聚合物驱后期油藏注采耦合技术提高采收率研究及应用
2019-12-04李宗阳谭河清李林祥曹绪龙崔文福陈孝芝王业飞李文华
李宗阳 ,谭河清,李林祥,曹绪龙,崔文福,陈孝芝,王业飞,李文华
(1.中国石油大学(华东)石油工程学院,山东青岛 266580;2.中国石化胜利油田分公司勘探开发研究院,山东东营 257015;3.中国石化胜利油田分公司孤东采油厂,山东东营 257237;4.中国石化胜利油田分公司,山东东营 257001)
化学驱技术是油田开发中后期进一步提高原油采收率的主要手段之一,而聚合物驱已成为传统主要的化学驱技术,在中外得到广泛应用[1-5]。胜利油区适合化学驱的Ⅰ,Ⅱ类优质油藏资源已基本得到动用,面临化学驱资源接替难度大的实际问题,截至2018 年12 月,矿场正在实施的化学驱项目覆盖石油地质储量为1.27×108t,但已基本进入聚合物驱后期开发阶段,截至2019 年5 月,该类化学驱油藏平均综合含水率为91.7%,平均采出程度仅为43.0%,但年增油量占胜利油区化学驱年总增油量的81.3%。如何把握化学驱增油有利时机,充分利用化学驱单元现有井网和地面注聚设备,改变目前已有老流线,延长化学驱项目经济寿命期,是聚合物驱后期油藏化学驱项目降本增效、低成本经济高效开发的关键。聚合物驱后期油藏注采耦合技术被认为可进一步提高该类油藏采收率,有效抑制含水率上升,减缓产量递减,延长注聚项目经济有效期。然而,注采耦合模式不明确,相关的物理模拟实验研究缺乏[6-8]。因此,针对聚合物驱后期油藏孤东油田八区Ng3-4 单元特征条件,基于物理模拟实验研究方法,采用可视化模拟驱替装置,研究聚合物驱后期油藏聚合物连续和耦合注入模式(简称连续注采和注采耦合)下的液流波及、油水分布和提高采出程度特征,明确聚合物驱后期油藏注采耦合技术的增效作用机制[9-11]。利用数值模拟手段,优化聚合物驱后期油藏注采耦合结构和实施周期等,建立聚合物驱后期油藏的注采耦合调整模式,指导矿场单元高效开发,以期进一步提高聚合物驱后期油藏采收率,最大限度提升化学驱油藏开发效果。
1 注采耦合物理模拟实验方法与结果
设计可体现非均质性的可视化模拟驱替装置,借助物理模拟手段,研究聚合物驱后期油藏连续注采和注采耦合模式对驱油效果的影响,对比连续注采和注采耦合模式下液流波及范围、油水分布特征和采出程度提高值。
1.1 实验器材与方法
实验装置 可视化模拟驱替装置(图1)主要包括:高精密医用泵(流量量程为0.01~20 mL/min)、非均质平面夹砂模型(模型尺寸为35 cm×25 cm)、视频自动采集装置(带LED 光源的摄物台、高清摄像机、图像处理软件等)。
图1 可视化模拟驱替装置示意Fig.1 Sketch map of visualized simulated displacement apparatus
实验材料 实验用聚合物由北京恒聚生产,相对分子质量为2 200×104。实验用模拟地层水为孤东油田地层水,矿化度为7 101 mg/L。实验用油为孤东油田八区Ng3-4 单元油井原油,地层原油黏度为61 mPa·s。
实验方法 利用可视化模拟驱替装置分别研究连续注采和注采耦合两种模式下的驱油效果。具体实验步骤为:①模型饱和地层水。将模型烘干称重,抽真空饱和地层水,计算夹砂模型孔隙体积。②模型饱和油。以不同速度进行油驱水至束缚水饱和度,根据高、低渗透带油流入速度,依据饱和情况适时采用重力法饱和,保证非均质夹砂平板充分饱和。③水驱油。以0.5 mL/min 的速度水驱,打开摄像头开始录像,根据流出管线油水比例,判断产出液含水率约为90%时,分析水驱结束后油水分布。④注聚合物及后续水驱。对聚合物利用萘酚绿B进行染色,对模拟油用苏丹Ⅲ染料进行染色,分别进行连续注采与注采耦合模式驱油,对比连续注采和注采耦合模式下液流波及范围、油水分布特征和提高采出程度。聚合物注入方案设计:①连续注采方案。水驱至含水率为90%时,注0.6 PV 质量浓度为1 000 mg/L 的聚合物,转后续水驱至含水率为95%时停止实验。②注采耦合方案。水驱至含水率为90%时,首先应用连续注采方法,注入0.4 PV质量浓度为1 000 mg/L 的聚合物,然后应用注采耦合方法,注入0.2 PV 质量浓度为1 000 mg/L 的聚合物,转后续水驱至含水率为95%时停止实验。③注采方式。连续注采模式为1,2 和3 井同时注,4,5 和6井同时采。注采耦合模式为:耦合上半周期为1和3 井注,5 井采;耦合下半周期为2 井注,4 和6 井采。耦合周期段塞比例为1∶1。实验用聚合物黏度为矿场用地层条件下聚合物黏度。
1.2 连续注采和注采耦合液流波及和油水分布特征
根据驱油实验流程和方案设计,进行连续注采与注采耦合驱油实验,利用视频自动采集装置对驱油过程进行录像,待实验结束后,对饱和油结束阶段、水驱阶段、聚合物驱阶段、注采耦合阶段和后续水驱阶段等各驱替阶段进行分析处理。
对于水驱阶段,由于高、低渗透带的渗透率差异,注入水容易沿高渗透带推进,随着注入时间的延长,易形成明显的水驱油优势渗流通道(图2a,2b,图3a,3b),并且由于优势渗流通道阻力较小,形成优势渗流通道后,注入水会沿流动阻力最小的优势渗流通道推进,导致高渗透带动用程度高于低渗透带。
对于聚合物驱阶段,注入的聚合物仍然会沿着水驱的优势渗流通道推进,随着聚合物注入量的增加,前期的水驱油优势渗流通道阻力增加,注入压力增大,动用了低渗透带部分原油(图2c,图3c)。
对于注采耦合阶段,对比注采耦合阶段上半周期和下半周期油水分布(图3d,图3e)可知,能够明显看到染色的聚合物在低渗透带推进,相比连续注采,低渗透带的波及程度和采出程度明显升高。
对于后续水驱阶段,与连续注采方案相比,注采耦合方案低渗透带剩余油量明显减少,表明低渗透带的剩余油得到高效动用(图2d,图3f)。
2 聚合物驱岩心驱替实验及数值模型的建立
2.1 聚合物驱岩心驱替实验
在开展聚合物驱后期油藏注采耦合数值模拟研究之前,为了确保数值模拟结果的可靠性和准确性,首先对化学剂相关特性参数进行测定,并开展物理模拟岩心驱替实验,对实验结果进行数值模拟拟合校正与优化。以聚合物驱油实验为例,主要测定聚合物溶液黏浓关系、不可及孔隙体积、残余阻力系数、阻力系数及聚合物吸附量等相关物化特性参数[12-14]。
图2 连续注采不同阶段油水分布特征Fig.2 Oil-water distribution characteristics at different stages through conventional injection and production method
图3 注采耦合不同阶段油水分布Fig.3 Oil-water distribution at different stages through injection-production coupling technology
具体实验步骤为:①将天然岩心经切割磨平、洗油、烘干预处理,称干重,测定气测渗透率。②将天然岩心抽真空饱和模拟油田地层水,饱和水后称岩心湿重,测定岩心孔隙体积和孔隙度。③将天然岩心饱和油田原油,计算初始含油饱和度。④以0.2 mL/min 的注入速度进行聚合物驱前水驱模拟,当水驱至综合含水率为97%时,计算水驱采收率。⑤在水驱基础上,注入0.3 PV 质量浓度为2 000 mg/L 的聚合物溶液,再转后续水驱至综合含水率为98%时结束实验,计算得到最终采收率。
物理模拟相关实验参数与聚合物驱实验模拟结果为:天然岩心直径为2.5 cm,长度为10 cm,孔隙度为30.1%,气测渗透率为2 000 mD,含油饱和度为70%,聚合物溶液黏度为28.5 mPa·s,其中物理模拟水驱采收率为56.6%,聚合物驱后最终采收率为72.3%,物理模拟聚合物驱比水驱可进一步提高采收率15.7%,综合含水率最大下降幅度为32%。
2.2 聚合物驱岩心数值模型建立
聚合物驱数值模拟预测结果的准确性主要依赖于油藏数值模型的可靠程度[15-16],在物理模拟研究的基础上,应用Eclipse 油藏数值模拟软件,结合室内物理模拟岩心驱替实验及聚合物性能评价结果,在水驱模型中引入聚合物相关的物化特性参数,主要包括聚合物黏浓关系曲线、剪切参数、残余阻力系数等相关参数,根据室内岩心驱替实验对聚合物驱数值模拟模型中的基本物化特性参数进行拟合修正,对室内物理模拟聚合物驱替规律进行拟合。拟合结果(图4)表明,数值模拟与物理模拟采收率与综合含水率拟合度达到90%以上,可有效保证数值模拟研究结果的可靠性,最终确定可供聚合物驱数值模拟研究的主要的化学驱数值模拟参数及数值模拟模型。
图4 岩心驱替曲线与油藏数值模拟拟合曲线对比Fig.4 Comparison between fitting curve of numerical simulation and core displacement curve
3 聚合物驱注采耦合模式数值模拟结果
选取聚合物驱后期油藏孤东油田八区Ng3-4单元的Ng32层为研究对象,根据目标区块地质构造特征、储层特征及流体性质,应用Petrel 地质建模软件,建立目标区块三维精细地质模型,为油藏数值模拟优化设计提供依据。将已优化的三维精细地质模型导入Eclipse 数值模拟软件,并将目标区块动态开发历史数据导入数值模拟模型,建立以八区Ng32层为主的油藏数值模型,在水驱和聚合物驱等历史生产数据拟合的基础上,应用岩心驱替实验拟合优选的聚合物驱数值模拟相关物化参数,应用数值模拟手段研究聚合物驱后期油藏注采耦合模式对流线改变及提高原油采收率的影响,开展聚合物驱后期油藏注采耦合结构和实施周期等数值模拟优化研究,建立适应聚合物驱后期油藏的注采耦合调整模式,以期指导矿场聚合物驱后期油藏高效开发[17]。
3.1 注采耦合结构
应用化学驱数值模拟技术,设计聚合物驱后期油藏注采耦合结构,分别设计注采耦合结构为对称型和非对称型两类,其中对称型结构设计一轮次与二轮次开井时间比例为1∶1,非对称型结构设计一轮次与二轮次开井时间比例为1∶3,1∶2,2∶1 和3∶1四种形式。化学驱数值模拟研究结果(图5)表明,在同等工作制度下,注采耦合调整一轮次与二轮次开井时间比例为1∶1时,注聚单元采出程度最高,一轮次与二轮次开井时间比例为2∶1 和1∶2 时模拟效果次之,一轮次与二轮次开井时间比例为1∶3与3∶1时模拟效果最差,最终推荐聚合物驱后期油藏注采耦合结构为对称型结构,即一轮次与二轮次开井时间比例为1∶1。
图5 聚合物驱后期油藏不同注采耦合结构下采出程度对比Fig.5 Comparison of recoveries under different injectionproduction coupling structures for the reservoirs at later stage of polymer flooding
3.2 注采耦合周期
在聚合物驱后期油藏注采耦合结构为对称型结构的基础上,设计注采耦合周期分别为1,2,3,4和5个月,应用化学驱油藏数值模拟手段,分析化学驱注采耦合周期对开发效果的影响。由注采耦合数值模拟结果(图6)可以看出,在不同注采耦合周期条件下,实施注采耦合技术后,数值模拟预测最终采出程度由高到低分别为:3个月、4个月、2个月、5个月和1个月,最终推荐聚合物驱后期油藏注采耦合每轮次开井时间为3 个月,即注采耦合周期为3个月。
图6 聚合物驱后期油藏不同注采耦合周期下采出程度对比Fig.6 Comparison of recoveries under different injectionproduction coupling cycles for the reservoirs at later stage of polymer flooding
3.3 注采耦合流线模拟
聚合物驱后期油藏注采耦合技术可降低注采敏感性,注入流体不再沿原有主流线突进,变驱替为汇流,在非主流线(边角区与油井间)产生多条新流线,可有效扩大聚合物驱后期油藏波及体积[18-21]。聚合物驱后期油藏数值模拟流线研究结果(图7)表明,应用聚合物驱后期油藏注采耦合技术后,在原有老流线的基础上,油藏的固有流场发生改变,非主流线区域产生多条新流线,有效扩大了化学驱波及体积,使聚合物驱后期油藏的剩余油得到高效动用。
4 矿场应用
聚合物驱后期油藏实施注采耦合可有效改变原有流场,对低效井组(井区)实施注采耦合调整,降低注采速度,实现降本稳效,最大限度发挥驱油体系提高石油采收率的效能。综合考虑储层非均质性、剩余油分布和井网井距等,针对采出液综合含水率、日产油量、吨聚增油和见聚浓度等指标,优选10 个井组(注入井10 口,生产井13 口)实施注采耦合转流线调整开发,根据油藏数值模拟优化结果,选择注采结构为对称型,注采周期为3 个月,基于井组储层发育状况、物性差异和采出程度不同,差异化优化单井注采耦合注入量和注入浓度,由数值模拟结果(图8)可以看出,聚合物驱后期油藏实施注采耦合技术后,可有效增加含水率在低点持续时间,延长聚合物驱见效高峰期时间。数值模拟预测实施注采耦合技术后进一步提高采收率1.7%,相比连续注入可增加产油量约为1.9×104t,并降低化学剂用量10%。截至2018 年12 月,矿场已实施注采耦合技术调整两个半周期,实施后试验井区含水率回返态势得到有效控制,月节约注入干粉量为10.8 t/月,节省化学剂费用为11.88×104元,吨聚增油值提高7.6 t/t。
图7 孤东油田八区Ng32层连续注采与注采耦合流线对比Fig.7 Comparison between streamlines of continuous injection and injection-production coupling in reservoirs at later stage of polymer flooding
图8 孤东油田八区Ng32层连续注采与注采耦合综合含水率Fig.8 Composite water cuts of injection-production coupling and continuous injection for polymer flooding in Ng32 Submember of No.8 Block in Gudong Oilfield
5 结论
胜利油区聚合物驱后期油藏覆盖地质储量规模大,目前已进入产量递减阶段,进一步提高采收率难度大。应用多种方法开展聚合物驱后期油藏注采耦合技术提高采收率研究,室内物理模拟和油藏数值模拟均表明,实施注采耦合调整后数值模拟预测可进一步提高该类油藏原油采收率,有效抑制井区综合含水率上升,增加综合含水率在低点的持续时间,减缓产量递减率,延长聚合物驱后期项目经济有效期,并可明显降低化学剂用量;应用油藏数值模拟手段对聚合物驱后期油藏注采耦合模式进行系统优化,优化后得到聚合物驱后期油藏注采耦合结构为对称型耦合结构,即一轮次与二轮次开井时间比例为1∶1,注采耦合周期为3 个月,即每轮次开井时间均为3 个月;选取矿场聚合物驱后期油藏孤东油田八区Ng3-4 单元的Ng32层,应用注采耦合技术后,数值模拟预测化学剂用量可降低10%,采收率提高1.7%,相比连续注采可增加产油量约1.9×104t。矿场实施后,试验井区含水率回返态势得到有效控制,月节约注入干粉10.8 t/月,节省化学剂费用为11.88×104元,吨聚增油值提高7.6 t/t,为聚合物驱后期油藏进一步提高采收率提供技术支撑,对胜利油田增储上产具有重要现实意义。