缝洞型碳酸盐岩油藏岩溶储集体注氮气提高采收率实验
2019-12-04杨景斌侯吉瑞
杨景斌,侯吉瑞
(1.中国石油大学(北京)非常规油气科学技术研究院,北京 102249;2.中国石油大学(北京)石油工程教育部重点实验室,北京 102249)
碳酸盐岩油藏储量占全球已探明石油地质储量的52%,其产量占全球油气总产量的60%。其中,中国西部的缝洞型碳酸盐岩油藏约占中国碳酸盐岩油藏探明石油地质储量的2/3,是石油增储上产的主要勘探开发领域之一[1]。
目前,塔河油田是中国发现的储量最大的缝洞型碳酸盐岩油田,储层主要分布在奥陶系[2]。受多期构造运动、岩溶作用和成岩作用的影响,碳酸盐岩中形成了非均质性极强的裂缝和溶洞系统[3-4]。鉴于缝洞结构的复杂性以及空间分布的不规则性,鲁新便等将缝洞型碳酸盐岩油藏的储集体主要分为岩溶储集体、断溶储集体和暗河型储集体3 大类[5]。岩溶储集体的连通通道具有多样性,而断溶储集体和暗河型储集体的连通通道则具有方向性。缝洞型碳酸盐岩油藏以大型溶洞和溶蚀孔洞为主要的储集空间,以裂缝为主要的流动通道,储集体形态多样,具有极强的非均质性[6-8]。缝洞型碳酸盐岩油藏在开发过程中地层能量衰减明显,开发初期依靠天然能量弹性水驱衰竭式开采,底水锥进造成采出程度下降及地层能量急剧降低[9-11];开发中期依靠注气补充地层能量,稳油控水能够达到增产的目的,但是缝洞型碳酸盐岩油藏中溶洞、裂缝尺寸差异明显,缝洞连通程度复杂,严重影响气体在裂缝中的波及路径和特征,极易发生气窜,导致气体优势通道快速形成,降低最终采收率[12]。
调研发现,对常规砂岩油藏提高采收率方法已进行了大量的研究,但是对缝洞型碳酸盐岩油藏提高采收率方法研究较少[13]。根据塔河油田实际地质资料和注采特征,设计制作二维缝洞型岩溶储集体可视化物理模型,开展缝洞型油藏岩溶储集体模型注气提高采收率实验研究,观察缝洞型油藏中气体的驱油动态,分析气驱效果,揭示注气提高采收率的主要机理,为缝洞型碳酸盐岩油藏高效开发提供理论支持。
1 二维缝洞型岩溶储集体可视化物理模型制作
1.1 模型参数
根据相似准则[14]确定二维缝洞型岩溶储集体可视化物理模型的参数和条件,确保该模型与现场实际情况相符。缝洞型油藏流体通道复杂多样,流动模式不唯一,因此在同一模型中无法满足多个相似准则,只能对部分流体进行相似模拟,重点对岩溶储集体进行几何相似、运动相似和动力相似设计[15](表1)。因为流体在油藏中的流动主要受重力分异作用,所以在动力相似设计时主要考虑重力和地层压力,忽略黏滞力的影响。
表1 模型设计考虑的相似条件Table1 Similar conditions considered in design of visual physical model of two-dimensional fracture-cave karst reservoir
由现场参数和所建模型参数的比值,可计算出相似系数。当相似系数等于1 时,说明所建模型参数与现场实际参数相似。根据塔河油田S48单元的现场参数、所建模型参数及比值(表2),计算动力相似和运动相似的相似系数分别为1.01 和1.04,表明所建模型参数与现场参数相似,基本符合相似准则。
1.2 二维尺度刻画
基于Petrel 地质建模的分层投影叠加物理模拟方法,利用过井断面投影叠加刻画缝洞型油藏多井间纵向非均质特征,对其进行二维尺度的刻画。
岩溶储集体模型的材料为亚克力板,为确保模型材料的润湿性,将其浸入水中,发现在材料的表面会形成润湿角为62.8°的水滴,结果表明,岩溶储集体模型材料的润湿性与实际油藏相似[16]。
1.2.1 模型制作
根据Petrel 地质建模的分层投影叠加物理模拟方法,将储集体沿过井断面的投影进行叠加,利用过井断面投影叠加刻画缝洞型油藏多井间纵向非均质特征,采用CAD 画图软件将断面投影进行制图设计,模型材料选用优质亚克力板(化学成分为聚甲基丙烯酸甲酯),以最大限度地模仿油藏缝洞及裂缝的结构特征进行图形描绘,再依据该图形进行电脑编程,且不同缝洞采用不同大小刀具进行数控精细加工雕刻,并模仿油井的位置进行深孔加工,最后采用特殊工艺进行封闭工序,保证模型的密封和耐压,制作成二维缝洞型岩溶储集体可视化物理模型。
表2 塔河油田S48单元的现场参数、所建模型参数及比值Table2 Field parameters,parameters of visual physical model and similarity coefficient of Unit S48 in Tahe Oilfield
待模拟井筒安装完毕后,用环氧树脂将管座进行黏结固定。在模型的底部打2 个孔并嵌入2 个管座,分别在管座上连接一根铁管,铁管的另一端与二通阀相连,底水可以通过铁管泵入到模型底部的底水槽中,形成底水环境,岩溶储集体模型总缝洞体积为383 cm3,由宽度不同的裂缝组成[17-18]。
二是科技基础设施建设滞后,不能充分满足区域创新需求。近年来,东营市科技基础设施建设虽然取得了长足进步,建成一批国家大学科技园和国家级、省级的示范生产力促进中心、创业服务中心,但普遍存在建设水平不高的问题,能够为科技企业、研发机构和科技人员提供的有效服务较少。
1.2.2 井位设计
根据塔河油田S48单元的地质特征以及井位设计要求,在48 cm×48 cm 的正方形模型上方相应的位置设计8 口井,每口井用直径为3 mm 的铁管制备,铁管的一端伸入到岩溶储集体模型的缝洞结构中,另一端连接三通阀,各个铁管通过钻入到模型中的深度不同,来模拟不同深度的油井井筒,以期与现场保持相似[19]。将设计好的8口井分别标号为1#—8#,其中,选用2#,3#,5#和7#进行实验研究,5#为注入井,2#,3#和7#为采出井。5#模拟的是现场的深部位井,位于大的溶洞储集体内;2#,3#和7#模拟的是位于不同深度不同连通程度的井,为更加真切地模拟油田现场复杂的储集体类型,将2#,3#和7#这3口模拟井位于不同大小的岩溶储集体内进行采油,1#,4#,6#和8#这4 口井模拟油田现场的邻井情况,便于进行邻井受效情况分析。
2 注氮气实验准备及步骤
2.1 实验准备
实验温度为25 ℃,压力为常压。实验用模拟油由液体石蜡与煤油按质量比20∶1的比例配制,黏度为25 mPa·s(室温),密度为0.83 g/mL,为增强可视化效果,用苏丹红将模拟油染为红色;实验用气体为纯度为99.2%的工业氮气;实验用水为模拟地层水,并用纯蓝色墨水染色,黏度为1 mPa·s,密度为1 g/mL,模拟油与模拟水的界面张力为6 mN/m,模拟油与氮气的表面张力为8 mN/m。
实验准备包括:①对可视化模型进行抽真空处理,注入模拟油,标定物理模型的有效孔隙体积。②按照既定模型井眼的注采情况和井位高低,连接管线,从底部水槽注入地层水模拟地层环境。③固定模型,将光源板打开,竖立在模型后面,调试相机和三脚架位置,检查管线连接和阀门打开状态以及接液装置。
2.2 实验步骤
实验步骤具体包括:①在中间5#井处以20 mL/min 的注气速度注气,以10 mL/min 的流速在模型底部对模型进行底水注入,2#,3#,7#井采油,每隔2 min 记录一次产水量和产油量,当某一口井含水率达到98%时关井,直到3 口井全部关闭。②在中间5#井处以5 mL/min 的注气速度注气,底水以20 mL/min 的流速在模型底部注入,2#,3#,7#井采油,每隔2 min记录一次产水量和产油量,当某一口井含水率达到98%时关井,直到3 口井全部关闭。③根据实验现象和生产动态数据确定缝洞型碳酸盐岩油藏注水注气驱替的生产特征,重点分析气体的波及特征、路径和窜逸的机理。
3 实验结果分析
3.1 缝洞宏观油水界面特征
驱替初期,由于受油水重力分异作用,模型中各个缝洞的宏观油水界面较平稳上升,基本在同一水平线上,气水界面没有太大的变化,位于同一平面上[21](图1a)。每口生产井均能够采出油,但产出的程度不同,2#井产油速度最高,7#井产油速度最低。在无水采油期,2#井产油速度始终快于7#井。这是由于2#井井底位于大的溶洞储集体附近,储集体内储存大量油,缝洞单元与底水的连通性较好,底水驱替的阻力比较小,能够不断地将油驱向2#井,增加2#井产油速度。7#井井底附近的溶洞比较小,与四周大溶洞储集体的连通性较差,仅能通过一些细长的缝进行连通,储存的油量比较少,底水驱替阻力比较大(图1b)。当底水驱替达到0.3 PV以后,底水以离散相形式进入垂向盲端溶洞,逐渐形成连续相,在驱替过程中,由于油水密度差,底部压力增高,能够启动小尺度裂缝剩余油。受重力分异作用和壁面润湿性的影响,底水在垂向盲端裂缝中部运移,置换出的油相沿壁面流动,在壁面形成剩余油[22](图1c)。
图1 缝洞宏观油水界面特征Fig.1 Macroscopic characteristics of oil-water interface of fracture and cave
底水驱替达到0.5 PV 后,各个缝洞的油水分界面开始出现高度差异,不再保持在同一水平线上。产油速度高的2#井井底附近的油水界面高于产油速度低的7#井底附近的油水界面(图1d)。这是由于2#井井底附近的缝洞单元的连通性好,缝洞之间的流动阻力小,油水界面很容易被抬升。随着驱替体积的不断增加,2#井井底附近的油水界面上升的幅度逐渐增大,7#井井底附近的油水界面上升,但上升的幅度非常小。同时,油气界面也有稍微的波动,不再是位于同一平面内,2#井附近模拟油上方的气水界面相对于7#井附近模拟油上方的油气界面稍有降低(图1e)。随着驱替过程的进行,2#井附近模拟油下方的油水界面连续上升,模拟油上方的油气界面下降[23]。驱替一段时间后,2#井附近的模拟油变窄,7#井由于连通性差,底水抬升的阻力比较大,油水界面不容易被抬升,模拟油相对较宽(图1f)。
以20 mL/min 注气速度驱替与5 mL/min 注气速度驱替的缝洞宏观油水界面特征基本相似,初期油气界面都基本位于同一水平面内,油水界面稍有波动,随着驱替过程的进行,产油速度高的2#井井底附近的油水界面上升得比较快。但是在20 mL/min注气速度驱替条件下,发生气窜的时间比5 mL/min注气速度驱替早。
3.2 气水同锥现象
由于氮气驱过程是非活塞驱替,各向流体在纵向上的流速不同,导致油水界面和油气界面会发生形变,随着模型中油不断从生产井中采出,油水和油气界面将从原来的水平液面逐渐形成向生产井井口凸起的水锥和气锥。在物理模型的驱替过程中,发现在油水界面和油气界面到达生产井井口后一段时间内,产生了稳定水锥和气锥(图2),在实际油藏的开采过程中,仅当生产井产量小于临界产量时,才会形成稳定的锥状体。实验中观察到水锥的高度大于气锥的高度,这是由于水锥和气锥的高度取决于油水密度差和油气密度差所引起的重力和垂向压力梯度的平衡,油水密度差小于油气密度差[24]。
图2 气水同锥现象Fig.2 Gas-water coning phenomenon
根据Laplace公式及油水、油气两相弯曲液面受力平衡原理,假设生产井井口水体和气体凸起仅受自身重力和两相界面张力的作用,重力促进水锥和气锥变宽,界面张力抑制水锥和气锥铺展变宽。当两者达到平衡状态时,界面张力和重力相等,屈鸣等研究得出水锥和气锥最大高度的计算公式为[16]:
由(1)式可知,油气、油水界面张力分别为8,6 mN/m,油气、油水在模型上的润湿角分别为59.5°,62.8°,可得到气锥、水锥的最大高度分别为17.94,28.17 mm。在岩溶储集体物理模型实验过程中,测得产生气锥的最大高度为31.8 mm,水锥的最大高度为50.1 mm。其测量值均大于公式计算值,这说明底水对锥体的作用力抵消了部分重力作用,加剧垂向水锥向上延伸,宏观表现为形成水锥的实际最大高度大于静止状态下公式计算的水锥的最大高度。氮气对锥体的作用力和氮气自身的重力增加了气锥的高度,宏观表现为实测气锥最大高度大于静止状态下公式计算的气锥的最大高度。
通过分析发现,静态条件下用(1)式计算的结果虽然具有判定水锥和气锥最大高度的实用价值,但仍不能准确计算出锥体的最大高度,与实验测得的锥体最大高度有一定的差距。为能够更好地计算出锥体最大高度,在大量测试实验[25]的基础上,对(1)式进行修正,引入修正因子ε,(1)式变为:
经过实验验证得出,修正因子ε 取1.8 时,通过(2)式计算得到的水锥最大高度为50.7 mm,气锥的最大高度为32.29 mm,均与实测值比较接近,误差在0.01%之内,能够较为准确确定水锥和气锥的最大高度。
随着驱替过程的进行,重力和界面张力平衡的临界状态被打破,水锥在底水推动下开始上升,气锥保持相对平稳,模拟油左侧变薄。水锥上升到一定程度后,当模拟油左侧宽度几乎为0时,底水开始进入模拟油右侧的缝洞,在底水的推动下,右侧缝洞中的油向左侧流动,促使整个模拟油重新成为一条等宽的模拟油。
3.3 气水协同效应
在缝洞型碳酸盐岩油藏岩溶储集体物理模型中,氮气注入后上浮至构造顶部,占据高部位空间,形成人工气顶,储集体未出现气顶之前,底水向上运移最终突破井眼,将剩余油封闭于单井上部,气顶形成后,当气顶能量与底水能量发挥协同效应时,模拟油上下受力平衡,油藏中油水界面张力与油气界面张力相等[26](图3a)。底水能量过高导致气窜优势通道及宏观水锥过早形成,注气井底油气、油水双界面持续波动,在其相互作用下剩余油富集带不断变薄,整体的油水界面上移(图3b)。随着氮气的不断注入,气顶能量大于底水能量,致使模拟油逐渐下移(图3c),最终模拟油到达一个最低临界值(图3d)。经不断注气和底水补充,底水能量会超过气顶能量,底水能量推动模拟油上升(图3e)。
图3 气水协同效应Fig.3 Synergistic effect of gas and water
在驱替过程中,气顶能量与底水能量发挥协同效应,导致模拟油上下波动,直到3口生产井发生气窜,模拟油才停止波动(图3f)。在模拟油上下波动的过程中,3 口生产井伴随气体和水产生[27]。当5#井底为水中注气时,模拟油发生大幅度的扰动现象,导致注气井附近的油向模拟油两侧移动,在注气井一侧形成气体通道,气体不断上移。这是由油水界面和油气界面受力不平衡引起的。在驱替过程中,模拟油主要受到底水驱动力(Fw)、气体推动力(Fg)和油自身重力(G)的相互作用而发生上下波动。驱替初期,Fg+G<Fw,模拟油在底水的作用下向上平稳推进。随着驱替的不断进行,当注气达到0.5 PV 时,气体能量逐渐增加,模拟油上升缓慢,此时底水驱动力已不能完全推动模拟油上升,三者达到平衡状态,即:Fg+G=Fw。之后,模拟油逐渐变窄,当模拟油变窄到一定程度后,Fg+G>Fw,模拟油在气体推动力的作用下,向下移动,受缝洞连通性差异的影响,油水界面开始不在同一水平面上,出现高度差异[28]。左侧由于缝洞连通性较好,流动阻力小,气体推动力的效果相对较明显,模拟油呈现出左侧窄、右侧宽的高度差异现象。随着驱替的不断进行,气顶能量与底水能量发挥协同效应,使模拟油上下波动,直到3口生产井发生气窜为止,模拟油停止波动,达到稳定状态。
3.4 采出程度分析
在缝洞型碳酸盐岩油藏岩溶储集体可视化物理模型中进行氮气驱替实验,不同的注气速度对产液速率产生很大的影响。当注气速度为20 mL/min时,最大产液速度为40.5 mL/min;当注气速度为5 mL/min 时,最大产液速度为39 mL/min(图4a)。前9 min注气速度越大,产液速度越大。这是由于刚开始注气速度大,气体动能大,驱替速度快,产液速度高。当以20 mL/min 注气时,产液速度达到最大值时,2#井发生气窜,导致产液速度瞬间下降。随着驱替的进行,3#,7#井也相继发生气窜,最终关井。当以5 mL/min 注气时,气体能量缓慢增加,产液速度也随之不断的增加;到第14 min 时,产液速度达到最大值[29],随着驱替的进行,2#井见水,发生气窜,导致产液速度下降,在2#井见水后不久,3#井也相继发生气窜关井,最终7#井采油不出,几乎全出水。总体来看,注气速度为20 mL/min 比注气速度为5 mL/min 发生气窜的时间早,达到的最大产液速度高。
图4 不同注气速度下的产液速度和采出程度Fig.4 Liquid production rate and recovery at different gas injection rate
综上所述,注气速度影响剩余油的最终采出程度。注气速度为20 mL/min 时,采出程度约为70.5%,注气速度为5 mL/min 时的采出程度大约为78.9%(图4b)。注气速度高时,虽然能够在短时间内达到高的产液速度和高的剩余油采出量,但是由于油气的流度差异明显,气体很容易发生气窜,导致注氮气的时间缩短,采出程度最终会比较低;注气速度低时,可以延长注氮气的时间,气体不易过早发生气窜,能够提高最终的采出程度,但是由于速度低,驱动能量低,注入的氮气不能够进入阻力较大的缝洞中,只能进入阻力相对较小的溶洞和裂缝中。因此,需要合理的注气速度才能发挥氮气驱大幅度提高采出程度的潜能。
4 结论
根据缝洞型碳酸盐岩油藏的地质特征,在相似准则的基础上,建立二维缝洞型油藏岩溶储集体可视化物理模型,通过实验研究该模型注入氮气的波及动态规律,发现以注气速度分别为20 和5 mL/min进行驱替,宏观油水界面特征基本相似,在氮气驱替过程中会出现明显的气水同锥现象和气水协同效应,根据实验数据分析采出程度认为,高注气速度虽然能在短时间内达到高产液速度,但容易发生气窜,导致最终采出程度较低。因此,在油田现场进行氮气驱过程中必须控制好注气速度,减少气窜现象的发生。
符号解释
π1——模型与其原型对应的线性尺寸比例;d——缝洞直径,cm;l——油藏控制直径,cm;FG——地层压力与重力之比;Δp——地层压差,MPa;ρ——地层原油密度,kg/m3;g——重力加速度,m/s2;FQ——采液量与注入量之比;Q——注入量,m3/d;r——井径,mm;σ——界面张力,mN/m;θ——油润湿角,(°);hmax——水体凸起最大高度,mm;ε——修正因子;Δρ——流体密度差,g/cm3;Fw——底水驱动力,N;Fg——气体推动力,N;G——油自身重力,N。