APP下载

JAK2-STAT3信号通路在重症急性胰腺炎大鼠肺组织中表达与外周炎性因子的相关性

2019-10-19沈银峰金文银张霞陈乾

中国医药导报 2019年26期
关键词:造模炎性通路

沈银峰 金文银 张霞 陈乾

[摘要] 目的 探討JAK2-STAT3信号通路在重症急性胰腺炎(SAP)大鼠肺组织中表达与外周炎性因子的相关性。 方法 将5月龄雄性Wistar大鼠240只按随机数字表法分为SAP组、SAP+R组、SAP+S组、SAP+R+S组和假手术组(SO组),每组48只。各组动物于造模后3、6、12、18 h取腹主动脉血和肺组织,测定血清白细胞介素-6(IL-6)和白细胞介素-10(IL-10),检测肺组织中JAK2 mRNA、STAT3 mRNA、p-JAK2蛋白、p-STAT3蛋白的表达水平。 结果 造模后3、6、12、18 h,五组血清IL-6和IL-10水平组间比较,差异均有统计学意义(P < 0.05)。SO组的血清IL-10水平组内比较差异有统计学意义(P < 0.05)。SAP组、SAP+R组、SAP+S组及SAP+R+S组的血清IL-6和IL-10水平从造模后3 h开始逐渐升高,造模后12 h达到峰值,随后降低,组内不同时间点比较差异有统计学意义(P < 0.05)。造模后3、6、12、18 h,五组肺组织JAK2 mRNA、STAT3 mRNA和p-JAK2、p-STAT3蛋白表达水平组间比较,差异均有统计学意义(P < 0.05)。五组的肺组织JAK2 mRNA、STAT3 mRNA和p-JAK2、p-STAT3蛋白表达水平从造模后3 h开始逐渐升高,造模后12 h达到峰值,随后降低,组内不同时间点比较差异有统计学意义(P < 0.05)。 结论 SAP病程中,肺JAK2/STAT3通路活化可能与全身炎性反应密切相关。

[关键词] 重症急性胰腺炎;Janus激酶2-信号传导及转录激活因子3信号通路;肺组织;炎性因子

[中图分类号] R576          [文献标识码] A          [文章编号] 1673-7210(2019)09(b)-0017-05

Expression of JAK2-STAT3 signaling pathway in lung tissues of rats with severe acute pancreatitis and its correlation with peripheral inflammatory factors

SHEN Yinfeng   JIN Wenyin   ZHANG Xia   CHEN Qian

Department of Surgery Ⅳ, Affiliated Hospital of Hubei University of Traditional Chinese Medicine  Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Province, Wuhan   430070, China

[Abstract] Objective To investigate expression of JAK2-STAT3 signaling pathway in lung tissues of rats with severe acute pancreatitis (SAP) and its correlation with peripheral inflammatory factors. Methods 5-month-old male Wistar rats (n = 240) were randomly divided into SAP group, SAP+R group, SAP+S group, SAP+R+S group and sham-operated group (SO group), 48 rats in each group. Abdominal aortic blood and lung tissues were collected 3, 6, 12 and 18 hours after model establishment in each group animals. Serum interleukin-6 (IL-6) and interleukin-10 (IL-10) were measured. The expression levels of JAK2 mRNA, STAT3 mRNA, p-JAK2 Protein and p-STAT3 protein in lung tissues were detected. Results The levels of serum IL-6 and IL-10 at 3, 6, 12 and 18 hours after model establishment were significantly different among the five groups (P < 0.05). There was significant difference in serum IL-10 level in SO group (P < 0.05). The serum levels of IL-6 and IL-10 in SAP group, SAP+R group, SAP+S group and SAP+R+S group increased gradually at 3 hours after model establishment, peaked at 12 hours after model establishment, and then decreased, there were statistically significant differences among different time points with in the group (P < 0.05). The expression levels of JAK2 mRNA, STAT3 mRNA, p-JAK2 protein and p-STAT3 protein in lung tissue of five groups at 3, 6, 12 and 18 hours after model establishment were significantly different (P < 0.05). The expression levels of JAK2 mRNA, STAT3 mRNA, p-JAK2 protein and p-STAT3 protein protein in lung tissues of five groups increased gradually at 3 hours after model establishment, peaked at 12 hours after model establishment, and then decreased, there were statistically significant differences among different time points within groups (P < 0.05). Conclusion Activation of JAK2/STAT3 pathway may be closely related to systemic inflammatory response in the course of SAP.

[Key words] Severe acute pancreatitis; JAK2-STAT3 signaling pathway; Lung tissue; Inflammatory factors

重症急性胰腺炎(SAP)是一种临床危重病,死亡率高[1]。急性肺损伤是SAP最常见的并发症之一,由肺损伤导致的急性呼吸窘迫综合征是SAP患者死亡的重要原因[2-3]。炎症介质不仅作用于胰腺局部,而且进入循环;大量炎性因子的释放,形成链锁和放大效应,造成器官损伤[4]。近年研究显示,众多的信号通路参与了SAP病程的病理生理过程[5]。Janus激酶(JAK)/信号传导及转录激活因子(STAT)信号传导通路是目前已知最主要的基本通路,其中JAK2-STAT3通路是JAK-STAT通路中最重要的[6]。本研究通过抑制JAK2-STAT3信号通路,探讨SAP状态下肺损伤与全身炎性反应的关系。

1 材料与方法

1.1 实验动物

健康5月龄Wistar大鼠体重(210~250 g)240只,购自湖北省实验动物研究中心,雄性,许可证号:SCXK9(鄂)2008-0005;合格证号:NO.20080016364630。实验前,大鼠给予标准化饮食和自由饮水,适应性饲养1周。

1.2 试剂与仪器

牛磺胆酸钠(Sigma公司);Ruxolitinib(JAK2抑制剂)和Stattic(STAT3抑制剂)购自美国Selleck Chemicals;白细胞介素(IL)-6和IL-10的酶联免疫吸附测定(ELISA)试剂盒购自美国R&D Systems(生产批号:M1000B和M6000B);RT-qPCR试剂盒购自美国Thermo Fisher Scientific(生产批号:K1641);cDNA合成试剂盒购自美国Bio-Rad Laboratories(生产批号:170-8841);引物和探针购自中國大连Takara Bio;JAK2和STAT3一抗和二抗购自南京KeyGen生物科技;BLO-RAD Model 550型自动酶标光度仪(日本)。

1.3 实验方法

1.3.1 动物模型建立与实验分组  采用逆行胆胰管注射法制备动物模型[7]。大鼠于模型制备前12 h禁食不禁水,采用5%牛磺胆酸钠(1.0 mL/kg体重,0.1 mL/min)逆行胆胰管内注射法制备SAP模型,术后大鼠自由饮水。按随机数字表法将SAP大鼠分为SAP组、SAP+Ruxolitinib组(SAP+R组)、SAP+Stattic组(SAP+S组)、SAP+Ruxolitinib+Stattic组(SAP+R+S组)及假手术组(SO组),每组48只。SO组大鼠逆行胆胰管内注射生理盐水(1.0 mL/kg体重,0.1 mL/min)。SAP组和SO组术前2 h生理盐水灌胃(180 mg/kg)并腹腔注射(3.75 mg/kg)。SAP+R组术前2 h灌胃Ruxolitinib(180 mg/kg),同时腹腔注射生理盐水(3.75 mg/kg)。SAP+S组术前2 h腹腔注射Stattic(3.75 mg/kg),同时灌胃生理盐水(180 mg/kg)。SAP+R+S组术前2 h灌胃Ruxolitinib(180 mg/kg),同时腹腔注射Stattic(3.75 mg/kg)。于造模后3、6、12、18 h分批处死大鼠,取腹主动脉血,立即以3000 r/min(离心半径15 cm)离心10 min,取上清于-70℃冰箱,冻存备用;取肺组织,以PBS液冲洗干净后,于-70℃液氮,冻存备用。以动物的处死时间,分别标记为造模后3、6、12、18 h亚组。

1.3.2 血清IL-6和IL-10水平测定  采用ELISA,根据试剂盒说明方法和步骤进行检测。

1.3.3 JAK2和STAT3 mRNA表达水平测定  肺组织研磨后采用Trizol提取组织总RNA,逆转录成cDNA,应用RT-qPCR定量测定JAK2和STAT3的mRNA表达水平。引物序列见表1。RT-qPCR反应条件:预变性(95℃,3 min),然后进行40个循环的变性(95℃,15 s),退火(60℃,30 s)和延伸(72℃,30 s)。以GAPDH为内参,以公式2-△△Ct法计算JAK2和STAT3 mRNA相对表达量。

1.3.4 磷酸化JAK2(p-JAK2)和磷酸化STAT3(p-STAT3)蛋白表达水平测定  肺组织匀浆,加入细胞裂解液;30 min后,将蛋白质(10 μg)裂解物和上样缓冲液混合并进行十二烷基硫酸钠-聚丙烯酰胺凝胶电泳,转移到硝酸纤维素膜室温,用含有5%脱脂奶粉的PBS封闭蛋白质1 h,并与一抗在4℃下孵育过夜;PBS漂洗3次后,将膜与辣根过氧化物酶偶联的二抗在室温下孵育1 h;PBS冲洗膜3次后,电化学发光溶液显影,使用凝胶成像系统对曝光成像;使用Gel-Pro Analyzer 4.0软件测定每个条带的OD。用GAPDH作为内参测量p-JAK2和p-STAT3蛋白的表达水平。

1.4 统计学方法

采用统计学分析软件包SPSS 11.0进行数据分析,计量资料用均数±标准差(x±s)表示,多组比较采用方差分析,进一步两两比较采用SNK-q检验,以P < 0.05为差异有统计学意义。

2 结果

2.1 五组大鼠造模后不同时间血清IL-6和IL-10水平比较

造模后3、6、12、18 h,五组血清IL-6和IL-10水平组间比较,差异均有统计学意义(P < 0.05)。SO组的血清IL-10水平组内不同时间点比较差异有统计学意义(P < 0.05)。SAP组、SAP+R组、SAP+S组及SAP+R+S组的血清IL-6和IL-10水平组内不同时间点比较,差异均有统计学意义(P < 0.05),造模后3 h开始逐渐升高,造模后12 h达到峰值,随后降低。见表2。

2.2 五组大鼠造模后不同时间肺组织JAK2 mRNA和p-JAK2蛋白表达水平比较

造模后3、6、12、18 h,五组肺组织JAK2 mRNA和p-JAK2蛋白表达水平组间比较,差异均有统计学意义(P < 0.05)。五组组内不同时间点肺组织JAK2 mRNA和p-JAK2蛋白表达水平比较,差异均有统计学意义(P < 0.05),从造模后3 h开始逐渐升高,造模后12 h达到峰值,随后降低。SAP组、SAP+R组、SAP+S组及SAP+R+S组的JAK2 mRNA和p-JAK2蛋白表达水平变化一致,差异无统计学意义(P > 0.05)。见表3、图1。

2.3 五组大鼠造模后不同时间肺组织STAT3 mRNA和p-STAT3蛋白表达水平比较

造模后3、6、12、18 h,五组肺组织STAT3 mRNA和p-STAT3蛋白表达水平组间比较,差异均有统计学意义(P < 0.05)。五组组内不同时间点肺组织STAT3 mRNA和p-STAT3蛋白表达水平比较,差异有统计学意义(P < 0.05),从造模后3 h开始逐渐升高,造模后12 h达到峰值,随后降低。SAP组、SAP+S组、SAP+R组及SAP+R+S组的STAT3 mRNA和p-STAT3蛋白表达水平变化一致,差异无统计学意义(P > 0.05)。见表4、图2。

3 讨论

急性肺损伤是SAP时出现较早、引发死亡率最高的并发症[8]。急性肺损伤的发生、发展过程中主要表现为肺组织爆发式、连续性炎性反应[9];大量炎症介质和炎性因子的产生、释放,促进肺泡上皮细胞以及肺毛细血管内皮细胞的损伤,加快了肺损伤的病理过程[10]。

IL-6是炎症急性期合成的重要介质,作为一种重要的非特异性炎性因子,参与全身炎性反应[11]。IL-10是一种有效的抗炎性因子,通过阻断促炎性反应细胞因子、炎性趋化因子和细胞表面分子的基因编码等,发挥抗炎作用[12]。本研究显示,SAP大鼠外周血清中IL-6和IL-10均有不同程度的升高;SAP组大鼠的IL-6和IL-10升高最为明显,肺组织中JAK2 mRNA、STAT3 mRNA、p-JAK2蛋白和p-STAT3蛋白过度表达。

JAK2-STAT3通路与炎症关系密切,JAK2-STAT3通路参与许多细胞因子的免疫应答,包括TNF-α和IL-6[13]。研究发现,STAT3参与炎性反应相关的信号转导过程,IL-6是其激活的重要因子之一[14]。Ruxolitinib是一种酪氨酸激酶抑制剂,广泛应用于抑制JAK1/2[15]。Stattic是一种有效的活化STAT3的抑制剂,成功地应用于STAT3活化的细胞系或动物模型[16]。激活的JAK2-STAT3通路在急性胰腺炎中起关键作用[17-18]。本研究表明,JAK2抑制剂和STAT3抑制剂可明显下调炎性细胞因子水平,抑制肺组织中JAK2 mRNA、STAT3 mRNA、p-JAK2蛋白和p-STAT3蛋白過度表达;联合应用抑制效果最明显。Han等[19]通过抑制IL-6和TNF-α诱导的JAK2/STAT3活化,证实地塞米松治疗SAP能够抑制SAP急性肺损伤大鼠模型中细胞间黏附分子-1 mRNA和蛋白的表达。徐志红等[20]通过对SAP大鼠皮下注射垂盆草提取物,发现垂盆草提取物可能是通过调控JAK2/STAT3信号通路,抑制促炎细胞因子过度表达,改善SAP大鼠肺损伤。

总之,SAP病程中,肺JAK2/STAT3信号通路活化可能与全身炎性反应密切相关。

[参考文献]

[1]  Bumbasirevic V,Radenkovic D,Jankovic Z,et al. Severe acute pancreatitis:overall and early versus late mortality in intensive care units [J]. Pancreas,2009,38(2):122-125.

[2]  Polyzogopoulou E, Bikas C,Danikas D,et al. Baseline hypoxemia as a prognostic marker for pulmonary complications and outcome in patients with acute pancreatitis [J]. Dig Dis Sci,2004,49(1):150-154.

[3]  Wang G,Zhang J,Xu C,et al. Inhibition of SOCs attenuates acute lung injury induced by severe acute pancreatitis in Rats and PMVECs injury induced by lipopolysaccharide [J]. Inflammation,2016,39(3):1049-1058.

[4]  Shen Y,Cui N,Miao B,et al. Immune dysregulation in patients with severe acute pancreatitis [J]. Inflammation,2011,34(1):36-42.

[5]  Chan YC,Leung PS. Acute pancreatitis:animal models and recent advances in basic research [J]. Pancreas,2007,34(1):1-14.

[6]  Liongue C,Ward AC. Evolution of the JAK-STAT pathway [J]. Jakstat,2013,2:e22756.

[7]  Aho HJ,Ahola RA,Tolvanen AM,et al. Experimental pancreatitis in the rat changes in pulmonary phospholipids during sodium taurocholate-induced acute pancreatitis [J]. Res Exp Med (Berl),1983,182(1):79-84.

[8]  Browne GW,Pitchumoni CS. Pathophysiology of pulmonary complications of acute pancreatitis [J]. World J Gastroenterol,2006,12(44):7087-7096.

[9]  Zhang L,Nie Y,Zheng Y,et al. Esmolol attenuates lung injury and inflammation in severe acute pancreatitis rats [J]. Pancreatology, 2016,16(5):726-732.

[10]  Ma P,Yu K,Yu J,et al. Effects of nicotine and vagus nerve in severe acute pancreatitis-associated lung injury in rats [J]. Pancreas,2016,45(4):552-560.

[11]  Bryniarski K,Maresz K,Szczepanik M,et al. Modulation of macrophage activity by proteolytic enzymes. Differential regulation of IL-6 and reactive oxygen intermediates (ROIs) synthesis as a possible homeostatic mechanism in the control of inflammation [J]. Inflammation,2003,27(6):333-340.

[12]  Bendicho MT,Guedes JC,Silva NN,et al. Polymorphism of cytokine genes (TGF-beta1,IFN-gamma,IL-6,IL-10,and TNF-alpha) in patients with chronic pancreatitis [J]. Pancreas,2005,30(4):333-336.

[13]  O′Sullivan LA,Liongue C,Lewis RS,et al. Cytokine receptor signaling through the Jak-Stat-Socs pathway in disease [J]. Mol Immunol,2007,44:2497-2506.

[14]  Stepkowski SM,Chen W,Ross JA,et al. STAT3:an important regulator of multiple cytokine functions [J]. Transplantation,2008,85(10):1372-1377.

[15]  Verstovsek S. Ruxolitinib:an oral Janus kinase 1 and Janus kinase 2 inhibitor in the management of myelofibrosis [J]. Postgrad Med,2013,125(1):128-135.

[16]  Schust J,Sperl B,Hollis A,et al. Stattic:a small-molecule inhibitor of STAT3 activation and dimerization [J]. Chem Biol,2006,13(11):1235-1242.

[17]  Yu JH,Kim H. Role of janus kinase/signal transducers and activators of transcription in the pathogenesis of pancreatitis and pancreatic cancer [J]. Gut Liver,2012,6(4):417-422.

[18]  Zhu S,Zhang C,Weng Q,et al. Curcumin protects against acute renal injury by suppressing JAK2/STAT3 pathway in severe acute pancreatitis in rats [J]. Exp Ther Med,2017,14(2):1669-1674.

[19]  Han X,Wang Y,Chen H,et al. Enhancement of ICAM-1 via the JAK2/STAT3 signaling pathway in a rat model of severe acute pancreatitis-associated lung injury [J]. Exp Ther Med,2016,11(3):788-796.

[20]  徐志紅,白永愉,黄新策,等.垂盆草提取物经JAK2/STAT3信号通路途径改善大鼠重症急性胰腺炎肺损伤的研究[J].肝胆胰外科杂志,2014,26(5):398-402.

(收稿日期:2019-02-13  本文编辑:李亚聪)

猜你喜欢

造模炎性通路
肾阳虚证动物模型建立方法及评定标准研究进展
脾肾阳虚型骨质疏松症动物模型造模方法及模型评价
湿热证动物模型造模方法及评价研究
中西医结合治疗术后早期炎性肠梗阻的体会
术后早期炎性肠梗阻的临床特点及治疗
炎性因子在阿尔茨海默病发病机制中的作用
Kisspeptin/GPR54信号通路促使性早熟形成的作用观察
proBDNF-p75NTR通路抑制C6细胞增殖
通路快建林翰:对重模式应有再认识
中西医结合治疗术后早期炎性肠梗阻30例