APP下载

二丁基羟基甲苯对雨生红球藻虾青素和油脂积累的影响*

2019-12-06岳陈陈余旭亚赵永腾王惠萍

渔业科学进展 2019年6期
关键词:球藻青素油脂

岳陈陈 余旭亚 赵永腾 王惠萍

二丁基羟基甲苯对雨生红球藻虾青素和油脂积累的影响*

岳陈陈1余旭亚1赵永腾1王惠萍2①

(1. 昆明理工大学生命科学与技术学院 昆明 650500;2. 昆明市儿童医院 昆明 650228)

以雨生红球藻()为对象,研究高光照、缺氮条件下,外源添加不同浓度的二丁基羟基甲苯(Butylated hydroxytoluene, BHT)对雨生红球藻生长、虾青素积累、油脂合成、脂肪酸组成、碳水化合物、蛋白含量以及虾青素和脂肪酸合成相关酶基因的影响。结果显示,添加不同浓度的BHT后,2 mg/L BHT添加组虾青素积累量为最高,显著高于其他实验组和对照组(<0.05),达到31.66 mg/g,是对照组的1.87倍。油脂含量达45.56%,高于同期对照组(39.06%),脂肪酸组成变化不显著。在此条件下,虾青素合成关键酶基因和表达水平分别是对照组的5.19倍和2.04倍;脂肪酸合成关键酶基因和表达水平较对照组显著提高(0.05),分别是对照组的4.56倍和3.02倍。与对照组相比,2 mg/L BHT添加组的碳水化合物和蛋白含量均呈下降趋势。研究表明,在胁迫条件下,外源添加适量浓度的BHT能有效促进雨生红球藻中虾青素的积累,同时提高了藻细胞内的油脂含量。

雨生红球藻;二丁基羟基甲苯;虾青素;油脂;虾青素合成基因;脂肪酸合成基因

虾青素是一种红色脂溶性酮式类胡萝卜素,在水产养殖、生物医药、化妆品等领域应用广泛(陈超等, 2014; Higuera-Ciapara, 2006; Shah, 2016)。研究发现,胁迫条件,如高光照、高盐、缺氮等,能促进微藻积累虾青素(Chen, 2017; Gao, 2015; Liu, 2016; Zhekisheva, 2002)。雨生红球藻()(绿藻门、团藻目)是一种分布于世界各地的单细胞淡水微藻,由于其虾青素含量高而被公认为天然虾青素生产的主要原料(何磊等, 2011; Lorenz, 1999; Rao, 2010),生产中,一般采用增加生物量和细胞内虾青素积累量的方法来提高虾青素的产量。

胁迫条件下,雨生红球藻除了积累虾青素外,还大量积累脂肪酸和甘油三酯(Saha, 2013)。研究发现,雨生红球藻中约有95%的游离虾青素会和脂肪酸发生酯化并储存在富含三酰基甘油的胞质脂质体中(Holtin, 2009; Yuan, 2000; Chen, 2015)。虾青素合成以丙酮酸和甘油醛-3-磷酸(GA3P)为起始物,经1-脱氧-D-木酮糖-5-磷酸合成酶(DXS)催化,形成1-脱氧-D-木酮糖-5-磷酸,最后经类胡萝卜素酮酶(BKT)合成游离虾青素(Estévez, 2001; Huang, 2016)。编码细胞中酰基载体蛋白(ACP)的合成,脂肪酸合成的第一个循环是乙酰-CoA与丙二酸单酰-ACP在β-酮酰-ACP合酶(KAS)的催化下生成乙酰乙酰-酰基载体蛋白,进入下一步脂肪酸的合成 (张梅等, 2018)。二丁基羟基甲苯(BHT)是一种人工合成的酚类抗氧化剂,因其抗氧化性强、挥发性低、稳定性高、耐用性好等优点被广泛应用于化工、食品、医药等领域(赵磊等, 2016)。Nanou等(2010)研究发现,外源添加BHT能提高真菌中β-胡萝卜素的积累。而β-胡萝卜素是虾青素合成通路中重要的中间代谢产物,这为本研究将BHT用于雨生红球藻诱导虾青素积累提供了理论依据。

本研究通过在培养基中添加不同浓度BHT,考察其对雨生红球藻生长、虾青素含量、油脂含量、脂肪酸组分、碳水化合物、蛋白含量等生理生化指标及对虾青素、脂肪酸合成相关酶基因表达的影响,优化BHT添加浓度,为其改善雨生红球藻中虾青素和油脂积累的工艺提供依据。

1 材料与方法

1.1 实验材料与试剂

雨生红球藻分离、筛选自云南省泸沽湖,本实验室保存。BHT购自生工生物工程(上海)股份有限公司;Trizol、逆转录试剂盒、引物(、、和)和荧光定量试剂盒购自上海碧云天生物技术有限公司;甲醇、DMSO、KOH、丙酮和葡萄糖等均为分析纯。

1.2 主要仪器

1730R高速冷冻离心机,丹麦Labogene Scanspeed公司;Ultrospec 2100pro紫外可见分光光度计,美国General Electric公司;FD5-12冷冻干燥机,西盟国际集团;荧光定量PCR仪,美国Bio-Rad公司。

1.3 方法

1.3.1 雨生红球藻的培养 以Bold’s Basal Medium (BBM)(Ebrahimian, 2014)为基础培养基,将雨生红球藻接种到容积为3 L的鼓泡式光生物反应器中,2800 lx持续光照,培养温度为(25±1)℃,连续通入0.1 vvm的无菌空气,培养15 d(此时生物量约为7.0×105cells/ml)。

1.3.2 BHT诱导 将BHT溶于无水乙醇,制成质量浓度为3.5 g/L的BHT母液,备用。3000 r/min离心5 min,收集上述的藻细胞,用无菌水洗3次,除去培养基,重悬于不含氮源的BBM培养基中,加入BHT母液,使得培养基中BHT的质量浓度分别为0、1、2和3 mg/L(保持各组的乙醇添加量相同)。培养条件为:12000 lx持续光照,培养温度为(28±1)℃,连续通入0.04 vvm的无菌空气,培养15 d,隔天取样,测定各生理生化指标。

1.3.3 藻细胞生物量和虾青素含量的测定 选用改进过的方法测定诱导培养基中雨生红球藻虾青素的含量(Boussiba, 1991)。隔天定时取5 ml诱导培养基中的藻液,5000 r/min离心3 min,弃上清液,收集藻细胞。加入2 ml质量分数为5%的KOH和体积分数为30%的甲醇混合液,置于65℃水浴15 min以破坏叶绿素,3500 r/min离心弃上清液,收集沉淀,水洗2次以洗去沉淀中残余的叶绿素,离心收集沉淀,加入5 ml的DMSO,混匀后利用超声破壁,反复抽提至藻体发白,5000 r/min离心3 min,取上清液,于490 nm波长下测定吸光度490 nm。按以下公式计算虾青素质量浓度:

虾青素质量浓度(mg/L)=(4.5×490 nm×a)/b

式中,a为DMSO体积(ml);b为藻液体积(ml)。

此外,每隔1 d定期取10 ml诱导培养基中的藻液,离心收集细胞,冷冻,干燥,称重,细胞生物量和虾青素含量按以下公式计算:

细胞生物量(g/L)=藻粉干重/藻液体积

虾青素含量(mg/g)=虾青素质量浓度/细胞生物量

1.3.4 藻细胞油脂含量和脂肪酸组分测定 按照Yu等(2012)的方法测定藻细胞中的油脂含量和脂肪酸组成。离心收集各组藻细胞,冷冻干燥,称取重ω1的藻体充分研磨,加入3 ml氯仿–甲醇混合液(氯仿∶甲醇=2∶1,/)提取油脂,置于150 r/min的摇床中20 min,2000×离心10 min,收集上清液,重复提取2~3次至藻体发白,将上清液置于管重ω2的50 ml离心管中,39℃烘箱中干燥,称重ω3,油脂含量计算公式如下:

油脂含量(%)=(ω3–ω2)/ω1×100

向上述含有油脂的离心管中加入2 ml硫酸甲醇溶液(硫酸∶甲醇=3∶97,/)混匀,70℃水浴4 h,加入2 ml正己烷,转移至进样瓶中,利用Agilent 7890进行脂肪酸GC-MS分析,色谱条件:色谱柱为HP-5MS (5% Phenyl Methyl Silox,30 mm×250 μm× 0.25 μm),二阶升温程序:170℃维持0 min,以10℃/min的速度升至190℃,维持1 min;再以0.8℃/min的速度升温至207℃,维持1 min;进样分流比40∶1,分流进样1 μl;进样口温度维持在250℃;载体为高纯氦气,以1 ml/min流速流入;质谱条件:四级杆温度为150℃,EI离子源温度为230℃,溶剂延迟2 min;质谱扫描范围为50~550 amu。以NIST08.L作为数据库,利用峰面积归一化法进一步计算脂肪酸各组分之间的相对百分含量。

1.3.5 藻细胞中碳水化合物和蛋白含量的测定 采用Jia等(2015)的方法测定藻细胞中的碳水化合物,取10 mg冻干藻粉加入0.5 ml乙酸,80℃水浴20 min,加入10 ml丙酮,3500 r/min离心10 min,弃上清液。将沉淀重悬于2.5 ml的4 mol/L三氟乙酸中,煮沸4 h,10000 r/min离心3 min。取20 µl上清液,加入硫酸–苯酚–水溶液900 µl(硫酸∶水∶苯酚= 15 ml∶7.5 ml∶0.15 g),煮沸20 min,在490 nm测吸光度,用葡萄糖制作标准曲线,以测定碳水化合物的总含量。

取10 mg冻干藻粉,加入100 µl的1 mol/L NaOH溶液,80℃水浴10 min,加入900 µl蒸馏水,12000×离心30 min,将上清液转移至新的离心管中。重复上述操作2次,合并上清液,以牛血清蛋白制作标准曲线,利用Berges等(1993)的方法测定总蛋白含量。

1.3.6 测定雨生红球藻虾青素和脂肪酸合成相关酶基因的表达量 本实验使用Primer 5.0设计、、和酶基因的上下游扩增引物(表1),扩增后产物经生工生物工程(上海)股份有限公司测序后BLAST比对,以此为模板设计荧光定量引物(表2)。收集藻细胞,无菌水洗2次,保存于–80℃备用。在液氮中充分研磨藻细胞,使用Trizol法提取总RNA,利用逆转录试剂盒TaKaRa逆转录合成cDNA,以此为模板进行RT-PCR扩增,通过ABI 7500荧光定量仪对、、和基因表达量进行测定,以18S (引物:5′-CGGTCTGCCTCTGGTATG-3′与5′-GC TTGCTTTGAACACGCT-3′)基因作为内标来调节RNA的用量和循环数,使内标基因在不同浓度诱导下的表达丰度一致。

表1 酶基因克隆引物

Tab.1 Primers for gene cloning

表2 酶基因荧光定量PCR引物

Tab.2 Primers for enzyme genes RT-PCR

1.4 数据处理

实验各组均设置3个平行样,数据处理采用ANOVA(SPSS 19.0)一步法分析和Duncan氏多重范围比较进行分析。最小显著性差异进行多重比较来检验调查不同实验的组间差异,<0.05为具有显著性。

图1 不同浓度BHT处理对雨生红球藻生物量和虾青素积累的影响

*表示组间有显著性差异(<0.05),**表示组间有极显著性差异(<0.01)。下同

* represents significant difference between groups (<0.05), ** represents highly significant difference between groups. The same as below

2 结果

2.1 BHT对雨生红球藻生物量和虾青素积累的影响

如图1A所示,0、1和2 mg/L BHT处理组生物量最大值分别为0.62、0.58和0.56 g/L,3 mg/L BHT处理组藻细胞生长明显受到限制。图1B显示,0、1和2 mg/L BHT处理组虾青素含量逐渐升高,2 mg/L BHT处理组增加最为显著,在13 d时达到最高31.66 mg/g,0和1 mg/L BHT处理组分别为16.94和22.30 mg/g;3 mg/L BHT处理组虾青素含量则较低。

2.2 BHT对雨生红球藻油脂和脂肪酸组分的影响

高光照、缺氮条件下,0和2 mg/L BHT处理组藻细胞中油脂的变化趋势如图2所示。0和2 mg/L BHT处理组油脂含量均逐步上升,最后趋于稳定;2 mg/L BHT处理组在11 d时达最高,占细胞干重的45.56%,较对照组(39.06%)提高了16.6%。

表3为第11天时0和2 mg/L BHT处理组脂肪酸组成。培养至11 d,C16∶0、C18∶1n9t、C18∶2n6c和C18∶3n6为脂肪酸的主要组成成分,占总脂肪酸的88%以上。2 mg/L BHT处理组和对照组相比,脂肪酸各组分含量变化不大,仅C18∶1n9t含量略微下降。

图2 不同浓度BHT处理对雨生红球藻油脂积累的影响

2.3 BHT对雨生红球藻碳水化合物和蛋白质含量的影响

碳水化合物和蛋白质是藻细胞内重要的生理参数,本研究检测了在添加BHT条件下二者的变化情况。2 mg/L BHT处理组和对照组的碳水化合物含量均呈现下降趋势,2 mg/L BHT处理组从第9天开始显著低于对照组,13 d时至最低,为细胞干重的13.45%,此时对照组为16.12%(图3A);微藻细胞内蛋白含量总体呈降低趋势,2 mg/L BHT在5 d、7 d时显著低于对照组(图3B)。

图3 不同浓度BHT处理对雨生红球藻碳水化合物和蛋白含量的影响

表3 不同浓度BHT对雨生红球藻脂肪酸组成的影响(%)

Tab.3 Effects of BHT on fatty acid profile of H.pluvialis during induction process (%)

图4 BHT对dxs和bkt基因表达量的影响

2.4 BHT对雨生红球藻虾青素积累关键酶基因dxs和bkt的影响

和是虾青素合成途径中的关键酶基因,图4为培养过程中和基因的相对表达量变化。2 mg/L BHT处理组的基因相对表达量在3、5、9、11、13和15 d均显著高于对照组,第9天时为对照组的5.19倍(图4A);与对照组相比,2 mg/L BHT处理组表达量从第3天开始显著增加,第9天时达到最高,为对照组的2.04倍,7和11 d也显著高于对照组,分别为1.97倍和1.96倍(图4B)。

2.5 BHT对雨生红球藻脂肪酸合成基因kas和acp的影响

用qRT-PCR方法检测不同诱导时间内,2 mg/L BHT诱导组和对照组雨生红球藻脂肪酸合成基因和的表达量(图5A、图5B),2 mg/L BHT处理组的相对表达量从第1天起显著高于对照组,为对照组的3.36倍,第5天达到最高,为对照组的4.57倍;整个诱导培养期间,2 mg/L BHT处理组基因的相对表达量也显著高于对照组。

3 讨论

3.1 培养基中添加BHT对雨生红球藻生长、虾青素积累和酶基因表达量的影响

本研究中,外源添加不同浓度BHT的结果显示,低浓度(1和2 mg/L)对雨生红球藻的生物量影响并不显著,而高浓度(3 mg/L)对生物量影响较大,对藻细胞有明显的毒害作用。2 mg/L BHT诱导组的虾青素积累量显著高于其他组;1 mg/L的添加剂量组高于对照组,但效果不如2 mg/L的处理组;3 mg/L添加量的毒害作用导致虾青素的积累无法进行。BHT是一种抗氧化剂,高浓度可能对机体产生促氧化作用(Prooxidant),从而导致藻细胞死亡。Nanou等(2010)利用高浓度的BHT处理真菌时发现,BHT与分子氧相互作用,产生苯氧自由基和超氧阴离子,表现出氧化性,致使细胞死亡;于威等(2018)研究发现,利用高浓度抗氧化剂谷胱甘肽处理黄瓜幼苗呈现明显的致毒作用,这均与本研究结果一致。Wen等(2015)研究发现,适宜浓度的乙醇诱导雨生红球藻能促进其虾青素的积累,达到25.10 mg/g;丁巍等(2017)利用胺鲜酯诱导雨生红球藻提高了虾青素的含量,最高可达24.94 mg/g,这均低于本研究中虾青素积累量(31.66 mg/g)。

和是虾青素合成途径中的关键酶基因,这2个基因表达量与虾青素的积累量呈正相关,Gao等(2012)研究发现,外源添加水杨酸上调了基因的相对表达量,促进了虾青素的合成。Ding等(2018)发现,添加褪黑素提高了雨生红球藻细胞和基因表达量,同时提高了虾青素的积累量。本研究中,图4和图1对比可知,基因表达量和虾青素积累之间不具有同步性,虾青素的大量积累滞后于和的基因表达量增加。Gao等(2012)使用水杨酸诱导虾青素积累时发现,虾青素合成关键酶基因分为转录后水平和转录水平基因,即有的基因在转录后上调虾青素生物合成,有的基因在转录时上调虾青素的合成。Zhao等(2015)也证明了这一结论。

3.2 外源BHT对雨生红球藻油脂积累、脂肪酸组成和脂肪酸合成酶基因的影响

利用抗氧化剂作为诱导子来提高生物体内次生代谢产物的含量,逐步成为研究热点。Franz等(2013)研究发现,添加适宜浓度的没食子酸诱导微藻能增加细胞内油脂含量,比对照组提高了2.17倍;Li等(2017)外源添加褪黑素提高了单针藻sp. QLY-1中的油脂含量。本研究使用BHT作为诱导子,提高了雨生红球藻中油脂的含量,达到细胞干重的45.56%,高于其他文献报道的微藻油脂含量(Bogen, 2013; Holbrook, 2014; Shrivastav, 2015)。

此外,Che等(2016)研究发现,外源添加黄腐酸能提高油脂含量,脂肪酸各组分变化不大,这与本研究的结果一致。和是脂肪酸合成通路中的关键酶基因,本研究中外源添加BHT提高了和的相对表达量,最高为对照组的3.36倍和3.02倍,促进了脂肪酸的合成。Lei等(2012)也发现脂肪酸合成的增加往往伴随着和表达量的提高。Shang等(2016)添加茴香醚诱导雨生红球藻合成虾青素,和的相对表达量均升高,提高了脂肪酸含量,与本实验呈现一致结果;油脂积累延迟于基因表达水平的上调,说明和起到了转录后水平的调节作用。

碳水化合物和蛋白质是藻细胞重要的生理指标,Ho等(2017)发现高盐诱导下,sp. JSC4通过降低细胞内淀粉含量增加了脂质积累;Chokshi等(2017)研究发现,微藻在缺氮条件下,细胞内的蛋白含量随着培养时间的进行而逐步降低。本研究中,BHT处理组和对照组的碳水化合物和蛋白均呈下降趋势,BHT处理组下降更为显著。因此,在胁迫条件下,雨生红球藻可能通过分解自身的碳水化合物和蛋白来合成油脂和虾青素等代谢产物来提高抗性。

雨生红球藻虾青素的积累与油脂合成紧密相关,脂肪酸在虾青素合成中有两个作用,一是与虾青素酯化,形成虾青素酯,有利于虾青素的合成;另一个是形成脂质体(Lipid bodies, LBs)以贮存虾青素(Zhang, 2016)。雨生红球藻中95%的虾青素与脂肪酸发生酯化反应,形成虾青素酯,储存于富含甘油三酯的脂质体中,这一反应降低了底物的量,减少末端产物抑制作用,促进了虾青素的积累(Chen, 2015)。增加脂肪酸的合成,合成的虾青素进入LBs后得以分隔,可作为减少末端产物抑制、增加虾青素积累的策略(Zhekisheva, 2005)。

在高光照、缺氮条件下,外源添加适宜浓度抗氧化剂褪黑素能够抑制细胞内的活性氧(ROS),增加细胞内抗氧化酶活性和抗氧化物含量,维持细胞内的氧化还原处于平衡状态,促进虾青素和油脂的积累(Zhao, 2018; Ding, 2018)。同样,BHT作为抗氧化剂,可提高真菌中抗氧化酶活性,从而清除胞内过量ROS,进而促进β-胡萝卜素的合成(Nanou, 2010)。另一方面,Ding等(2018)通过外源添加抗氧化剂褪黑素诱导雨生红球藻发现,上调了细胞内一氧化氮(NO)和水杨酸(SA)水平,NO和SA通过一系列级联反应促进了虾青素和脂肪酸的积累;SA作为植物激素可促进雨生红球藻中虾青素的积累(Gao, 2012);添加NO供体,SNP可通过激活胞内抗氧化酶活性,猝灭过量ROS,进而调控微藻在铬胁迫下的抗性(Kováčik, 2015)。而适量ROS可以促进微藻中次级代谢产物的积累(Shi, 2017)。因此,外源添加BHT可能是通过调控ROS和胞内相关信号分子水平,进而促进虾青素和油脂的积累(Zhao, 2018; Ding, 2018; Nanou, 2010)。此外,BHT上调了虾青素和脂肪酸合成途径中关键酶基因的相对表达量,促进了虾青素和脂肪酸的积累。

4 结论

外源添加适宜浓度的BHT能促进诱导条件下雨生红球藻中虾青素和油脂的积累。2 mg/L BHT处理雨生红球藻的效果最佳,虾青素积累量为31.66 mg/g,是对照组的1.87倍,促进了虾青素合成关键酶基因和的表达;同时,提高了脂肪酸合成酶基因和表达量,油脂含量增加到干重的45.56%,比对照组提高了16.6%;油脂的积累,有利于虾青素酯的形成,从而增加了微藻细胞中虾青素的生物合成。

Berges JA, Fisher AE, Harrison PJ. A comparison of Lowry, Bradford and Smith protein assays using different protein standards and protein isolated from the marine diatom. Marine Biology, 1993, 115(2): 187–193

Bogen C, Klassen V, Wichmann J,. Identification ofas a promising species for liquid biofuel production. Bioresource Technology, 2013, 133: 622–626

Boussiba S, Vonshak A. Astaxanthin accumulation in the green alga. Plant and Cell Physiology, 1991, 32(7): 1077–1082

Che RQ, Ding K, Huang L,. Enhancing biomass and oil accumulation ofsp. FXY-10 by combined fulvic acid and two-step cultivation. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67: 161–165

Chen C, Wu LM, Li YL,. Morphology of the early age and the pigment occurrence and the effects of different feed additives on the body color of. Progress in Fishery Sciences, 2014, 35(5): 83–90 [陈超, 吴雷鸣, 李炎璐, 等. 豹纹鳃棘鲈()早期形态与色素变化及添加剂对其体色的影响. 渔业科学进展, 2014, 35(5): 83–90]

Chen G, Wang B, Han D,. Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in(Chlorophyceae). Plant Journal, 2015, 81(1): 95–107

Chen J, Liu L, Wei D. Enhanced production of astaxanthin byin a microplate-based culture system under high light irradiation. Bioresource Technology, 2017, 245: 518–529

Chokshi K, Pancha I, Ghosh A,. Nitrogen starvation- induced cellular crosstalk of ROS-scavenging antioxidants and phytohormone enhanced the biofuel potential of green microalga. Biotechnology for Biofuels, 2017, 10(1): 60

Ding W, Yu XY, Peng J. Effect of diethyl aminoethyl hexanoate on astaxanthin content inLUGU.Science and Technology of Food Industry, 2017, 38(16): 150–153 [丁巍, 余旭亚, 彭俊. 胺鲜酯提高雨生红球藻(LUGU)虾青素含量的作用. 食品工业科技, 2017, 38(16): 150–153]

Ding W, Zhao P, Peng J,. Melatonin enhances astaxanthin accumulation in the green microalgaby mechanisms possibly related to abiotic stress tolerance. Algal Research, 2018, 33: 256–265

Ebrahimian A, Kariminia HR, Vosoughi M. Lipid production in mixotrophic cultivation ofin a mixture of primary and secondary municipal wastewater. Renewable Energy, 2014, 71: 502–508

Estévez JM, Cantero A, Reindl A,. 1-Deoxy-D-xylulose-5- phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. Journal of Biological Chemistry, 2001, 276(25): 22901–22909

Franz AK, Danielewicz MA, Wong DM,. Phenotypic screening with oleaginous microalgae reveals modulators of lipid productivity. ACS Chemical Biology, 2013, 8(5): 1053–1062

Gao Z, Meng C, Chen YC,. Comparison of astaxanthin accumulation and biosynthesis gene expression of threestrains upon salinity stress. Journal of Applied Phycology, 2015, 27(5): 1853–1860

Gao Z, Meng C, Zhang X,. Induction of salicylic acid (SA) on transcriptional expression of eight carotenoid genes and astaxanthin accumulation in. Enzyme and Microbial Technology, 2012, 51(4): 225–230

He L, Liu JZ, Qin SL,. Identification of an astaxanthin- producing marine yeast strain YS-185 and optimization of its fermentation conditions. Progress in Fishery Sciences, 2011, 32(4): 97–101 [何磊, 刘均忠, 秦胜利, 等. 产虾青素海洋酵母菌YS-185的鉴定及发酵条件优化. 渔业科学进展, 2011, 32(4): 97–101]

Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea FM. Astaxanthin: A review of its chemistry and applications. Critical Reviews in Food Science and Nutrition, 2006, 46(2): 185–196

Ho SH, Nakanishi A, Kato Y,. Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in algasp. JSC4. Scientific reports, 2017, 7: 45471

Holbrook GP, Davidson Z, Tatara RA,. Use of the microalgasp. grown in wastewater as a feedstock for biodiesel: Cultivation and fuel characteristics. Applied Energy, 2014, 131: 386–393

Holtin K, Kuehnle M, Rehbein J,. Determination of astaxanthin and astaxanthin esters in the microalgaeby LC-(APCI) MS and characterization of predominant carotenoid isomers by NMR spectroscopy. Analytical and Bioanalytical Chemistry, 2009, 395(6): 1613

Huang W, Ye J, Zhang J,. Transcriptome analysis ofto identify genes and their expressions involved in astaxanthin and triacylglycerol biosynthesis. Algal Research, 2016, 17: 236–243

Kováčik J, Klejdus B, Babula P,. Nitric oxide donor modulates cadmium-induced physiological and metabolic changes in the green alga. Algal Research, 2015, 8: 45–52

Lei A, Chen H, Shen G,. Expression of fatty acid synthesis genes and fatty acid accumulation inunder different stressors. Biotechnology for Biofuels, 2012, 5(1): 18

Li D, Zhao Y, Ding W,. A strategy for promoting lipid production in green microalgaesp. QLY-1 by combined melatonin and photoinduction. Bioresource Technology, 2017, 235: 104–112

Liu J, Mao X, Zhou W,. Simultaneous production of triacylglycerol and high-value carotenoids by the astaxanthin-producing oleaginous green microalga. Bioresource Technology, 2016, 214: 319–327

Lorenz RT. A technical review ofalgae. NatuRoseTM Technical Bulletin, 1999, 60: 1–12

Jia J, Han D, Gerken HG,. Molecular mechanisms for photosynthetic carbon partitioning into storage neutral lipids inunder nitrogen-depletion conditions. Algal Research, 2015, 7: 66–77

Nanou K, Roukas T. Oxidative stress response and morphological changes ofinduced by butylated hydroxytoluene during carotene production. Applied Biochemistry and Biotechnology, 2010, 160(8): 2415–2423

Rao AR, Reddy AH, Aradhya SM. Antibacterial properties of,micro algal extracts. Current Trends in Biotechnology and Pharmacy, 2010, 4(3): 809–819

Saha SK, McHugh E, Hayes J,. Effect of various stress-regulatory factors on biomass and lipid production in microalga. Bioresource Technology, 2013, 128: 118–124

Shah M, Mahfuzur R, Liang Y,. Astaxanthin-producing green microalga: From single cell to high value commercial products. Frontiers in Plant Science, 2016, 7: 531

Shang M, Ding W, Zhao Y,. Enhanced astaxanthin productionfromusing butylated hydroxyanisole. Journal of Biotechnology, 2016, 236: 199– 207

Shi K, Gao Z, Shi TQ,. Reactive oxygen species-mediated cellular stress response and lipid accumulation in oleaginous microorganisms: the state of the art and future perspectives. Frontiers in Microbiology, 2017, 8: 793

Shrivastav A, Mishra SK, Suh WI,. Characterization of newly isolated oleaginous microalgasp. for lipid production under different conditions. Algal Research, 2015, 12: 289–294

Wen Z, Liu Z, Hou Y,. Ethanol induced astaxanthin accumulation and transcriptional expression of carotenogenic genes in. Enzyme and Microbial Technology, 2015, 78: 10–17

Yu W, Xie JM, Teng HW,. Effects of exogenous glutathione on antioxidant system in leaves of grafted cucumber, stock and scion seedlings under autotoxicity. Journal of Nuclear Agricultural Sciences, 2018, 32(1): 196–207 [于威, 颉建明, 滕汉玮, 等. 外源谷胱甘肽对自毒作用下嫁接黄瓜及砧穗幼苗叶片抗氧化系统的影响. 核农学报, 2018, 32(1): 196–207]

Yu X, Zhao P, He C,. Isolation of a novel strain ofsp. and characterization of its potential application as biodiesel feedstock. Bioresource Technology, 2012, 121: 256–262

Yuan JP, Chen F. Purification of trans-astaxanthin from a high-yielding astaxanthin ester-producing strain of the microalga. Food Chemistry, 2000, 68(4): 443–448

Zhekisheva M, Boussiba S, Khozin-Goldberg I,. Accumulation of oleic acid in(Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. Journal of Phycology, 2002, 38(2): 325–331

Zhekisheva M, Zarka A, Khozin-Goldberg I,. Inhibition of astaxanthin synthesis under high irradiance does not abolish triacylglycerol accumulation in the green alga(Chlorophyceae). Journal of Phycology, 2005, 41(4): 819–826

Zhang M, Mi TZ, Zhen Y,. Description of fatty acid synthesis pathway based ontranscriptome. Periodical of Ocean University of China (Natural Science), 2018, 48(4): 81–93 [张梅, 米铁柱, 甄毓, 等. 基于玛氏骨条藻转录组的脂肪酸合成途径分析. 中国海洋大学学报(自然科学版), 2018, 48(4): 81–93]

Zhang Z, Sun D, Mao X,. The crosstalk between astaxanthin, fatty acids and reactive oxygen species in heterotrophic. Algal Research, 2016, 19: 178–183

Zhao L, Xie JY, Huang WC.Study on the synthesis of BHT catalyzed by ionic liquid. Chemical Industry and Engineering Progress, 2016, 35(S2): 272–275 [赵磊, 谢君怡, 黄文才. 咪唑类离子液体催化合成抗氧剂BHT. 化工进展, 2016, 35(S2): 272–275]

Zhao Y, Li D, Xu JW,. Melatonin enhances lipid production insp. QLY-1 under nitrogen deficiency conditionsa multi-level mechanism. Bioresource Technology, 2018, 259: 46–53

Zhao Y, Shang M, Xu JW,. Enhanced astaxanthin production from a novel strain ofusing fulvic acid. Process Biochemistry, 2015, 50(12): 2072–2077

Effects of Butylated Hydroxytoluene on Accumulation of Astaxanthin and Lipids inLUGU

YUE Chenchen1, YU Xuya1, ZHAO Yongteng1, WANG Huiping2①

(1. Faculty of Life Sciences and Technology, Kunming University of Science and Technology, Kunming 650500; 2. Kunming Children's Hospital, Kunming 650228)

is a microalga, and this species is economically important since it is a rich source of natural astaxanthin, which is considered a “super anti-oxidant.” The study was conducted usingLUGU filtrated from Lugu Lake in Yunnan Province, China. Studies have shown that under stress, the exogenous addition of appropriate concentration of butylated hydroxytoluene (BHT) can effectively promote the accumulation of astaxanthin and increase the content of lipids in the algal cells. The effects of BHT on several traits were investigated under stress conditions (high illumination and nitrogen deficiency), including the impact on growth of algae; the accumulation of astaxanthin; the synthesis of lipids; the composition of fatty acids, carbohydrates and protein; the expression level of the key enzyme gene of astaxanthin; and fatty acid biosynthesis. In this study, the different concentrations ofBHT (0, 1, 2, and 3 mg/L) were achieved through single factor experiments in algal cell culture medium. Results from these experiments showed that BHT treatment does not effectively promote the algae growth, but it does affect the accumulation of astaxanthin in algae cells. There was a significant dose effect depending on the BHT treatment applied to. After examining BHT additions of different concentrations, astaxanthin accumulation was determined to be the highest after the 2 mg/L BHT treatment, and it was significantly higher than that resulting from other treatments or the control group (<0.05). Moreover, astaxanthin accumulation was 1.87 times higher than that in the control group, reaching 31.66 mg/g. The lipid content of the 2 mg/L BHT treatment was 45.56%, which was also higher than that in the control (39.06%). Under these conditions, the expression levels of the key enzyme genes of astaxanthin synthesis,andwere 5.19 folds and 2.04 folds, respectively, as those of the control, and the expression levels of the key enzyme genes of fatty acid synthesis,andwere significantly higher than those of the control (<0.05), being 4.56 folds and 3.02 folds, respectively, as those of the control. Contrastingly, the carbohydrate and protein contents decreased compared to those of the control group. Overall, our results also show that BHT can increase accumulation of astaxanthin and increase the content of lipids in the algal cells when administered at an appropriate dose.

; Butylated hydroxytoluene; Astaxanthin; Lipids; Astaxanthin synthesis genes; Fatty acid synthesis genes

S968.41

A

2095-9869(2019)06-0145-09

10.19663/j.issn2095-9869.20180831001

http://www.yykxjz.cn/

岳陈陈, 余旭亚, 赵永腾, 王惠萍. 二丁基羟基甲苯对雨生红球藻虾青素和油脂积累的影响. 渔业科学进展, 2019, 40(6): 145–153

Yue CC, Yu XY, Zhao YT, Wang HP. Effects of butylated hydroxytoluene on accumulation of astaxanthin and lipids inLUGU. Progress in Fishery Sciences, 2019, 40(6): 145–153

* 国家自然科学基金地区科学基金项目(21766012;21666012)和云南省重大科技专项计划(2018ZG003)共同资助[This work was supported by Regional Science Foundation Project of National Nature Science Foundation of China (21766012; 21666012), Yunnan Province Major Science and Technology Special Program (2018ZG003)]. 岳陈陈,E-mail: 18468235975@163.com

王惠萍,主任医师,E-mail: 2500016390@qq.com

2018-08-31,

2018-10-05

WANG Huiping, E-mail: 2500016390@qq.com

(编辑 冯小花)

猜你喜欢

球藻青素油脂
真菌Simplicillium lanosoniveum DT06 对雨生红球藻生长与脂类合成的影响
Effects of astaxanthin against colorectal carcinogenesis by lipopolysaccharide challenge in vitro
盐度对广盐型聚球藻K1 生长及转录组的影响*
肉鸡配用油脂饲料有啥方法
棕榈油支撑油脂板块走强,油强粕弱格局延续
绿光条件下氮浓度对紫球藻生长和生物活性产物合成的影响
日粮添加虾青素对种蛋孵化效果的影响
6000倍抗氧化能力,“完爆”维C!昶科将天然虾青素研发到极致
虾青素在设施草莓上的应用效果
A taste of Peking duck