APP下载

基于BP神经网络的不同人为干扰强度下盐渍土定量分析*

2020-02-13田安红付承彪熊黑钢赵俊三

中国生态农业学报(中英文) 2020年2期
关键词:盐渍人为波段

田安红, 付承彪, 熊黑钢, 赵俊三

田安红1,2, 付承彪1**, 熊黑钢3,4, 赵俊三2

(1. 曲靖师范学院信息工程学院 曲靖 655011; 2. 昆明理工大学国土资源工程学院 昆明 650093; 3. 北京联合大学应用文理学院 北京 100083; 4. 新疆大学资源与环境科学学院 乌鲁木齐 830046)

传统对土壤元素的反演模型经常采用线性的偏最小二乘模型(PLSR), 例如, 夏芳等[14]以浙江省36个县市的农田土壤为研究对象, 分析有机质与8种重金属的相关性, 并采用PLSR预测8种重金属的含量, 仿真结果表明PLSR对重金属Ni和Cr的预测效果较好, 其相对预测性能(RPD)值为1.8~2.0, 而剩余6种重金属预测模型的RPD值均为1.0~1.4。王文俊等[15]以山西的褐土为研究对象, 利用PLSR对20种高光谱变换后的预处理方法进行建模估算总氮含量, 仿真结果表明一阶导数预处理后建模能得到更好的预测结果, 且最佳的预处理方法为平均光谱曲线与标准差曲线的乘积, 其次为平均光谱曲线与平均光谱曲线的一阶导数、与标准差曲线的乘积, PLSR模型能对总氮进行有效的预测。然而, 土壤高光谱与土壤某元素间的关系表现为非线性, 传统线性PLSR对土壤元素的反演精度有限, 因此需要探索非线性的预测方法。

1 材料与方法

1.1 土壤样本采集

研究区位于新疆维吾尔自治区昌吉回族自治州境内, 87°44¢~88°46¢E, 43°29¢~45°45¢N, 距乌鲁木齐约70 km。该区域土壤盐渍化严重, 土壤表层的盐分含量为5.34~44.45 g×kg-1 [1], 夏季非常炎热, 降水稀少, 蒸发强烈, 年蒸发量高达2 000 mm。

图1 无人为干扰区(A)和人为干扰区(B)盐渍土采样点示意图

蓝色方框为水渠位置, 红色圆圈为农场位置, 黄色方框为无人为干扰区(A区), 绿色方框为人为干扰区(B区)。The blue box is the location of the canal, the red circle is the location of the farm, the yellow box is the undisturbed area (area A), and the green box is the human disturbing area (area B).

1.2 野外高光谱测量

55个样本点的野外高光谱采用FieldSpec®3 Hi- Res高精度地物光谱仪测量, 该仪器的波段范围300~2 500 nm。350~1 000 nm波段的采样间隔为1.4 nm, 1 000~2 500 nm波段的采样间隔为1 nm。野外测量时选择当地时间13:00—15:00, 且晴朗无风的天气进行。每次测量之前用白板进行光谱校正处理, 每个土壤样本点采用梅花桩采样法于5个方向重复采集10次高光谱, 测定高度为距离土壤表面15 cm。计算平均值为该样点的原始高光谱数据。同时, 因边缘波段(350~390 nm和2 401~2 500 nm)信噪比低及存在水分吸收带(1 355~1 410 nm和1 820~1 942 nm)的干扰, 删除这些波段范围的高光谱数据。

1.3 建立BP神经网络模型

1.4 模型精度评价方法

2 结果与分析

2.1 研究区盐渍土4种主要阴离子含量统计

表1 无人为干扰区和人为干扰区盐渍土4种阴离子含量描述性统计

2.2 不同含量盐渍土的高光谱曲线特征

图2 无人为干扰区(A区)和人为干扰区(B区)不同含量盐渍土壤样本的高光谱曲线图

2.3 不同人为干扰区盐渍土含量反演特征波段的选择

因此, 本研究将两种光谱变换在0阶、一阶和二阶微分中通过0.05检验的波段选择为特征波段, 研究区通过0.05显著性检验的波段数量个数如表2所示, 特征波段对应的高光谱值作为后续BP神经网络模型的输入变量。

图3 无人为干扰区(A区)和人为干扰区(B区)盐渍土高光谱与含量的相关系数

<|0.05|表示显著相关。<|0.05| indicates significant correlation.

表2 无人为干扰区和人为干扰区通过0.05显著性检验的盐渍土高光谱波段数量个数

R表示原始高光谱, LogR表示对数变换后的光谱。R is the original hyperspectral, LogR is logarithmic transformation of R.

2.4 不同人为干扰区盐渍土含量高光谱反演模型

表3 无人为干扰区和人为干扰区盐渍土含量高光谱反演模型的精度

RPD: 相对预测性能。RPD: relative prediction performance.

图4 无人为干扰区(a)和人为干扰区(b)盐渍土含量实测值和BP模型预测值的散点图

图中预测数据为高光谱对数二阶微分(LogR)的BP模型预测值。The predicted values are prediction results of BP model with spectral logarithmic transformation.

图5 无人为干扰区(a)和人为干扰区(b)盐渍土含量实测值与BP模型预测值的拟合效果

图中预测数据为高光谱对数二阶微分(LogR)的BP模型预测值。The predicted values are prediction results of BP model with spectral Logarithmic transformation.

3 结论

图6 无人为干扰区(a)和人为干扰区(b)盐渍土含量BP模型的训练过程

3)统计相关系数在0阶、一阶和二阶微分中通过0.05检验的波段数量, R变换在无人为干扰区分别为0个、38个和77个, 在人为干扰区分别为0个、39个和74个; LogR变换在无人为干扰区分别为1 822个、264个和121个, 在人为干扰区分别为1 659个、121个和86个。

4)无人为干扰区的最佳反演模型为二阶微分的LogR光谱变换对应的BP模型, 其RPD为3.309, 表明该模型的预测能力非常强。人为干扰区的最佳反演模型为一阶微分的LogR光谱变换对应的BP模型, 其RPD为2.234, 表明该模型的预测能力很好。

[1] 段鹏程, 熊黑钢, 李荣荣, 等. 不同干扰程度的盐渍土与其光谱反射特征定量分析[J]. 光谱学与光谱分析, 2017, 37(2): 571–576 DUAN P C, XIONG H G, LI R R, et al. A quantitative analysis of the reflectance of the saline soil under different disturbance extent[J]. Spectroscopy and Spectral Analysis, 2017, 37(2): 571–576

[2] 高会, 陈红艳, 刘慧涛, 等. 基于高光谱的鲁西北平原土壤有效磷含量快速检测研究[J]. 中国生态农业学报, 2013, 21(6): 752–757 GAO H, CHEN H Y, LIU H T, et al. Spontaneous determination of soil available phosphorus using high spectrum in the northwest plain of Shandong Province[J]. Chinese Journal of Eco-Agriculture, 2013, 21(6): 752–757

[3] 张娟娟, 余华, 乔红波, 等. 基于高光谱特征的土壤有机质含量估测研究[J]. 中国生态农业学报, 2012, 20(5): 566–572 ZHANG J J, YU H, QIAO H B, et al. Soil organic matter content estimation based on hyperspectral properties[J]. Chinese Journal of Eco-Agriculture, 2012, 20(5): 566–572

[4] 蔡亮红, 丁建丽. 基于高光谱多尺度分解的土壤含水量反演[J]. 激光与光电子学进展, 2018, 55(1): 400–409 CAI L H, DING J L. Inversion of soil moisture content based on hyperspectral multi-scale decomposition[J]. Laser & Optoelectronics Progress, 2018, 55(1): 400–409

[5] MASOUD A A, KOIKE K, ATWIA M G, et al. Mapping soil salinity using spectral mixture analysis of landsat 8 OLI images to identify factors influencing salinization in an arid region[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 83: 101944

[6] LITALIEN A, ZEEB B. Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation[J]. Science of the Total Environment, 2020, 698: 134235

[7] EL HASINI S, IBEN HALIMA O, EL AZZOUZI M, et al. Organic and inorganic remediation of soils affected by salinity in the Sebkha of Sed El Mesjoune — Marrakech (Morocco)[J]. Soil and Tillage Research, 2019, 193: 153–160

[8] LI N, KANG Y H, LI X B, et al. Response of tall fescue to the reclamation of severely saline coastal soil using treated effluent in Bohai Bay[J]. Agricultural Water Management, 2019, 218: 203–210

[9] SCUDIERO E, SKAGGS T H, CORWIN D L. Comparative regional-scale soil salinity assessment with near-ground apparent electrical conductivity and remote sensing canopy reflectance[J]. Ecological Indicators, 2016, 70: 276–284

[10] LI J G, PU L J, HAN M F, et al. Soil salinization research in China: Advances and prospects[J]. Journal of Geographical Sciences, 2014, 24(5): 943–960

[11] 梁静, 丁建丽, 王敬哲, 等. 基于反射光谱与Landsat 8 OLI多光谱数据的艾比湖湿地土壤盐分估算[J]. 土壤学报, 2019, 56(2): 320–330 LIANG J, DING J L, WANG J Z, et al. Quantitative estimation and mapping of soil salinity in the Ebinur lake wetland based on vis-NIR reflectance and landsat 8 OLI data[J]. Acta Pedologica Sinica, 2019, 56(2): 320–330

[12] WANG R S, WAN S Q, SUN J X, et al. Soil salinity, sodicity and cotton yield parameters under different drip irrigation regimes during saline wasteland reclamation[J]. Agricultural Water Management, 2018, 209: 20–31

[13] PENG J, BISWAS A, JIANG Q S, et al. Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China[J]. Geoderma, 2019, 337: 1309–1319

[14] 夏芳, 彭杰, 王乾龙, 等. 基于省域尺度的农田土壤重金属高光谱预测[J]. 红外与毫米波学报, 2015, 34(5): 593–598 XIA F, PENG J, WANG Q L, et al. Prediction of heavy metal content in soil of cultivated land: Hyperspectral technology at provincial scale[J]. Journal of Infrared and Millimeter Waves, 2015, 34(5): 593–598

[15] 王文俊, 王璨, 李志伟, 等. 基于高光谱技术的褐土土壤总氮含量的预测[J]. 山西农业大学学报: 自然科学版, 2018, 38(9): 71–76 WANG W J, WANG C, LI Z W, et al. Prediction of total nitrogen content in brown soil based on hyperspectral technology[J]. Journal of Shanxi Agricultural University: Natural Science Edition, 2018, 38(9): 71–76

[16] LIANG Y J, REN C, WANG H Y, et al. Research on soil moisture inversion method based on GA-BP neural network model[J]. International Journal of Remote Sensing, 2019, 40(5/6): 2087–2103

[17] CUI K, QIN X T. Virtual reality research of the dynamic characteristics of soft soil under metro vibration loads based on BP neural networks[J]. Neural Computing and Applications, 2018, 29(5): 1233–1242

[18] ZHAO H J, SHI S G, JIANG H Z, et al. Calibration of AOTF-based 3D measurement system using multiplane model based on phase fringe and BP neural network[J]. Optics Express, 2017, 25(9): 10413-10433

[19] AO H, LIAO X Y, ZHAO D, et al. Delineation of soil contaminant plumes at a co-contaminated site using BP neural networks and geostatistics[J]. Geoderma, 2019, 354: 113878

[20] GOLHANI K, BALASUNDRAM S K, VADAMALAI G, et al. A review of neural networks in plant disease detection using hyperspectral data[J]. Information Processing in Agriculture, 2018, 5(3): 354–371

[21] 刘焕军, 潘越, 窦欣, 等. 黑土区田块尺度土壤有机质含量遥感反演模型[J]. 农业工程学报, 2018, 34(1): 127–133 LIU H J, PAN Y, DOU X, et al. Soil organic matter content inversion model with remote sensing image in field scale of blacksoil area[J]. Transactions of the CSAE, 2018, 34(1): 127–133

[22] 乔娟峰, 熊黑钢, 王小平, 等. 基于最优模型的荒地土壤有机质含量空间反演[J]. 江苏农业学报, 2018, 34(1): 68–75 QIAO J F, XIONG H G, WANG X P, et al. Spatial inversion of soil organic matter content in wasteland based on optimal model[J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(1): 68–75

[23] BALDOCK J A, HAWKE B, SANDERMAN J, et al. Predicting contents of carbon and its component fractions in Australian soils from diffuse reflectance mid-infrared spectra[J]. Soil Research, 2013, 51(8): 577

[24] 王海峰, 张智韬, Arnon Karnieli, 等. 基于灰度关联-岭回归的荒漠土壤有机质含量高光谱估算[J]. 农业工程学报, 2018, 34(14): 124–131 WANG H F, ZHANG Z T, KARNIELI A, et al. Hyperspectral estimation of desert soil organic matter content based on gray correlation-ridge regression model[J]. Transactions of the CSAE, 2018, 34(14): 124–131

[25] 张秋霞, 张合兵, 张会娟, 等. 粮食主产区耕地土壤重金属高光谱综合反演模型[J]. 农业机械学报, 2017, 48(3): 148–155 ZHANG Q X, ZHANG H B, ZHANG H J, et al. Hybrid inversion model of heavy metals with hyperspectral reflectance in cultivated soils of main grain producing areas[J]. Transactions of the Chinese Society of Agricultural Machinery, 2017, 48(3): 148–155

[26] 田安红, 熊黑钢, 赵俊三, 等. 分数阶微分对盐渍土野外光谱预处理精度提升的机理分析[J]. 光谱学与光谱分析, 2019, 39(8): 2495-2500 TIAN A H, XIONG H G, ZHAO J S, et al. Mechanism improvement for pretreatment accuracy of field spectra of saline soil using fractional differential algorithm[J]. Spectroscopy and Spectral Analysis, 2019, 39(8): 2495-2500

Tian Anhong1,2, FU Chengbiao1**, XIONG Heigang3,4, ZHAO Junsan2

(1.College of Information Engineering, Qujing Normal University, Qujing 655011, China; 2. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China; 3. College of Applied Arts and Science, Beijing Union University, Beijing 100083, China; 4. College of Resource and Environment Sciences, Xinjiang University, Urumqi 830046, China)

S151.9

10.13930/j.cnki.cjea.190700

* 国家自然科学基金项目(41901065, 41671198, 41761081)资助

付承彪, 主要从事遥感与地理信息系统的研究。E-mail: fucb305@163.com

田安红, 主要从事干旱区盐渍土的高光谱研究。E-mail: tianfucb@163.com

2019-09-26

2019-12-10

* This study was supported by the National Natural Science Foundation of China (41901065, 41671198, 41761081).

, E-mail: fucb305@163.com

Dec. 10, 2019

Sep. 26, 2019;

猜你喜欢

盐渍人为波段
盐渍土二次相变温度变化规律
最佳波段组合的典型地物信息提取
新型X波段多功能EPR谱仪的设计与性能
最佳波段选择的迁西县土地利用信息提取研究
脱硫石膏对滨海盐渍土理化性能的影响研究
十二星座之“家长会被批评后……”
小型化Ka波段65W脉冲功放模块
打动顾客
叶用芥菜盐渍过程中微生物群落分析
山高人为峰