APP下载

秸秆粉碎集条深埋机械还田对土壤物理性质的影响

2019-11-11王秋菊常本超宫秀杰

农业工程学报 2019年17期
关键词:物理性质耕层土层

王秋菊,刘 峰,焦 峰,常本超,姜 辉,宫秀杰

秸秆粉碎集条深埋机械还田对土壤物理性质的影响

王秋菊1,2,刘 峰1,焦 峰3,常本超1,姜 辉4,宫秀杰5

(1. 黑龙江省农业科学院土壤肥料与资源环境研究所,哈尔滨,150086;2. 黑龙江省土壤环境与植物营养重点实验室,哈尔滨,150086;3. 黑龙江八一农垦大学,大庆,163319;4. 黑龙江农业科学院科研处,哈尔滨,150086;5. 黑龙江省农业科学院耕作栽培研究所,哈尔滨,150086)

为明确秸秆粉碎集条深埋后土壤物理性质变化特征,为秸秆集条深还技术应用与推广提供理论依据和技术指导。本文采用田间大区对比试验,开展秸秆集条粉碎机械深埋对土壤物理性质的影响研究,设置正常翻耕、秸秆耕层还田、秸秆集条深还3个处理。结果表明:与对照秸秆不还田处理比,连续还田3a,秸秆集条深埋处理0~30 cm土层土壤固相比率和容重分别降低1.17%~6.21%和0.02~0.14 g/cm3、容气度和田间持水量提高,土壤总孔隙提高幅度为0.70%~5.98%,有效孔隙增加幅度为0.22%~2.69%,差异显著;与对照不还田处理比,耕层还田0~20 cm土层土壤固相比率和容重降低幅度分别为2.42%~4.30%和0.09~0.12 g/cm3、容气度和田间持水量得到提高,总孔隙和通气孔隙增加;秸秆集条深还作业土层深,每隔3年进行间隔作业,长期则可改善全田土壤物理性质,增厚耕层10 cm。

秸秆;土壤;物理性质;集条粉碎;机械深还

0 引 言

秸秆还田是农作物秸秆利用直接而有效的方式[1-3],长期定位研究证实秸秆还田具有培肥地力、改良土壤物理性状的效果[4-6]。然而,秸秆还田对土壤物理性质的影响因还田模式而异,总体来说秸秆还田可以分为覆盖还田、耕层还田和深埋还田3类模式,不同模式对土壤的容重、紧实度、温度、孔隙度影响不同[7-9]。付强等[10]认为在东北地区秸秆覆盖可以降低0~60 cm土层土壤的热通量及变化,并随土层加深而变弱;陈军锋等[11]认为秸秆覆盖对0~40 cm土层水分、温度有明显影响;蔡太义等[12]认为秸秆覆盖还田具有降温效应,其中在0~25 cm土层随覆盖量的增加而增大,随土壤深度增加而减小;在0~15 cm土层,生育期前期大,后期小。张敬涛等[13]也认为秸秆覆盖明显降低苗期土壤温度。在对土壤物理性质方面影响因地域、土壤、年份等因素影响,问题较大,争议也较多,王秋菊等[14]在连续8 a秸秆覆盖还田的草甸土调查结果,认为秸秆覆盖降低土温、增加土壤紧实度、容重,使这类土壤地温、紧实黏重的土壤不良物理性质没有得到改善,物理性质变差,不利于作物生长。

耕层还田具有改善土壤理化性质的效果,降低土壤容重、增加土壤蓄水能力[15-16]。但大量研究认为耕层还田由于秸秆滞留在耕层内,使耕层土壤疏松,保墒能力差,不仅影响作物出苗,在耕层内秸秆腐烂还会消耗土壤养分,导致土壤供应作物苗期生长养分不足,影响作物产量[17-19]。但在低湿、黏重土壤耕层还田可以增加大团聚体含量,提高土壤的通透性,改善土壤冷、滞状态,有提高作物产量的效果[20]。近几年来提出的秸秆深埋还田技术,可以克服北方地区秸秆覆盖和耕层还田在农业生产的弊端;朱姝等[21-23]认为秸秆深还田有利于土壤形成团聚体;邹洪涛等[24-25]认为秸秆深还可增加深层土壤水分、养分及土壤微生物量;王秋菊等[26]认为把秸秆还田在心土层内,既可以避免寒冷地区覆盖还田导致春季地温低、延迟出苗问题,又避免耕层还田影响作物播种质量、出苗率低的问题,可提高深层土壤肥力,改善土壤不良物理性状。

在秸秆深埋还田的基础上,本文提出了秸秆集条粉碎机械深还技术,该技术通过秸秆粉碎集条机(秸秆粉碎、集条沟施)配合铧式犁翻耕,将粉碎的秸秆集中深埋在耕层下,属于秸秆集中还田模式。其特征是将4倍于单位面积产量的秸秆集条深还,形成间隔180 cm的培肥沟。本文通过研究秸秆集条深还技术模式对土壤物理性质影响,试图明确其改善土壤结构、构建深厚耕层以及长期利用有机物料培肥土壤的效果,为秸秆还田提供新的技术支撑。

1 材料与方法

1.1 供试地点

试验地点设在哈尔滨市民主乡黑龙江省农科院试验基地内,地理坐标:N45°50′,E126°51′,属于温带大陆性季风气候,春季干旱大风,夏季多雨,冬季寒冷干燥[27]。2014~2016年3平均气温为5.2℃,降雨量458 mm,供试土壤类型为典型黑土,表1为土壤基础指标。

表1 试验土壤基础指标

1.2 试验处理

试验共设3个处理,分别为秸秆不还田(CK)、秸秆耕层还田(TR)和秸秆集条深还田(DS),以秸秆不还田处理为对照,每个处理设置3个小区,小区面积468 m2,顺次排列。

田间具体操作方法:在秋季收获后,不还田区秸秆移出田块,然后采用铧式犁翻耕,耕作幅宽度1.8 m,深度25~30 cm,图1为铧式犁翻耕作业现场;秸秆耕层还田处理在机械收获玉米粉碎秸秆,抛撒到田面,旋耕使表层土壤与秸秆混拌,田间作业场景如图2a,再翻耕25~30 cm(图2b)。

秸秆集条深还处理不需要秸秆粉碎,秸秆处于站立状态,如图2c、图2d所示,作业流程为两台拖拉机带动机械循环作业,先用一台拖拉机牵引秸秆粉碎集条机清理出一条作业道,然后用另一台拖拉机牵引翻耕犁开沟,第一台拖拉机牵引秸秆粉碎集条机粉碎秸秆并集中施入沟中,第二台拖拉机牵引翻耕犁翻扣土垡,将粉碎秸秆集中埋入深层土层中,循环作业,在耕层下形成了宽45 cm、深25~30 cm、间距1.8 m的秸秆深埋沟,每年秸秆还田位置一致。图3为不同处理剖面示意图。

图1 正常翻耕作业

图2 田间作业图

图3 土壤取样示意

各小区处理后,在秋季再耙地、起垄,达到播种状态,田间整地方法法参照《秸秆粉碎集条深埋机械还田模式对玉米生长及产量的影响》[26]文中方法。每年播种时间为4月下旬到5月初,玉米品种为先玉335;播种的同时施肥,施肥量:尿素(纯N:46%)、二铵(纯P2O5:46%,纯N:18%)、氯化钾(纯K2O:50%)350、217 、200 kg/hm2。

1.3 测定项目与方法

土壤原状土取样方法:采用装有100 cm3环刀的取土器采取土壤,每小区取3次重复。取样层次为5~10、15~20、25~30 cm土层。秸秆集条深还处理取样位置在秸秆深埋带,秸秆耕层还田和对照处理随即取样。

土壤物理性质:土壤容重采用烘干法、土壤三相采用土壤三相仪(日本大起)测定;

土壤容气度通过土壤三相数据计算得出(容气度%=气相/(气相+液相)×100%)[28]。土壤水分特征曲线:0~150 cm(H2O)吸力段用DIK-3343型土壤pF测定仪(日本大起)测定,150~16 544 cm(H2O)吸力段用1500F1型压力膜仪(美国产)测定。

土壤孔隙组成由土壤水分特征曲线取得,根据孔隙不同当量直径条件下体积含水量求差计算得出,当量直径使用下式算得

=/3

式中为孔隙当量直径,mm;为土壤水吸力,cm。土壤田间持水量为水吸力在63 cm时土壤水质量与土壤干土比值(田间持水量%=(63cm-干)/干×100%,为土壤质量)[29]。

1.4 数据整理

采用Microsoft Excel2003及DPS 6.85软件处理数据及试验数据的相关性分析。

2 结果与分析

2.1 对土壤三相的影响

从图4看出,不同还田处理对土壤三相影响不同,秸秆集条深还和耕层还田处理均可降低0~10 cm土层土壤固相比率,气相和液相比例提高,差异达到极显著水平(固=0.005,液=0.008,气=0.003),耕层还田和秸秆集条深还处理间没有差异。10~20 cm土层土壤固相、液相不同处理间无差异,气相间差异显著(气=0.000 3),耕层还田高于秸秆集条深还和对照。在20~30 cm土层,秸秆深埋降低了土壤的固相比例,提高了土壤液相和气相,但各处理间差异不显著。

图4 土壤三相组成

2.2 对土壤容气度、容重、田间持水量、孔隙性质影响

土壤容气度代表自然含水量下土壤气相占总孔隙的比例。从表2中看出,与对照相比,0~10 cm土层秸秆集条深还和耕层还田提高土壤容气度效果极显著;10~20 cm土层耕层还田提高容气度效果极显著;20~30 cm土层,秸秆集条深还提高土壤容气度效果不明显。说明土壤的气相比例大,土壤渗水能力增加。秸秆还田可以降低土壤容重,耕层还田对0~20 cm土层有降低容重的效果,降低幅度为0.09~0.12 g/cm3,差异达到极显著水平;秸秆集条深还则可降低0~30 cm土层土壤容重,降低幅度为0.02~0.14 g/cm3,在0~10、20~30 cm土层与对照相比差异极显著。秸秆集条深还和耕层还田均可提高土壤的田间持水量,其中秸秆集条深还对0~30 cm土层均有提高效果,对0~20 cm土层影响达差异显著水平。土壤总孔隙度调查结果,耕层还田0~20 cm土层比对照增加6.05%~7.92%,达到差异极显著;秸秆集条深还0~30 cm土层比对照增加0.70%~5.98%,其中20~30 cm土层达到差异极显著水平。

2.3 对土壤孔隙组成及比例影响

从表3土壤孔隙组成看,直径>0.05 mm大孔隙代表土壤通气性能,耕层还田0~20 cm土层比对照增加3.85%~3.90%,差异极显著,20~30 cm土层差异不显著;秸秆集条深还0~20 cm土层与对照差异不明显,20~30 cm土层比对照增加4.74%。直径0.000 2~0.05 mm的中孔隙代表土壤保水和供水能力,耕层还田0~20 cm土层比对照增加2.81%~5.37%,差异极显著,20~30 cm土层差异不显著;秸秆集条深还0~20 cm土层比对照增加2.76%~2.58%,分别达到差异极显著和显著水平,20~30 cm土层与对照差异不显著。从不同孔隙占总孔隙比例看,直径>0.05 mm大孔隙比例,耕层还田0~20 cm土层比对照增加6.16%~6.83%,20~30 cm土层降低0.53%;秸秆集条深还0~20 cm土层降低0.64%~1.65%,20~30 cm土层增加9.17%。直径0.000 2~0.05 mm中孔隙比例,耕层还田0~20 cm土层比对照增加2.58%~2.81%,20~30 cm土层降低3.59;秸秆集条深还0~20 cm土层比对照增加5.37%~5.59%,20~30 cm土层降低1.62%。

表2 不同处理土壤物理性质

注:小写字母代表在0.05水平差异性显著,大写字母代表在0.01水平差异性显著,下同。

Note: Lowercase letters represent significant differences at 0.05 levels, and uppercase letters represent significant differences at 0.01 levels,the same as below.

表3 不同当量直径土壤孔隙分布及所占比例

3 讨 论

上述研究说明连续秸秆还田对土壤物理性质有明显影响,但不同秸秆还田模式对土壤物理性质影响的程度和范围不同,而且秸秆还田后物理性质变化对作物产量的影响具有双面性。秸秆还田可以增加土壤孔隙量,使土壤变得疏松,增加土壤的蓄水能力;秸秆直接还田在耕层会导致土壤跑风透墒,在有“十春九旱”的东北地区,易造成种子出苗率低下。另一方面,分布在耕层的秸秆在腐解过程与作物争夺养分,导致作物苗期缺氮而减产。这是因为秸秆中大量有机碳的介入会使土壤氮矿化和固持时间发生重大变化,作物生育前期将进行强烈的氮素生物固持作用,使土壤微生物与作物争氮素,作物生长过程产生“氮饥饿”现象[30-32]。前期调查得出,耕层还田使玉米出苗率降低3.3%~3.5%,连续3a期间产量降低幅度为3.95%~8.84%,随还田年限增加减产幅度逐渐变低。秸秆集条深还将秸秆埋到深层土壤中,提高的是深层土壤大孔隙,降低小孔隙,在干旱时期可以降低毛管上升水到地表,抑制土壤水分蒸发,具有保墒和提高土壤抗旱能力,且秸秆连续集条深还并通过连年深翻,增加了土壤有效孔隙量,能提高土壤对秋季降水或冬季溶雪的储存量,提高土壤有效水分量,对防春旱有一定的作用。秸秆深耕还田可以提高土壤的通气、透水性,在多雨季节,秸秆集条深还可以促进地表水下渗,秸秆集中埋在深层,能够形成天然的蓄水沟,可以缓解多雨季节的涝害问题和干旱地区的干旱问题[33-34];耕层还田由于涉及土层深度为0~20 cm,下层土壤容重较高,固相率大,土壤紧实,不利于水分下渗,使土壤水分多停留在耕层,在缓解旱、涝问题上不如秸秆集条深还处理。

秸秆深还避免了秸秆腐解与作物生长过程中的争养的问题,不会影响作物前期生长,且后期作物根系下扎到深层,可以吸收秸秆腐解后释放的营养,促进作物后期生长,连续还田可使作物产量增加[35-36]。本研究技术模式玉米产量也是逐年增加趋势[26],长期秸秆集条深还,通过连续的翻耕作业,可以使土壤耕作层增厚,整个土层肥力逐渐提高,形成肥沃、深厚的土壤耕作层。前期通过在田间不同采样点采样分析发现,连年秸秆还田区域土壤的化学性质与对照相比发生很大变化,而无秸秆分布的区域土壤的化学性质与对照相比没有明显差异。秸秆集条深还技术如果每隔3年机械错位作业,经历3个或4个周期,可使全田土壤肥力提高,各土层土壤肥力分布均匀,按照增加10 cm厚的耕作土层来计算,土壤养分库容可提高原来的50%。秸秆集条深还是属于将3个垄宽(约1.9 m)的秸秆集中放到45 cm的深翻沟中,秸秆在田间呈现间隔分布状态,经过连续3 a的深耕还田,对有秸秆分布区的土壤物理性质改善明显,但没有秸秆的区域土壤结构与对照土壤相比不会有变化。所以,秸秆集条深还也需要3到4个周期,可改善全田的物理性质。

秸秆还田培肥改良土壤是一项长期的工程,国内外在秸秆还田改良土壤的过程中做了大量工作,一般都需要在10a以上才会有个明显的改良效果[37-38]。本研究的技术也需要9~12年对整个田块进行全面的培肥改良,本技术是较为适合东北地区的各类土壤。每种秸秆还田技术都具有一定的气候、土壤的适应性。秸秆耕层还田技术比较适合降雨量较多地区,质地黏重的土壤类型,可以改善耕层土壤的黏重状态,增强通气、透水性,因为秸秆粉碎耕层还田后,使土壤中的大孔隙,也就是通气孔隙显著提高,促进土壤散墒;而在积温较高、干旱、少雨的地区,大孔隙增加,土壤跑墒严重,会导致干旱问题,所以此类地区比较适合秸秆覆盖还田,有利于土壤保水、保墒、防止干旱;秸秆覆盖在积温较低、多雨地区不适合,张敬涛等研究在三江地区,在春季播种期,秸秆覆盖降低地温达2~4℃,使作物出苗晚7d左右,在三江平原地区作物晚出苗7d,减产幅度可达15%[39-40]。针对不同的土壤,秸秆还田所起到的效果也不同,在三江平原地区,秸秆覆盖连续7a,对土壤物理性质没有正面影响,使土壤容重增加,孔隙度降低[14]。白雪峰[41]研究则认为秸秆覆盖还田对0~40 cm土层土壤物理性质均有影响,同类技术在不同地区得到不同的结果,有待于深入的分析和思考。秸秆深还各研究结果基本一致,秸秆深还虽然效果好,适用地区和范围较广,但深耕作业成本高也是一个需要关注的问题,还有配套机械的完善和改进都是深耕作业需要进一步关注的问题,不同的深耕作业需要不同的机械配套,任何一种秸秆还田技术是需要农艺与农机的配套和结合,因此,要注重农艺、农机的配套与结合,因地制宜选择适合当地或某类土壤的技术模式。

4 结 论

秸秆集条深还属于秸秆深埋技术的一种新的模式,是将4倍于单位面积产量的秸秆集条深埋,形成间隔1.8 cm的培肥沟,克服了在本地区秸秆覆盖还田和耕层还田的弊端。

集条深还区土壤物理性质得到改善,0~30 cm土层固相比率降低,土壤三相组成趋于合理化;土壤容气度提高,容重下降,土壤的持水力提高;耕层还田只对0~20 cm土层土壤物理性质有影响,对深层土壤无影响。

秸秆集条深还可以增加0~30 cm土层土壤的总孔隙和有效孔隙量,耕层还田可增加0~20 cm土层土壤总孔隙量、大孔隙量和有效孔隙量,大孔隙增加,土壤易跑墒,不利于保持适宜的播种状态。

秸秆集条深还机械作业涉及土层深,连续作业具有增厚耕层、培肥土壤、改善剖面结构的作用,每间隔几年机械错位作业,可使全田物理性质得到改善。

[1] 张晓先. 黑龙江省农作物秸秆资源化工程发展方略研究[D]. 哈尔滨:哈尔滨工业大学,2016. Zhang Xiaoxian. General Plan on Development of Crop Straw Reuse in Heilongjiang Province[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese with English abstract)

[2] 朱建春. 陕西农业废弃物资源化利用问题研究[D]. 杨凌:西北农林科技大学,2014. Zhu Jianchun. Study on the Problem of Shanxi Agricultural Wastes Resource Utilization[D]. Yangling: Northwest Agiculture and Forest University, 2014. (in Chinese with English abstract)

[3] 高雪峰,夏红岩,王刚. 内蒙古秸秆养畜现状及发展建议[J].当代畜禽养殖业,2015(6):3-5. Gao Xuefeng, Xia Hongyan, Wang Gang. Status and development suggestions of livestock breeding with straws in Inner Mongolia Autonomous Region[J]. Modern Animal Husbandry, 2015(6): 3-5. (in Chinese with English abstract)

[4] Zhao Shicheng, He Ping, Qiu Shaojun, et al. Long-term effects of potassium fertilization and straw return on soil potassium levels and crop yields in North-Central China[J]. Field Crops Research, 2014, 169: 116-122.

[5] Liu Enke, Yan Changrong, Mei Xurong, et al. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China[J]. Geoderma, 2010, 158: 173-180.

[6] Humberto Blanco-Canqui, Lal R. Soil structure and organic carbon relationships following 10 years of wheat straw management in no-till[J]. Soil and Tillage Research, 2007, 95: 240-245.

[7] 李新华,郭洪海,朱振林,等. 不同秸秆还田模式对土壤有机碳及其活性组分的影响[J]. 农业工程学报,2016,32(9):130-135. Li Xinhua, Guo Honghai, Zhu Zhenlin, et al. Effects of different straw return modes on contents of soil organic carbon and fractions of soil active carbon[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 130-135. (in Chinese with English abstract)

[8] 窦森,陈光,关松,等. 秸秆焚烧的原因与秸秆深还技术模式[J]. 吉林农业大学学报,2017,39(2):127-133. Dou Sen, Chen Guang, Guan Song, et al. Reasons for corn stover burning in fields and technical models for its deep incorporation to subsoil[J]. Journal of Jilin Agricultural University, 2017, 39(2): 127-133. (in Chinese with English abstract)

[9] 杨旭,高梅香,张雪萍,等. 秸秆还田对耕作黑土中小型土壤动物群落的影响[J]. 生态学报,2017,37(7):2206-2216. Yang Xu, Gao Meixiang, Zhang Xueping, et al. Effect of straw-returning management on meso-micro soil fauna in a cultivated black soil area[J]. Acta Ecologica Sinica, 2017, 37(7): 2206-2216. (in Chinese with English abstract)

[10] 付强,颜培儒,李天霄,等. 冻融期不同覆盖和气象因子对土壤导热率和热通量的影响[J]. 农业工程学报,2017,33(20):98-105. Fu Qiang, Yan Peiru, Li Tianxiao, et al. Influence of different coverage and meteorological factors on soil thermal conductivity and hear flux during freezing and thawing period[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 98-105. (in Chinese with English abstract)

[11] 陈军锋,郑秀清,秦作栋,等. 冻融期秸秆覆盖量对土壤剖面水热时空变化的影响[J]. 农业工程学报,2013,29(20):102-110. Chen Junfeng, Zheng Xiuqing, Qin Zuodong, et al. Effects of maize straw mulch on spatiotemporal variation of soil profile moisture and temperature during freeze-thaw period[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(20): 102-110. (in Chinese with English abstract)

[12] 蔡太义,陈志超,黄会娟,等. 不同秸秆覆盖模式下农田土壤水温效应研究[J]. 农业环境科学学报,2013,32(7):1396-1404. Cai Taiyi, Chen Zhichao, Huang Huijuan, et al. Effects of different modes of cropping systems using straw mulch on the soil temperature and soil water on the Weibei highland region of china[J]. Journal of Agro-Environment Science, 2013, 32(7): 1396-1404. (in Chinese with English abstract)

[13] 张敬涛,刘婧琦,赵桂范,等. 免耕栽培不同秸秆覆盖量下土壤温度变化研究[J]. 中国农学通报,2015,31(27):224-228 Zhang Jingtao, Liu Jingqi, Zhao Guifan. Study on soil temperature variation of no-till cultivation with different amounts of stalk mulch[J]. Chinese Agricultural Science Bulletin, 2015, 31(27): 224-228 (in Chinese with English abstract)

[14] 王秋菊,张敬涛,盖志佳,等. 长期免耕秸秆覆盖对寒地草甸土土壤物理性质的影响[J]. 应用生态学报,2018,29(9):2943-2948. Wang Qiuju, Zhang Jingtao, Gai Zhijia, et al. Effect of long-term straw mulching and no-tillage on physical properties of meadow soil in cold region[J]. Chinese Journal of Applied Ecology, 2018, 29(9): 2943-2948. (in Chinese with English abstract)

[15] 慕平,张恩和,王汉宁,等. 连续多年秸秆还田对玉米耕层土壤理化性状及微生物量的影响[J]. 水土保持学报,2011,25(5):81-85. Mu Ping, Zhang Enhe, Wang Hanning, et al. Effect of continuous returning straw to maize tilth soil on chemical character and microbial biomass[J]. Journal of Soil and Water Conservation, 2011, 25(5): 81-85. (in Chinese with English abstract)

[16] 赵家煦. 东北黑土区秸秆还田深度对土壤水分动态及土壤酶、微生物C、N的影响[D]. 哈尔滨:东北农业大学,2017. Zhao Jiaxu. Effects of Different Location of Straw Incorporation on Soil Water Dynamics, Soil Enzymes, Microbial C and N[D]. Harbin: Dongbei Agricultural University, 2017. (in Chinese with English abstract)

[17] 赵宏波,何进,李洪文,等. 秸秆还田方式对种床土壤物理性质和小麦生长的影响[J]. 农业机械学报,2018,49:60-67. Zhao Hongbo, He Jin, Li Hongwen, et al. Effect of straw returning manners on seedbed soil physical properties and winter wheat growth[J]. Journal of Agricultural Mechanical, 2018, 49: 60-67. (in Chinese with English abstract)

[18] 张琛. 稻草还田对小麦抗性生理、出苗及产量的影响[D]. 扬州:扬州大学,2013. Zhang Chen. Effects of Rice Straw Returning on Resistance Physiology, Seeding Emergence and Yield of Wheat[D]. Yangzhou: Yangzhou University, 2013.(in Chinese with English abstract)

[19] 殷文,陈桂平,柴强,等. 河西灌区不同耕作与秸秆还田方式对春小麦出苗及产量的影响[J]. 中国生态农业学报,2017,25(2):180-187. Yin Wen, Chen Guiping, Chai Qiang, et al. Effect of tillage and straw retention mode on seedling emergence and yield of spring wheat in the Hexi irrigation area[J]. Chinese Journal of Eco-Agriculture, 2017, 25(2): 180-187.(in Chinese with English abstract)

[20] 周连仁,国立财,于亚利. 秸秆还田对盐渍化草甸土有机质及微团聚体组分的影响[J]. 东北农业大学学报,2012,43(8):123-127. Zhou Lianren, Guo Licai, Yu Yali. Effect of straw returning on organic matter and micro-aggregate in salinized meadow soils[J]. Journal of Northeast Agricultural University, 2012, 43(8): 123-127. (in Chinese with English abstract)

[21] 朱姝,窦森,关松,等. 秸秆深还对土壤团聚体中胡敏素结构特征的影响[J]. 土壤学报,2016,53(1):126-136. Zhu Su, Dou Sen, Guan Song, et al. Effect of corn stover deep incorporation on composition of humin in soil aggregates[J]. Acta Pedologica Sinica, 2016, 53(1): 126-136. (in Chinese with English abstract)

[22] 董珊珊,窦森,邵满娇,等. 秸秆深还不同年限对黑土腐殖质组成和胡敏酸结构特征的影响[J]. 土壤学报,2017,54(1):150-159. Dong Shanshan, Dou Sen, Shao Manjiao, et al. Effect of corn stover deep incorporation with different years on composition of soil humus and structural characteristics of humic acid in black soil[J]. Acta Pedologica Sinica, 2017, 54(1): 150-159. (in Chinese with English abstract)

[23] 王小华. “秸秆集中沟埋还田”新型耕作技术土壤理化性状和有机碳研究[D]. 南京:南京农业大学,2014. Wang Xiaohua. The Study of a New Tillage Technology with “Ditch-buried Straw Return” on Soil Physicochemical Characteristics and Organic Carbon[D]. Nanjing: Nanjing Agricultural University, 2014.(in Chinese with English abstract)

[24] 邹洪涛,王胜楠,闫洪亮,等. 秸秆深还田对东北半干旱区土壤结构及水分特征影响[J]. 干旱地区农业研究,2014,32(2):52-60. Zou Hongtao, Wang Shengnan, Yan Hongliang, et al. Effects of straw deep returning on soil structure moisturein semiarid region of Northeast China[J]. Agricultural Research in the Arid Areas, 2014, 32(2): 52-60. (in Chinese with English abstract)

[25] 邹洪涛,马迎波,徐萌,等. 辽西半干旱区秸秆深还田对土壤含水量、容重及玉米产量的影响[J]. 沈阳农业大学学报,2012,43(4):494-497. Zou Hongtao, Ma Yingbo, Xu Meng, et al. Effect of corn stalk returning to soil on soil water content, bulk density and corn yields in semiarid area of western Liaoning province[J]. Journal of Shenyang Agricultural University, 2012, 43(4): 494-497. (in Chinese with English abstract)

[26] 王秋菊,焦峰,刘峰,等. 秸秆粉碎集条深埋机械还田对玉米生长及产量的影响[J]. 农业工程学报,2018,34(9):153-159. Wang Qiuju, Jiao Feng, Liu Feng, et al. Effect of straw pulverization and concentrated deep-buried into field on growth and yield of maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(9): 153-159. (in Chinese with English abstract)

[27] 黑龙江省土地管理局,黑龙江省土壤普查办公室. 黑龙江土壤[M]. 北京:农业出版社,1992.

[28] 日本土壌肥料学会北海道支部編.北海道農業と土壌肥料[M]. 札幌:北農会刊行,1987.

[29] 翁德衡. 土壤物理性测定法[M]. 重庆:科学技术文献出版社重庆分社,1979.

[30] 李贵桐,赵紫娟,黄元仿,等. 秸秆还田对土壤氮素转化的影响[J]. 植物营养与肥料学报,2002,8(2):162-167. Li Guitong, Zhao Zijuan, Huang Yuanfang, et al. Effect of straw returning on soil nitrogen transformation[J]. Plant Nutrition and Fertilizer Science, 2002, 8(2): 162-167. (in Chinese with English abstract)

[31] 王鹏,曾玲玲,王发鹏,等. 秸秆还田对烤烟氮积累、分配及利用的影响[J]. 中国土壤与肥料,2008(4):43-46. Wang Peng, Zeng Lingling, Wang Fapeng, et al. Effects of wheat straw returning soil on N accumulation distribution and utilization of flue-cured tobacco[J]. Soil and Fertilizer Sciences in China, 2008(4): 43-46. (in Chinese with English abstract)

[32] Collins W K, Hawks S N. Principles of Flue-cured Tobacco Production[M]. NC State University, Raleigh, 1993.

[33] Yang Haishui, Jinxia Fenga, Zhai Silong, et al. Long-term ditch-buried straw return alters soil water potential, temperature, and microbial communities in a rice-wheat rotation system[J]. Soil & Tillage Research, 2016, 163: 21-31.

[34] Wang Xiaojuan, Jia Zhikuan, Liang Lianyou, et al. Changes in soil characteristics and maize yield under straw returning system in dryland farming[J]. Field Crops Research, 2018, 218: 11-17.

[35] Xu Xu, Pang Dangwei, Chen Jin, et al. Straw return accompany with low nitrogen moderately promoted deep root[J]. Field Crops Research, 2018, 221: 71-80.

[36] 邱立春,孙跃龙,王瑞丽,等. 秸秆深还对土壤水分转移及产量的影响[J]. 玉米科学,2015,23(6):84-91. Qiu Lichun, Sun Yuelong, Wang Ruili, et al. Influence of deep-buried maize stalks on soil moisture transfer and maize yield[J]. Journal of Maize Sciences, 2015, 23(6): 84-91. (in Chinese with English abstract)

[37] Wang Shichao, Zhao Yawen, Wang Jinzhou, et al. The efficiency of long-term straw return to sequester organic carbon in Northeast China’s cropland[J]. Journal of Integrative Agriculture, 2018, 17(2): 436-448.

[38] Malhi S S, Nyborg M, Solberg E D, et al. Improving crop yield and N uptake with long-term straw retention in two contrasting soil types[J]. Field Crops Research, 2011, 124: 378-391.

[39] 李青松,高立起,石爱丽. 地温与玉米品种出苗关系的研究[J]. 作物杂志,2011,4(2):89-92. Li Qingsong, Gao Liqi, Shi Aili. Relationships between soil temperature and emergence of maize[J]. Crops, 2011, 4(2): 89-92. (in Chinese with English abstract)

[40] 董红芬,李洪,李爱军,等. 玉米播期推迟与生长发育、有效积温关系研究[J]. 玉米科学,2012,20(5):97-101. Dong Hongfen, Li Hong, Li Aijun, et alRelations between delayed sowing date and growth, effective accumulated temperature of maize[J]. Maize Science, 2012, 20(5): 97-101. (in Chinese with English abstract)

[41] 白雪峰. 黑土区秸秆覆盖耕作技术保墒机理及生态效益研究[D]. 哈尔滨:东北林业大学,2015. Bai Xuefeng. Black Soil Area Keep Moisture Mechanism and Ecological Research at the Straw Mulching Cultivation Technology[D]. Harbin: Northeast Forestry University, 2015. (in Chinese with English abstract)

Effects of strip-collected chopping and mechanical deep-buried return of straw on physical properties of soil

Wang Qiuju1,2, Liu Feng1, Jiao Feng3, Chang Benchao1, Jiang Hui4, Gong Xiujie5

(1.,,150086,;2.,150086,; 3.,,163319,;4.,,150086,;5.,150086,)

As a direct and effective way to utilize crop straw, long-term straw returning has the effect of improving soil fertility and physical properties. Straw returning in Heilongjiang Province can be divided into three types: mulching return, plough-layer return and deep-buried return, with different models having different effects on the soil. Covering soil with straw significantly increases humidity of the soil but reduces the soil temperature during seedling stage, thus, it has both positive and negative effects on soil physical properties, with different results in different researches. The return of straw to the plough layer can improve the physical and chemical properties of the soil, reducing the soil bulk density and increasing the soil water-storage ability. However, a large number of studies have concluded that plough-layer return can cause the soil to be fluffy and reduce water-retaining property because of the accumulating of the straw in the plough layer. It may cause the delay of crop emergence as well as reducing the crop yield for that the straw corruption may consume soil nutrients, resulting in insufficient soil nutrient during seedling growth. The technology of deep-buried return of straw can overcome the drawbacks of straw mulching and plough-layer return in agricultural production in North China. This technique can avoid problems of low ground temperature and delayed emergence of seedlings caused by mulching return in spring in cold areas and avoid problems of low quality of mechanical sowing and low emergence rate resulted from plough-layer return. Meanwhile, it can improve deep soil fertility and improve the soil physical properties. On the basis of deep-buried return, this paper puts forward the technology of strip-collected chopping and mechanical deep-buried return. The straw smashing and strip-collected machine is used together with moldboard plow to deeply bury the smashed straw under the plough layer. It can return the straw strips that are four times of the per unit yield deeply to the soil, forming the fertilization ditch which is separated by 180 cm. In the early stage, the effects of strip-collected chopping and mechanical deep-buried return of straw on crop growth and soil fertility change are studied. In order to clarify the soil physical properties after straw being concentrated into a strip returning, three treatments for comparative studies are carried out in this paper: normal tillage, plough-layer return and straw concentrated into a strip returning. The results show that after 3 years of continuous returning to the field, the soil consolidation rate and bulk density of 0-30 cm soil layer decrease by 1.17%-6.21% and 0.02-0.14 g/cm3respectively, with gas tolerance and water holding capacity increased. The total soil porosity increases by 0.70%-5.98% and the effective porosity increases by 0.22%-2.69%, the difference being significant than the control group. As in the control group, the soil consolidation rate and bulk density of 0-20 cm soil layer decrease by 2.42%-4.30% and 0.09-0.12 g/cm3respectively, with gas tolerance and water holding capacity increased. The total soil porosity and the effective porosity increase as well. The soil layer of straw concentrated returning is deep and interval work is conducted every three years. In the long run, the physical properties of the whole soil can be improved and the tillage layer can be thickened about 10 cm.

straw; soils; physical property; strip-collected chopping; mechanical deep-buried return

2019-03-01

2019-08-25

黑龙江省重大攻关项目(GA16B401)。

王秋菊,博士,副研究员,从事土壤改良研究。Email:bqjwang@126.com.中国农业工程学会会员:王秋菊(E041200848S)

10.11975/j.issn.1002-6819.2019.17.006

S3

A

1002-6819(2019)-17-0043-07

王秋菊,刘 峰,焦 峰,常本超,姜 辉,宫秀杰. 秸秆粉碎集条深埋机械还田对土壤物理性质的影响[J]. 农业工程学报,2019,35(17):43-49. doi:10.11975/j.issn.1002-6819.2019.17.006 http://www.tcsae.org

Wang Qiuju, Liu Feng, Jiao Feng, Chang Benchao, Jiang Hui, Gong Xiujie. Effects of strip-collected chopping and mechanical deep-buried return of straw on physical properties of soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(17): 43-49. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.17.006 http://www.tcsae.org

猜你喜欢

物理性质耕层土层
土钉喷锚在不同土层的支护应用及效果分析
土壤侵蚀对紫色土坡耕地耕层障碍因素的影响*
轮作制度对敦化市土壤主要理化性状影响的研究
耕层构造对土壤三相比和春玉米根系形态的影响
土层 村与人 下
土层——伊当湾志
土层 沙与土 上
金融系统中的早期预警信号及其统计物理性质
红壤坡耕地耕层质量特征与障碍类型划分
卤代烃重点难点例析