双环永磁体型高静低动刚度隔振器设计、建模与试验研究
2019-10-21李爽楼京俊杨庆超
李爽 楼京俊 杨庆超
摘要: 为了改善机械设备的低频隔振效果,设计了一种具有高静低动刚度(HSLDS)特性的隔振器。该隔振器由提供正刚度的机械弹簧与提供负刚度的双环永磁体(DRPMS)结构并联而成,其中,双环永磁体结构由两个径向磁化的磁环同轴嵌套组成。首先利用等效磁荷法推导了双环永磁体结构的轴向磁力解析计算模型,然后利用Ansoft软件对双环永磁体结构进行有限元分析,验证了解析计算模型的正确性,进一步讨论了结构参数对负刚度特性的影响规律并对磁环参数设计流程进行了分析,在此基础上,设计了隔振器原理样机,并开展了试验研究。试验结果表明:与无双环永磁体结构的等效线性隔振器相比,所设计隔振器能有效降低隔振系统固有频率,拓宽隔振频带,具有更优越的低频隔振性能。
关键词: 隔振器; 双环永磁体; 负刚度; 低频; 高静低动刚度
中图分类号: O328; TB535+.1 文献标志码: A 文章编号: 1004-4523(2019)04-0675-10
DOI:10.16385/j.cnki.issn.1004-4523.2019.04.015
引 言
对于传统的线性隔振系统,只有当外界激励频率高于系统固有频率2倍时,才具备隔振效果[1]。因此,在不增加机械设备质量的前提下,若要拓宽隔振频带,必须降低隔振系统动刚度,减小固有频率。然而,低频隔振能力与系统稳定性是一对矛盾体。准零刚度(Quasi Zero Stiffness,QZS)以及高静低动(High Static Low Dynamic Stiffness,HSLDS)隔振技术都是在以往隔振器基础上引入负刚度机构,既能使隔振系统在静平衡位置保持较小的静态位移,又能降低隔振系统的动刚度。基于上述优点,QZS与HSLDS隔振技术近年来得到了广泛的关注与充分的发展。
Carrella等[2-4]利用两根倾斜的线性弹簧对顶布置提供负刚度,与提供正刚度的线性弹簧在垂向并联构成QZS隔振器,分析了斜拉弹簧长度、安装位置、预压量等结构参数对隔振系统力传递率、位移传递率的影响;徐道临等[5]进一步分析了4根倾斜弹簧与线性弹簧组成的QZS隔振器的隔振效果;Huang等[6]、Platus[7]利用受轴向载荷的欧拉弯曲梁提供负刚度设计了QZS隔振器;刘兴天等[8-9]在此基础上分别提出利用2根与4根欧拉弯曲梁作为QZS隔振器的负刚度机构,进一步增强了低频隔振效果;另外,其他新颖的QZS隔振器还包括屈曲板型[10]、凸轮-滚轮型[11]、碟簧型[12]、气动可调型[13]等机构形式。
QZS隔振技术在理论上可使隔振系统的固有频率降到很低,甚至接近于零,但动刚度过低会影响隔振系统的稳定性与安全性,并不适用于工程实际应用,因此,HSLDS隔振器逐渐占据了主导地位。由于永久磁铁自身就具有性质稳定、寿命长、环境适应性强、无污染、易安装等优点[14],而且可以在无机械接触的条件下产生磁力,不仅能减少摩擦和挤压造成的损耗,还能使隔振器体积小型化、结构紧凑化。磁力弹簧结构一直是HSLDS隔振技术领域的热点。Wu等[15]利用三块方形永久磁铁的排斥作用力获得了具有立方非线性的负刚度,并利用磁路分析法对负刚度特性进行了分析;Li等[16]将磁力弹簧与橡胶隔振器并联使用,降低了系统固有频率;Zheng等[17]利用分子电流模型分析了两块环形永久磁铁嵌套布置的刚度特性,并为了拓宽负刚度区间,降低非线性度,設计了磁环参数优化流程;Shan等[18]将2块环形永久磁铁嵌套布置,再嵌入到小型气动弹簧中获得了较好的低频隔振效果,并将其应用到精密仪器领域;为了适应不同的负载,实现磁力弹簧机构的负刚度可调节,Zhou等[19]利用两块电磁铁与一块永久磁铁设计了一种磁力弹簧机构,并通过调节电磁铁的电流大小与电流方向实现了磁力弹簧负刚度可调节;Ledezma等[20]通过电磁铁和永磁铁设计了具有高静低动刚度特性的冲击隔离系统。
本文基于双环永磁体(Double Ring Permanent Magnets Spring, DRPMS)结构提出了一种HSLDS隔振器设计方案,采用等效磁荷法[21]对该结构负刚度特性进行分析,并利用双环永磁体结构与机械弹簧并联设计隔振器实物;通过试验结果验证了所设计的双环永磁体型隔振器具有HSLDS特性,能够有效降低隔振系统固有频率,拓宽隔振频带,并具有优越的低频隔振性能。
1 双环永磁体型隔振器
所设计的双环永磁体型隔振器结构示意图和三维结构图如图1所示。 由图1(a)可知,隔振器包括正刚度机构和双环永磁体型磁负刚度机构两部分,前者由线性机械弹簧组成,后者则由内磁环和外磁环组成。其中内、外磁环沿径向充磁,磁化方向相反,外磁环与基座固定,内磁环与被隔振质量相连,两者同轴嵌套布置。
同时,由图1(b)可知,隔振器包含内磁环高度调节机构,在一定被隔振质量和结构参数条件下,可使隔振系统处于静平衡位置时,内、外磁环高度中心线平齐,并作标记线。由结构对称性可知,静平衡位置处内磁环所受合力为零,隔振质量完全由机械弹簧支撑,隔振系统静态承载质量能力不变,且处于临界稳定状态;一旦内磁环发生偏移,在外磁环排斥力作用下受到轴向磁力分力,轴向磁力与偏移方向一致并加剧偏移量,从而使双环永磁体结构在一定位移范围内产生负刚度。
(24) 根据第3部分负刚度特性分析结果,表1,2给出了本文设计双环永磁体型隔振器所采用的物理参数。图15为机械弹簧以及双环永磁体结构理论计算刚度,由图15可知Kv=4120 N/m,K1=-3080 N/m。在质量m=12 kg,阻尼c=10,31.17,50 N/(m·s-1)三种情况下,传递率仿真计算结果如图16所示。由图16可知,并联双环永磁体结构后,系统的固有频率从2.94 Hz降到1.48 Hz,起始隔振频率从4.14 Hz降到2.11 Hz,阻尼增大对固有频率影响较小,却能减小传递率峰值,但削弱了高频隔振效果。比如c=31.17 N/(m·s-1)情况下系统阻尼比由0.07增至0.14,验证了双环永磁体结构能减小系统固有频率和增大阻尼比,从而降低起始隔振频率和传递率峰值。
虽然试验测得固有频率与理论计算值较接近,但因为试验仪器误差以及磁环拼接等影响,起始隔振频率与隔振频带拓宽量上存在一定的误差。
在低频段范围内,双环永磁体型隔振器较其等效线性隔振器具有更佳的隔振效果,能够使共振峰值从44.6 dB降低到21.6 dB,这表明DRPMS结构不仅能提供一定的负刚度,还能增加一定的系统阻尼,这是由于金属材料在密闭磁场空间中运动时会产生涡电流,从而使承载质量受到一定的涡电流阻尼力;但是在高频段范围内,隔振器性能有所下降,甚至在某些频段弱于等效线性隔振系统。
另外,在低频段部分,双环永磁体型隔振系统传递率曲线较等效线性隔振系统传递率曲线具有一些小的共振峰,且前者主共振峰不凸显,因此双环永磁体结构在静平衡位置的刚度特性还是引起了一定的非线性动力学行为[23]。
6 结 论
本文基于双环永磁体结构,提出了一种磁负刚度与机械弹簧并联的隔振器设计方案,并通过仿真和试验验证了该隔振器具有高静低动刚度特性。通过等效磁荷法建立了双环永磁体结构轴向磁力解析计算模型,并用Ansoft软件对该模型的正确性进行了验证。同时讨论了磁环高度、气隙、厚度3个结构参数对负刚度特性的影响,并对磁环参数进行了优化设计。以此为基础,在振动台上完成了隔振器传递率测试试验,试验结果表明:承载质量为12 kg时,双环永磁体隔振系统较其等效线性隔振系统,固有频率降低了1.41 Hz,有效隔振频带拓宽;同时由于涡流效应,双环永磁体结构还能增加一定的系统阻尼,使隔振系统低频隔振效果更优。
研究过程中也发现了一些不足之处,比如,双环永磁体隔振系统相比其等效线性隔振系统,在高频段部分隔振效果不具备优越性;磁环参数一旦确定,双环永磁体结构负刚度无法调节,无法适应不同承载质量下的低频隔振效果。因此,在后续的研究中要进一步优化隔振器设计方案,同时加强电磁铁以及主动控制技术在磁负刚度技术领域的研究。
参考文献:
[1] 吴 庭,王林翔.复合式低频隔振器的理论建模及性能分析[J].振动与冲击,2017,36(19):232-235.
Wu Ting,Wang Linxiang.Design and performance analysis of a composite low-frequency vibration isolator[J].Journal of Vibration and Shock,2017,36(19):232-235.
[2] Carrella A,Brennan M J,Waters T P.Force and displacement transmissibility of nonlinear isolator with high-static-low-dynamic-stiffness[J]. International Journal of Mechanical Sciences,2012,55:22-29.
[3] Carrella A,Brennan M J,Waters T P.Optimization of a quasi-zero-stiffness isolator[J].Journal of Mechanical Science and Technology,2007,21(6):946-949.
[4] Carrella A,Brennan M J,Kovacic I,et al.On the force transmissibility of a vibration isolator with quasi-zero-stiffness[J].Journal of Sound and Vibration,2009,322(4-5):707-717.
[5] 徐道臨,张月英,周加喜.一种准零刚度隔振器的特性分析与实验研究[J].振动与冲击,2014,33(11):208-213.
Xu Daolin,Zhang Yueying,Zhou Jiaxi.Characteristic analysis and experimental investigation for a vibration isolator with quasi-zero stiffness[J].Journal of Vibration and Shock,2014,33(11):208-213.
[6] Huang Xiuchang,Chen Yong,Hua Hongxing,et al.Shock isolation performance of a nonlinear isolator using Euler buckled beam as negative stiffness corrector:Theoretical and experimental study[J].Journal of Sound and Vibration,2015,345:178-196.
[7] Platus D L.Negative-stiffness-mechanism vibration isolation systems[C].SPIE′s International Symposium on Optical Science Engineering and Instrumentation,Denver,CO,USA,1999,3786:44-54.
[8] 刘兴天,张志谊,华宏星.新型低频隔振器的特性研究[J].振动与冲击,2012,31(5):161-164.
Liu Xingtian,Zhang Zhiyi,Hua Hongxing.Characteristics of a novel low-frequency isolator[J].Journal of Vibration and Shock, 2012,31(5):161-164.
[9] 刘兴天,孙靖雅,肖 锋,等.准零刚度微振动隔振器的原理和性能研究[J].振动与冲击,2013,32(21):69-73.
Liu Xingtian,Sun Jingya,Xiao Feng,et al.Principle and performance of a quasi-zero stiffness isolator for micro-vibration isolation [J].Journal of Vibration and Shock,2013,32(21):69-73.
[10] 徐道临,成传望,周加喜.屈曲板型准零刚度隔振器的设计和特性分析[J].湖南大学学报(自然科学版),2014,41(8):17-22.
Xu Daolin,Cheng Chuanwang,Zhou Jiaxi.Design and characteristic analysis of a buckling plate vibration isolator with quasi-zero-stiffness[J].Journal of Hunan University(Natural Science),2014,41(8):17-22.
[11] Zhou Jiaxi,Wang Xinlong,Xu Daolin,et al.Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms[J].Journal of Sound and Vibration,2015,346:53-69.
[12] 徐道临,周 杰,周加喜.蝶形橡胶准零刚度隔振器的设计和特性分析[J].湖南大学学报(自然科学版),2015,42(8):22-28.
Xu Daolin,Zhou Jie,Zhou Jiaxi.Design and analysis of a disc rubber vibration isolator with quasi-zero-stiffness[J].Journal of Hunan University(Natural Science),2015,42(8):22-28.
[13] 徐道臨,赵 智,周加喜.气动可调式准零刚度隔振器设计及特性分析[J].湖南大学学报(自然科学版),2013,40(6):47-52.
Xu Daolin,Zhao Zhi,Zhou Jiaxi.Design and analysis of an adjustable pneumatic vibration isolator with quasi-zero-stiffness characteristic [J].Journal of Hunan University(Natural Science),2013,40(6):47-52.
[14] Tian Lulin,Li Yan,Yang Guoqing,et al.Study of the axial magnetic force of radial magnetization bi-barrel-shaped permanent magnetic bearings(PMB) [J].Mechanical Science & Technolgy for Aerospace Engineering,2007,26(9):1316-1319.
[15] Wu Wenjiang,Chen Xuedong,Shan Yuhu.Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness[J].Journal of Sound and Vibration,2014,333:2958-2970.
[16] Li Qiang,Zhu Yu,Xu Dengfeng,et al.A negative stiffness vibration isolator using magnetic spring combined with rubber membrane[J].Journal of Mechanical Science and Technology,2013,27(3):813-824.
[17] Zheng Yisheng,Zhang Xinong,Luo Yajun,et al.Design and experiment of a high-static-low-dynamic stiffness isolator using a negative stiffness magnetic spring[J].Journal of Sound and Vibration,2016,360:31-52.
[18] Shan Yuhu,Wu Wenjiang,Chen Xuedong.Design of a miniaturized pneumatic vibration isolator with high-static-low-dynamic stiffness[J].Journal of Vibration and Acoustics,2015,137:1-8.
[19] Zhou N,Liu K.A tunable High-Static-Low-Dynamic stiffness vibration isolator[J].Journal of Sound and Vibration,2010,329(9):1254-1273.