APP下载

关于两个算子乘积的值域的一个注记

2019-12-13秦梦洁许庆祥

秦梦洁 许庆祥

摘 要: 设H和K为两个Hilbert空间,A∈B(H)和B∈B(K,H)满足ind(A)≤1,R(AB)R(B),以及R(B)为闭.给出了等式R(AB)=R(A)∩R(B) 成立的一个充分条件,并给出了上述等式不成立的一个反例.

关键词: 算子值域; Drazin逆; Moore-Penrose逆

中图分类号: O 177.1  文献标志码: A  文章编号: 1000-5137(2019)05-0469-03

Abstract: Let H and K be two Hilbert spaces,and let A∈B(H),B∈B(K,H) be two bounded linear operators such that ind(A)≤1,R(AB)R(B) and R(B) is closed in H.A sufficient condition is given under which R(AB)=R(A)∩R(B).Furthermore,a counterexample is constructed such that R(AB)≠R(A)∩R(B).

Key words: the range of an operator; Drazin inverse; Moore-Penrose inverse

参考文献:

[1] BEN-ISREL A,GREVILLE T N E.Generalized inverse:theory and applications [M]//CMS Books in Mathematics.2nd ed.New York:Springer-Verlag,2003.

[2] WANG G,WEI Y,QIAO S.Generalized inverses:theory and computations [M]//Mathematics Monograph Series 36.Singapore:Springer Nature Singapore Pte. Ltd.,2018.

[3] XUE Y.Stable Perturbations of Operators and Related Topics [M].Hackensack,NJ:World Scientific Publishing Co.Pte.Ltd.,2012.

(責任编辑:冯珍珍)