊肠道相对长度的影响

同行数据后所标字母相异表示差异显著(<0.05),所标字母相同表示差异不显著(>0.05)。下同

Different letters in the same row means significant difference between the treatments (<0.05), same letter in the same row means not significant difference between treatments (>0.05). The same as below

表5 MOS对羔羊胃肠内容物相对活体质量的影响

表6 MOS对羔羊胃肠内容物相对总胃/肠内容物及总胃肠内容物相对质量的影响

2.3 MOS对羔羊皱胃和小肠组织形态的影响

从表7可以看出,MOS显著提高羔羊十二指肠绒毛高度和肌层厚度但显著降低绒毛宽度(=0.033,=0.047,=0.015),此外,MOS有提高羔羊回肠绒毛高度、绒毛宽度和隐窝深度及皱胃肌层厚度的趋势(=0.075,=0.078,=0.085,=0.084)。MOS对羔羊皱胃和小肠其他形态学指标未产生显著影响(>0.05)。

从表8可以看出,MOS显著上调了羔羊空肠ZO-1蛋白mRNA的表达量(=0.028),且有上调回肠occludin蛋白mRNA表达量的趋势(=0.052)。MOS对羔羊十二指肠3种紧密连接蛋白、空肠claudin 1和occludin蛋白、回肠claudin 1和ZO-1蛋白mRNA的表达量以及各肠段上皮细胞凋亡率均没有产生显著影响(>0.05)。

3 讨论

3.1 MOS对羔羊胃肠道相对质量的影响

幼龄反刍动物胃肠道发育中,胃肠道的相对质量(%活体质量、%全胃质量、%全肠质量和%全胃肠道质量)及相对长度(%全肠长度)等是反映机体消化道生长发育的重要指标[29]。幼龄反刍动物在生长发育中,体内组织器官会因机体不同的功能需要而表现出不同的生长发育速度[29]。本次试验中,对照组和MOS处理组羔羊胃肠道相对质量未出现显著差异,这是因为,整个试验期羔羊均饲喂液体代乳粉,尽管代乳粉营养均衡,但前胃得不到正常发育,单纯吃奶的动物,瘤胃缺乏粗糙物质的刺激[30],而固体饲料的摄入会为胃肠道发育带来更好的物理刺激[31]。寇占英等[32]也报道采食粗饲料可以刺激瘤胃发育,而幼龄反刍动物仅喂乳汁或代乳品,会延滞前胃发育。但采食含MOS代乳粉的羔羊空肠相对长度显著低于对照组羔羊,盲肠相对长度有高于对照组羔羊的趋势且大肠各段的相对长度均高于对照组羔羊,主要是因为MOS作为低聚糖,在羔羊小肠不能被消化吸收,而在大肠段可作为有益菌的发酵底物并促进有害菌排出体外,促进大肠发育[33],使大肠相对长度增加而小肠相对长度有所降低,但由于其作为添加量很低的饲料添加剂,不能显著改变羔羊胃肠道的生长发育,仅有微弱的作用。周怿[34]在犊牛代乳粉中添加75 mg·kg-1酵母β-葡聚糖后发现对胃肠道相对质量无显著影响,闫晓刚[35]在犊牛饲粮中添加20 g·d-1酵母培养物,对犊牛前胃相对质量无显著影响,也与本试验结果相同。

表7 MOS对羔羊皱胃和小肠组织形态的影响

表8 MOS对羔羊小肠黏膜紧密连接蛋白mRNA表达量及上皮细胞凋亡的影响

3.2 MOS对羔羊胃肠道内容物分布的影响

胃肠道内容物滞留时间决定养分的消化吸收率,而内容物的滞留时间由食糜类型和胃肠道运动所决定。本次试验中,所有羔羊胃肠道内容物含量均处于较低水平,主要是因为羔羊只饲喂液体代乳粉,因此,会缩短食糜在胃肠道中的滞留时间,且食糜流通量显著低于采食固体饲料的动物[30]。胃肠道的节律性运动以及食糜的推送和分布,由食糜压力差、体液因素、交感神经、迷走神经、平滑肌细胞兴奋性、激素以及食糜的物理化学性质等多种因素调控[36]。本次试验中,MOS对羔羊胃肠道内容物分布并未产生显著影响,也说明食物的物理形态是决定胃肠道内容物分布的主要因素,MOS作为外源添加的益生素,不能对胃肠道运动和内容物分布产生显著影响,仅由于对胃肠道益生菌有促进作用而改变食糜在胃肠道不同部位的滞留时间,导致采食含MOS代乳粉羔羊瘤胃内容物相对质量较高,而皱胃、盲肠和结肠内容物相对质量较低,也与前人在成年羊上的研究结果类似[33]。

3.3 MOS对羔羊皱胃和小肠组织形态的影响

对前胃功能发育不完善的幼龄反刍动物来说,皱胃和小肠是养分最主要的消化吸收部位,而养分的吸收取决于皱胃和小肠的组织形态。皱胃的黏膜和肌层厚度、小肠的绒毛高度、隐窝深度、黏膜厚度及V/C值等,是评价动物消化道对养分消化吸收的重要指标[37-39],如绒毛高度与肠道上皮细胞发育呈正相关,高度越高养分吸收能力越强[40],而隐窝深度与肠道上皮细胞成熟率呈负相关,隐窝越浅表明细胞成熟率高且分泌功能越强[41],此外,V/C值与肠道上皮细胞更新程度有关,也与肠道养分吸收能力呈正相关[42-43]。本次试验中,羔羊肠道绒毛均保持在较高水平,这是因为,试验羔羊全期只饲喂液体代乳粉,而固体饲料会加大对肠绒毛的刺激而导致肠绒毛脱落速度加快[44],液体饲料可维持肠绒毛高度[45]。本试验中,MOS显著提高了羔羊十二指肠绒毛高度和肌层厚度,并有提高回肠绒毛高度、绒毛宽度和皱胃肌层厚度的趋势,表明MOS能提高羔羊皱胃和小肠段的养分消化吸收能力。周怿[34]报道饲粮添加75 mg·kg-1酵母β-葡聚糖可提高犊牛小肠绒毛高度和V/C值。在仔猪和肉仔鸡的试验中,饲粮添加0.1 % MOS可显著提高小肠V/C值[21-22]。本试验中采食含MOS代乳粉羔羊空肠ZO-1蛋白mRNA表达量显著上调,回肠occludin蛋白mRNA表达量也有上调的趋势,且小肠上皮细胞凋亡率均低于对照组羔羊,也说明MOS有利于维持小肠正常屏障功能,并使肠绒毛维持在较高水平。occludin蛋白、claudin 1蛋白和ZO-1蛋白是肠上皮细胞间的紧密连接蛋白,构建肠道屏障,机械性阻止微生物入侵[46]。而外界刺激、生理和病理等会使肠道屏障发生改变,增加肠上皮细胞间隙通透性,导致病原菌侵入细胞引发感染性疾病。Puthenedam等[47]报道,肠道中的乳酸菌和双歧杆菌可上调ZO-1蛋白及occludin蛋白的表达,修复肠道损伤。杨俊等[48]也报道,肠上皮细胞被大肠杆菌(,EIEC)感染后,用乳酸菌处理时,紧密连接相关蛋白(claudin,occludin,junction adherensive molecular-1(JAM-1),ZO-1)表达量上调,肠道通透性得到改善。本试验中,MOS作为化学益生素可以促进肠道中乳酸杆菌和双歧杆菌等益生菌的增殖[16],因此发挥出维护肠道屏障健康的作用。肠道黏膜的更新和上皮细胞的转型由上皮细胞凋亡和有丝分裂共同维持,凋亡一方面可以促进肠黏膜的适度发育和成熟,但另一方面,如细胞过度凋亡,将引起肠道功能紊乱[49]。尚沁沁[50]指出,益生菌可通过抑制病原菌在肠道的定植,调控细胞凋亡通路,降低肠上皮细胞凋亡率。Yan等[51]研究发现,乳酸菌可以抑制由肿瘤坏死因子α(tumor necrosis factor, TNF-α)诱导的肠道上皮细胞凋亡。本次试验中采食含MOS代乳粉羔羊小肠上皮细胞凋亡率低于对照组羔羊,也是由于MOS促进肠道有益菌增殖而引起的[33]。

4 结论

7—28日龄湖羊羔羊代乳粉中添加MOS对羔羊胃肠道相对质量和长度、内容物分布和组织形态基本无显著影响,但显著提高羔羊十二指肠绒毛高度和肌层厚度并显著降低绒毛宽度且上调空肠ZO-1蛋白mRNA表达量,还有提高羔羊回肠绒毛高度、绒毛宽度和隐窝深度、皱胃肌层厚度及回肠occludin蛋白mRNA表达量的趋势。表明代乳粉中添加0.2 % MOS对湖羊羔羊胃肠道发育的影响较为微弱,主要对小肠绒毛形态和屏障功能有一定促进作用。

[1] 郭江鹏, 潘建忠, 李发弟, 张元兴, 杨宇泽, 郝正里. 不同早期断奶日龄对舍饲肉用羔羊胃组织形态发育变化的影响. 畜牧兽医学报, 2018, 49(5): 971-985.

GUO J P, PAN J Z, LI F D, ZHANG Y X, YANG Y Z, HAO Z L. Effect of different early weaned day on morphological development of stomach for housed lambs., 2018, 49(5): 971-985. (in Chinese)

[2] 马俊南, 屠焰. 固液饲料饲喂水平对犊牛生长及胃肠道发育影响的研究进展. 家畜生态学报, 2017, 38(5): 7-12.

MA J N, TU Y. Research progress on feeding patterns of different solid and liquid feed level on growth and gastrointestinal tract development in holstein calves., 2017, 38(5): 7-12. (in Chinese)

[3] 马志远, 李飞, 李发弟, 李冲, 王维民, 唐德富, 刘婷, 潘香羽. 早期断奶对湖羊羔羊生长性能及胃肠道发育的影响. 动物营养学报, 2015, 27(5): 1385-1393.

MA Z Y, LI F, LI F D, LI C, WANG W M, TANG D F, LIU T, PAN X Y. Effect of early weaning on performance and gastrointestinal tract development oflambs., 2015, 27(5): 1385-1393. (in Chinese)

[4] 柴建民. 断母乳日龄对羔羊生长性能与胃肠道发育的影响[D]. 北京: 中国农业科学院饲料研究所, 2015.

CHAI J M. Effect of weaning age on the growth performance and development of the gastrointestinal tract in lambs [D]. Beijing: Feed Research Institute, Chinese Academy of Agricultural Sciences, 2015. (in Chinese)

[5] 吴志强. 不同喂奶量和不同类型开食料对哺乳期犊牛胃肠道发育的影响[D]. 泰安: 山东农业大学, 2016.

WU Z Q. Effect of different milk allowances and different starter on gastrointestinal development of dairy calves [D]. Taian: Shandong Agricultural University, 2016. (in Chinese)

[6] 杨宏波. 不同精粗比颗粒饲料对3~6月龄犊牛生长性能和胃肠道发育的影响[D]. 扬州: 扬州大学, 2015.

YANG H B. Effects of pellet diets with different concentrate-roughage ratio on growth performance and development of gastrointestinal tract of 3~6 monthly calves [D]. Yangzhou: Yangzhou University, 2015. (in Chinese)

[7] 吴兆海. 不同牧草补饲模式对犊牛生长及胃肠道发育的影响[D]. 太谷: 山西农业大学, 2014.

WU Z H. Effects of different forage supplementary patterns on the growth and gastrointestinal development of holstein calves [D]. Taigu: Shanxi Agricultural University, 2014. (in Chinese)

[8] 何军. 半胱胺盐酸及代乳蛋白对山羊小肠粘膜生长发育的影响[D]. 南京: 南京农业大学, 2005.

HE J. Influence of cysteamine and milk replacer proteins on the development of small intestinal mucosa of goats [D]. Nanjing: Nanjing Agricultural University, 2005. (in Chinese)

[9] BARTLETT K S, MCKEITH F K, VANDEHAAR M J, DAHL G E, DRACKLEY J K. Growth and body composition of dairy calves fed milk replacers containing different amounts of protein at two feeding rates., 2006, 84: 1454-1467.

[10] GEIGER A J, PARSONS C L M, JAMES R E, AKERS R M. Growth, intake, and health of Holstein heifer calves fed an enhanced preweaning diet with or without postweaning exogenous estrogen., 2016, 99: 3995-4004.

[11] SOBERON F, VAN AMBURGH M E. Effects of preweaning nutrient intake in the developing mammary parenchymal tissue., 2017, 100: 4996-5004.

[12] ADHIKARI P, Kim W K. Overview of prebiotics and probiotics: focus on performance, gut health and immunity – a review., 2017, 17: 949-966.

[13] HALAS V, NOCHTA I. Mannan oligosaccharides in nursery pig nutrition and their potential mode of action., 2012, 2: 261-274.

[14] WESTLAND A, MARTIN R, WHITE R, MARTIN J H. Mannan oligosaccharide prepartum supplementation: effects on dairy cow colostrum quality and quantity., 2017, 11: 1779-1782.

[15] FERNANDEZ F, HINTON M, VAN GILS B. Dietary mannan- oligosaccharides and their effect on chicken caecal microflora in relation toEnteritidis colonization., 2002, 31: 49-58.

[16] NAJDEGERAMI E H, TOKMACHI A, BAKHSHI F. Evaluating the effects of dietary prebiotic mixture of mannan oligosaccharide and poly-β-hydroxybutyrate on the growth performance, immunity, and survival of rainbow trout,(Walbaum 1792), fingerlings., 2017, 48(3): 415-425.

[17] GIANNENAS I, DOUKAS D, KARAMOUTSIOS A, TZORA A, BONOS E, SKOUFOS I, TSINAS A, CHRISTAKI E, TONTIS D, FLOROU-PANERI P. Effects of, mannan oligosaccharide, benzoic acid and their mixture on growth performance, intestinal microbiota, intestinal morphology and blood lymphocyte subpopulations of fattening pigs., 2016, 220: 159-167.

[18] BOZKURT M, BINTAŞ E, KIRKAN S, AKŞIT H, KÜÇÜKYILMAZ K, ERBAŞ G, ÇABUK M, AKŞIT D, PARM U, EGE G, KOÇER B, SEYREK K, TÜZÜN A E. Comparative evaluation of dietary supplementation with mannan oligosaccharide and oregano essential oil in forced molted and fully fed laying hens between 82 and 106 weeks of age., 2016, 95: 2576-2591.

[19] ATTIA Y A, ABD AL-HAMID A E, IBRAHIM M S, AL-HARTHI M A, BOVERA F, ELNAGGAR A S. Productive performance, biochemical and hematological traits of broiler chickens supplemented with propolis, bee pollen, and mannan oligosaccharides continuously or intermittently., 2014, 164: 87-95.

[20] TORRECILLAS S, CABALLERO M J, MONTERO D, SWEETMAN J, IZQUIERDO M. Combined effects of dietary mannan oligosaccharides and total fish oil substitution by soybean oil on European sea bass () juvenile diets., 2016, 22(5): 1079-1090.

[21] 温若竹. 甘露寡糖对肉仔鸡肠道形态及微生物区系的影响[D]. 南京: 南京农业大学, 2010.

WEN R Z. Effects of mannose-oligosaccharide on intestinal morphology and bacterial community in gastrointestinal tract of broiler chickens [D]. Nanjing: Nanjing Agricultural University, 2010. (in Chinese)

[22] 黄俊文, 林映才, 冯定远, 郑春田, 丁发源. 纳豆菌、甘露寡糖对仔猪肠道pH、微生物区系及肠黏膜形态的影响. 畜牧兽医学报, 2005, 36(10): 1021-1027.

HUANG J W, LIN Y C, FENG D Y, ZHENG C T, DING F Y. Effect of natto and MOS on intestinal pH, colonic microflora population and intestinal membrane shape of early weaning piglet., 2005, 36(10): 1021-1027. (in Chinese)

[23] Mourão J L, Pinheiro V, Alves A, Guedes C M, Pinto L, Saavedra M J, Spring P, Kocher A. Effect of mannan oligosaccharides on the performance, intestinal morphology and cecal fermentation of fattening rabbits., 2006, 126: 107-120.

[24] DIAZ T G, BRANCO A F, JACOVACI F A, JOBIM C C, BOLSON D C, DANIEL J L P. Inclusion of live yeast and mannan-oligosaccharides in high grain-based diets for sheep: Ruminal parameters, inflammatory response and rumen morphology., 2018, 13: e0193313.

[25] ZHENG C, LI F D, HAO Z L, LIU T. Effects of adding mannan oligosaccharides on digestibility and metabolism of nutrients, ruminal fermentation parameters, immunity, and antioxidant capacity of sheep., 2018, 96: 284-292.

[26] DEMIREL G, TURAN N, TANOR A, KOCABAGLI N, ALP M, HASOKSUZ M, YILMAZ H. Effects of dietary mannanoligosaccharide on performance, some blood parameters, IgG levels and antibody response of lambs to parenterally administeredO157: H7., 2007, 61(2): 126-134.

[27] 马仲华. 家畜解剖学及组织胚胎学. 第3版. 北京: 中国农业出版社, 2001.

MA Z H. Animal anatomy, histology and embryology. 3rdedition. Beijing: China Agriculture Press, 2001. (in Chinese)

[28] LIU J H, XU T T, LIU Y J, ZHU W Y, MAO S Y. A high-grain diet causes massive disruption of ruminal epithelial tight junctions in goats., 2013, 305: R232-R241.

[29] 任文. 不同直/支链淀粉比对肥羔胃肠道发育及其相关基因mRNA表达量的影响[D]. 大庆: 黑龙江八一农垦大学, 2014.

REN W. Effects of different amylose/amylopectin ratio on the development of gastrointestinal tract and mRNA expression of related genes in fattening lamb [D]. Daqing: Heilongjiang Bayi Agricultural University, 2014. (in Chinese)

[30] 刘敏雄. 反刍动物消化生理学. 北京: 北京农业大学出版社, 1991.

LIU M X. Ruminant digestive physiology. Beijing: Beijing Agricultural University Press, 1991. (in Chinese)

[31] KHAN M A, LEE H, LEE W, KIM H, KIM S, PARK S B, BAEK K S, HA J K, CHOI Y. Starch source evaluation in calf starter: II. Ruminal parameters, rumen development, nutrient digestibilities, and nitrogen utilization in Holstein calves., 2008, 91(3): 1140-1149.

[32] 寇占英, 李启鹏, 莫放, 张晓明. 犊牛主要消化器官的发育规律. 中国畜牧兽医学会动物营养学分会第六届全国会员代表大会暨第八届学术研讨会论文集(下), 2000: 533-536.

KOU Z Y, LI Q P, MO F, ZHANG X M. Studies on development of digestive organs in calves. Proceedings of 6thNational Congress & 8th Symposium of Animal Nutrition Branch of China Animal Husbandry and Veterinary Society (Part Two), 2000: 533-536. (in Chinese)

[33] 郑琛. 外源添加甘露寡糖对绵羊养分消化代谢、瘤胃发酵、消化道食糜流通量及免疫的影响. 兰州: 甘肃农业大学, 2012.

ZHENG C. Effects of adding mannan oligosaccharides on digestibility and metabolism of nutrients, ruminal parameters, digesta passage and immune of sheep. Lanzhou: Gansu Agricultural University, 2012. (in Chinese)

[34] 周怿, 刁其玉, 屠焰, 云强. 酵母β-葡聚糖对早期断奶犊牛胃肠道发育的影响. 动物营养学报, 2009, 21(6): 846-852.

ZHOU Y, DIAO Q Y, TU Y, YUN Q. Effects of yeast β-glucan on gastrointestinal development in early-weaning calves., 2009, 21(6): 846-852. (in Chinese)

[35] 闫晓刚. 酵母培养物和颗粒精料对荷斯坦犊牛生长发育的影响[D]. 长春: 吉林农业大学, 2005.

YAN X G. The effect of yeast culture and pellet concentrate on the growing development of Holstein calves [D]. Changchun: Jilin Agricultural University, 2005. (in Chinese)

[36] 赵如茜. 动物生理学. 第五版. 北京: 中国农业出版社, 2011.

ZHAO R Q. Animal physiology. 5thEdition. Beijing: China Agricultural Press, 2011. (in Chinese)

[37] 王彩莲. 0~56日龄放牧绵羊消化系统发育性变化的研究[D]. 兰州: 甘肃农业大学, 2009.

WANG C L. Developmental changes of digestive system in grazing sheep from birth to 56d [D]. Lanzhou: Gansu Agricultural University, 2009. (in Chinese)

[38] ZHANG X, WU X, CHEN W, ZHANG Y, JIANG Y, MENG Q, ZHOU Z. Growth performance and development of internal organ, and gastrointestinal tract of calf supplementation with calcium propionate at various stages of growth period., 2017a, 12: e0179940.

[39] JIN Y M, JIANG C, ZHANG X Q, SHI L F, WANG M Z. Effect of dietaryon the growth performance, apparent digestibility, rumen fermentation and gastrointestinal morphology of growing lambs., 2018, 243: 1-9.

[40] 袁雪. 巴氏杀菌β-内酰胺类抗奶对犊牛生长性能、血液指标和胃肠发育的影响[D]. 大庆: 黑龙江八一农垦大学, 2016.

YUAN X. The effects of feeding pasteurized β-lactam antibiotic milk on holstein calves’ performance, blood indicator, gastrointestinal development [D]. Daqing: Heilongjiang Bayi Agricultural University, 2016. (in Chinese)

[41] 杨全明. 仔猪消化道酶和组织器官生长发育规律的研究[D]. 北京: 中国农业大学, 1999.

YANG Q M. The study on digestive enzymes and growth and development of tissues and organs of piglet [D]. Beijing: China Agricultural University, 1999. (in Chinese)

[42] BAKARE A G, CHIMONYO M. Relationship between feed characteristics and histomorphometry of small intestines of growing pigs., 2017, 47: 7-14.

[43] 姚浪群, 萨仁娜, 佟建明, 霍启光. 安普霉素对仔猪肠道微生物及肠壁组织结构的影响. 畜牧兽医学报, 2003, 34(3): 250-257.

YAO L Q, SA R N, TONG J M, HUO Q G. Effect of apramycin on intestinal flora and intestinal morphology of piglets., 2003, 34(3): 250-257. (in Chinese)

[44] 宋恩亮, 陈耀星, 王子旭, 巢国正, 万发春, 吴乃科. 利杂犊牛小肠各段长度与黏膜结构的发育学变化. 动物医学进展, 2006, 27(5): 66-70.

SONG E L, CHEN Y X, WANG Z X, CHAO G Z, WAN F C, WU N K. Developmental changes on the lengths of different intestinal segments and the morphological structure of small intestinal mucosa in Limisin-crossbred calf., 2006, 27(5): 66-70. (in Chinese)

[45] MCLEOD J S, CHURCH J T, YERRAMILLI P, COUGHLIN M A, PERKINS E M, RABAH R, BARTLETT R H, ROJAS-PENA A, GREENSON J K. Gastrointestinal mucosal development and injury in premature lambs supported by the artificial placenta., 2018, 53: 1240-1245.

[46] FORSTER C. Tight junctions and the modulation of barrier function in disease., 2008, 130(1): 55-70.

[47] PUTHENEDAM M, WILLIAMS P H, LAKSHMI B S, BALAKRISHNAN A. Modulation of tight junction barrier function by outer membrane proteins of enteropathogenic: Role of F-actin and junctional adhesion molecule-1., 2007, 31(8): 836-844.

[48] 杨俊, 张中伟, 秦环龙. 乳酸菌对肠上皮细胞侵袭性大肠杆菌损伤的保护作用. 世界华人消化杂志, 2008, 16(30): 3394-3399.

YANG J, ZHANG Z W, QIN H L. Protective role ofplantarun in regulating intestinal epithelial cells response to pathogenic bacteria., 2008, 16(30): 3394-3399. (in Chinese)

[49] 王远孝. IUGR猪的生长与肠道发育及L-精氨酸和大豆卵磷脂的营养调控研究[D]. 南京: 南京农业大学, 2011.

WANG Y X. Effect of IUGR on the growth and the intestinal development in postnatal pigs and the nutrition regulation by L-arginine and soya lecithine [D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese)

[50] 尚沁沁, 李雅丽, 史艳云, 付爱坤, 李卫芬, 余东游. 益生菌对动物肠上皮细胞免疫功能的研究进展. 中国畜牧杂志, 2014, 50(13): 87-90.

SHANG Q Q, LI Y L, SHI Y Y, FU A K, LI W F, YU D Y. Research progress on probiotics for the immune function of intestinal epithelial cells in animal., 2014, 50(13): 87-90. (in Chinese)

[51] YAN F, POLK D B. Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells., 2002, 277(52): 50959-50965.

Effects of adding mannan oligosaccharides to milk replacer on the development of gastrointestinal tract of 7-28 days oldlambs

ZHENG Chen1, LI Fadi2,3, LI Fei2, ZHOU Juwang1, DUAN Pengwei1, LIU Huihui1, FAN Haimiao1, ZHU Weili1, LIU Ting1

(1College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070;2State Key Laboratory of Grassland Agro-ecosystems, Key laboratory of Grassland Livestock Industry Innovation/Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020;3Engineering Laboratory of Mutton Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin 733300, Gansu)

【】This study was conducted to investigate the effects of mannan oligosaccharides (MOS) supplementation to milk replacer on the development of gastrointestinal tract of 7-28 day-oldlambs. 【】Thirty 7 day-oldmale lambs were chosen and divided into 2 groups randomly, fifteen lambs in each group and each lamb as a repeat. Lambs were fed milk replacer with or without 0.2 % MOS, respectively. The test lasted for 21 days. Eight lambs were selected from each group randomly and slaughtered at 28 day-old. The weights of the compound stomach and the intestinal tract with and without content, and lengths of the intestinal tract were measured, and the relative quality and length were calculated. While the tissue samples from fundus gland region of the abomasum, the middle part of duodenum, jejunum and ileum were fixed in paraformaldehyde to analyse the histomorphology, and the apoptotic rate of intestinal epithelial cells as well. And the mRNA expression of claudin 1, zonula occludens-1 (ZO-1), and occludin protein of duodenum, jejunum and ileum mucosa were measured.【】The results showed that except relative length of jejunum (=0.040), the relative weights (% body weight, % stomach weight, % intestinal tract weight, and % gastrointestinal tract weight), relative lengths (% intestinal tract length), content of stomach and intestinal tract (% body weight, % stomach content weight, % intestinal tract content weight, and % gastrointestinal tract content weight), the apoptotic rate of intestinal epithelial cells and mRNA expression of claudin 1 protein in intestinal tract of lambs were not affected by MOS (>0.05). However, MOS elongated the villus height and the muscular thickness, and decreased the villus width of lamb duodenum significantly (=0.033=0.047=0.015). MOS also up-regulated the mRNA expression of ZO-1 protein of lamb jejunum significantly (=0.028). And there was a tendency that MOS elongated villus height, width and crypt depth of ileum, muscular thickness of abomasum, and mRNA expression of occludin protein of ileum (=0.075=0.078=0.085=0.084=0.052).【】MOS almost did not affect the relative weights, lengths, and content distribution of gastrointestinal tract of 7-28 days oldlambs, but improved the histomorphology of duodenum and ileum, indicating it could maintain barrier function of intestinal tract and benefit to nutrients digestibility.

lamb; mannan oligosaccharides; milk replacer; gastrointestinal tract; development

10.3864/j.issn.0578-1752.2020.02.014

2019-06-24;

2019-08-14

国家自然科学基金(31560646,31860657)

郑琛,E-mail:zhengc@gsau.edu.cn。通信作者刘婷,E-mail:liuting@gsau.edu.cn

(责任编辑 林鉴非)

猜你喜欢

小肠羔羊胃肠道
酶可提高家禽的胃肠道完整性和生产性能
胃肠道肿瘤患者行腹腔镜手术治疗的效果观察
羔羊早期如何诱食
加速康复外科促进胃肠道功能恢复在肝移植术后早期的临床应用
寒冷天气 咋管护羔羊
一根小肠一头猪
肥美汆小肠
羔羊的试图(外三首)
养好女人小肠经
小肠深处来“探幽”