Hedgehog信号通路在肺癌中的研究进展
2019-09-29付政超呼群
付政超 呼群
【摘要】 肺癌发病率高、预后差,其发生过程涉及多个信号通路的异常改变,其中Hedgehog通路在肺癌中的作用逐渐被发现,Hedgehog通路最早发现于果蝇胚胎发育过程,近来发现其涉及了肺、消化等多个组织器官的发育及癌变过程,特别是肺癌中发现,Hedgehog通路的异常激活参与了肺癌的耐药、增殖、转移等过程。本文从Hedgehog信號通概述、Hedgehog在小细胞肺癌中的作用、非小细胞肺癌增殖、耐药中的作用进行综述分析,旨在为Hedgehog通路在肺癌的研究提供新的思路及寻找肺癌治疗的新靶点。
【关键词】 Hedgehog信号通路; 肺癌
Advances in Hedgehog Signaling Pathway in Lung Cancer/FU Zhengchao,HU Qun.//Medical Innovation of China,2019,16(06):-172
【Abstract】 Lung cancer has a high incidence and poor prognosis,its occurrence process involves abnormal changes of multiple signaling pathways,the role of Hedgehog signaling pathway in lung cancer has been gradually discovered.Hedgehog signaling pathway was the first found in the embryonic development of Drosophila melanogaster.Recently,it has been found that Hedgehog signaling pathway involves the development and canceration of lung,digestion and other tissues and organs,in particular.It is found that the abnormal activation of Hedgehog signaling pathway is involved in the process of drug resistance,proliferation and metastasis of lung cancer.This article reviews the role of Hedgehog signaling pathway in small cell lung cancer,proliferation and drug resistance of non-small cell lung cancer,in order to provide new ideas for the study of Hedgehog signaling pathway in lung cancer,path and search for new targets for lung cancer treatment.
【Key words】 Hedgehog signaling pathway; Lung cancer
First-authors address:Inner Mongolia Medical University,Hohhot 010110,China
doi:10.3969/j.issn.1674-4985.2019.06.045
肺癌是最常见的恶性肿瘤之一,预后差、致死率高。2018年全球肺癌新发病例210万人,死亡病例180万人,占癌症死亡人数的近1/5(18.4%),并且在中国仍是男性肿瘤死亡的主要原因[1-2],有数据提示57%的非小细胞肺癌患者诊断时已有远端转移[3-5]。而肺癌的发生、转移及耐药等过程涉及了包括Hedgehog、Went等多个信号传导调控过程,但具体调控机制尚未清晰。本文从Hedgehog信号通路的概述,小细胞肺癌中Hedgehog的作用,非小细胞肺癌增殖、耐药中Hedgehog的作用进行综述分析,从而发现目前研究Hedgehog信号通路在肺癌中调控的新观点。
1 Hedgehog信号通路概述
Hedgehog信号通路首次发现并证实参与了果蝇胚胎的发育过程,经典的Hedgehog信号通路组成包括配体蛋白Indian Hedgehog(IHh)、Desert Hedgehog(DHh)和Sonic Hedgehog(SHh);膜受体蛋白Patched(Ptch)和Smoothened(Smo)和目前发现的核内转录因子Ci/Gli、SuFu、COX2、PKA和cAMP等。
1.1 Hedgehog配体 经典的Hedgehog配体主要有IHh、DHh和SHh。人类SHh由位于7q36.3的SHh基因编辑,已证实参与了胚胎发育时候诱导如中枢神经、肺、肠道等组织器官的发育。上述三种Hedgehog同源基因分别在细胞膜上表达其对应的糖蛋白,糖蛋白的N端具有信号活性,C端具有蛋白水解酶活性,C端通过共价键结合胆固醇分子并转移到N端,在酰基转移酶催化后使N端的半胱氨酸发生棕榈酰化,进而获得信号传导活性[6-7]。
1.2 Hedgehog膜受体 经典Hedgehog信号通路的膜受体包括Ptch和Smo两类膜蛋白。Ptch蛋白在哺乳动物中分为Ptch1和Ptch2两种,接受SHh、IHh和DHh的信号。虽然Ptch1和Ptch2均是Hedgehog的受体,但是功能和表达部位略有不同,Ptch1多表达在间质细胞,而Ptch2则在皮肤和睾丸上皮细胞中表达,近来有研究提示Ptch2亦参与了胰腺神经内分泌肿瘤、遗传性疾病的发生发展,且在基底细胞癌中Ptch2有抑制肿瘤的作用[8-12]。Smoothened蛋白属于7跨膜G蛋白偶联受体蛋白,C端位于胞内,而N端7跨膜区富含半胱氨酸在细胞膜外接受信号[13]。Smo的第二个信号结合位点是其异辛基链上携带的具有一个羟基的胆固醇氧化衍生物,在没有Hedgehog配体的情况下可通过特定的固醇氧化物激活Hedgehog信号通路,并诱导Smoothened蛋白向细胞膜上的原纤毛堆积,并激活下游通路[14-15]。虽然Smo激活Gli的机制目前尚不清楚,但Chong等[16]发现Smo和Dlg5相互作后可使得Gli激活,当没有Dlg5时Smo可抑制Gli抑制形成。目前认为Smo是Hh通路中的激动性受体,而Ptch是抑制性受体。经典的Hedgehog信号通路通过SHh配体结合Ptch1发挥作用,但是近来发现细胞膜蛋白GAS1、CDO和BOC也可能是Shh的受体,在胚胎发育早起起着决定性作用,而胚胎发育后期起着维持发育的作用[17-18]。
1.3 核内转录因子 Hedgehog信号通路的核内转录因子包括Ci/Gli、SuFu、Kif7、PKA和cAMP等。
Gli家族成员包括Gli1、Gli2和Gli3,其编码的转录子在C2-H2位都含有锌指结构及组氨酸/半胱氨酸链,而锌指结构也是主要的功能区域。Gli1启动区有一處18氨基酸区域成α螺旋状,该区域包含一个同TFIID的TATA盒绑定蛋白相关的保守因子TAFII31,可使Gli1正反馈激动Hedgehog[19]。近来有研究提示Gli1启动区从-2192到-109这一区间能和间充质同源相关基因转录因子HOX2(MEOX2)及具有转录活性的RNA聚合酶II结合,并同具有表观遗传改变活性的H3K27Ac和H3K4me3相连接,从而接受表观遗传学调节[20]。
Sufu是Hedgehog信号通路中的负性调控因子,其N端和C端可以结合Gli蛋白形成Gli-Sufu复合物,同时PKA抑制Sufu-Gli解离并阻止Sufu-Gli复合物向细胞原纤毛富集,另外Sufu-Gli复合物亦阻碍了Gli向细胞核内转运及同DNA中的Gli结合区结合,从而负性调节Hedgehog信号通路并稳定信号通路[21-23]。
Kif7具有正性和负性双向调节功能,有研究提示PPFIA1和PP2A共同作用促进Kif7的去磷酸化,使得Kif7定位于原纤毛末端并促进激活Gli蛋白[24-26]。
在呼吸道细胞增殖中Kif7促进细胞从G1期进入S期进而维持气道正常结构[27]。Kif7作为Hedgehog中的双向调节因子,在呼吸道发育和维持细胞分化及诱导进入细胞周期起了重要的作用。
当没有Hh配体的情况下,Smo受Ptch的抑制,Ptch结合细胞周期蛋白B1和细胞周期蛋白依赖性激酶1(CDK1)组成的成熟促进因子(MPF),并在细胞质中结合和保留MPF,阻止Hedgehog通路激活,同时PKA、GSK3和CK1可使GliFL磷酸化并被β-Trcp蛋白识别,随后将其C-末端水解形成GliR,而GliR转入细胞核内以后可以结合Hh的启动区后抑制启动区激活,从而阻止Hedgehog信号通路激活[28-29]。当Hedgehog蛋白通过自分泌、旁分泌同Ptch结合后,Ptch被降解,从而解除了对Smo的抑制,而Smo被PKA和CK1磷酸化同时阻止了Smo的降解和内吞,并通过磷酸化级联反应将Hh配体信号传入胞内,同时Smo促进Gli-Sufu向细胞原纤毛富集,并从Sufu-Gli中释放Gli并形成GliA,当GliA结合到Hh启动区后进一步激活转录而激活Hedgehog下游通路,同时Hedgehog蛋白结合Ptch后促进胞周期蛋白B1释放,并通过激活细胞周期蛋白D和细胞周期蛋白E的转录,从而促进细胞进入分裂周期而影响细胞分裂[28-30]。
2 Hedgehog信号通路与肺癌
2.1 Hedgehog和小细胞肺癌 小细胞肺癌是一种具有原始神经内分泌特征的高度侵袭肿瘤,有研究提示小细胞肺癌可通过配体依赖Hedgehog通路的激活维持其恶性表型[31]。在小细胞肺癌侵袭增殖方面,高表达的SHh可刺激N-myc和ascl1转录因子表达,后者结合INSM1启动子中的E2盒后激活内源性INSM1表达,而INSM1与PI3K/AKT和MEK/ERK1/2途径相互作用又增强N-myc的稳定性,进一步增加了小细胞肺癌的侵袭性[32],另有研究发现小细胞肺癌SBC5细胞系中沉默RBPJ/MAML3后SMO和HES1表达降低且细胞增殖和分裂降低,上调增强RBPJ/MAML3表达后SMO和HES1表达增加,并细胞分裂增强,亦提示Hedgehog和RBJ/MAML3共同参与了小细胞肺癌的增殖[33]。Hedgehog抑制剂用于小细胞肺癌治疗方面,维莫德吉(Hedgehog抑制剂)通过结合并干膜蛋白抑制Hedgehog信号传导从而抑制肿瘤细胞生长 [34],而Hedgehog抑制剂用于小细胞肺癌广泛期的进一步临床试验(E1508)中显示顺铂联合依托泊苷(CE)的PFS和OS分别是4.4个月和8.8个月,而CE联合维莫德吉的PFS和CE联合西妥珠单抗的PFS分别是4.4个月和4.6个月而OS分别是9.8个月和10.1个月,有效率分别是48%、56%和50%,但是无统计学意义[35]。综上,Hedgehog通路参与了小细胞肺癌的侵袭、增殖过程,但在小细胞肺癌中Hedgehog通路和其他信号通路之间的交叉调节仍需要进一步研究,虽然现有研究显示Hedgehog抑制剂联合化疗用于小细胞肺癌广泛期治疗的OS和PFS并未有明显改善,但是能否改善小细胞肺癌化疗耐药、减少化疗药物剂量等需要进一步研究。
2.2 Hedgehog和非小细胞肺癌 非小细胞肺癌占肺癌的83%并且发病率逐年增加。多项研究发现Hedgehog信号通路参与了非小细胞肺癌的增殖、转移及非小细胞肺癌的耐药[36]。
非小细胞肺癌增殖转移方面。有研究发现E-Cadherin蛋白与Gli蛋白的表达呈负相关,下调Gli和抑制SHh/Gli信号通路后,E-Cadherin蛋白表达上调,提示SHh激活促进了非小细胞肺癌上皮间质转化,从而促进非小细胞肺癌转移[37],并且有研究发现部分非小细胞肺癌细胞表达未见切割的全长SHh蛋白并具有肿瘤干细胞的特点,并通过旁分泌对SHh阴性细胞产生诱导增殖的作用[38]。肺鳞状细胞癌(LSCC)方面,Gli1是关键的驱动因子,对数据库分析可见Gli1的mRNA在LSCC中高度表达,且提示预后不良[39]。同时有研究发现抑制SHh/GLi通路后E-Cadherin及β-Catenin表达上调且LSCC迁移被抑制,提示SHh/GLi可通过下调E-Cadherin及β-Catenin促进细胞迁移[40]。肺腺癌方面,Gli1可以被MEK1-ERK1/2直接磷酸化而激活,并且Gli启动区和SOX2相互结合及调节,SOX2又促进了多能因子(OCT4和NANOG)表达并抑制了分化谱系因子(HOPX和NKX2-1)表达进而促使肺腺癌细胞干细胞化及促进肺腺癌细胞增殖[41-43]。而在大细胞肺癌方面,使用Smo抑制剂BMS-833923和Gli抑制剂GANT61后细胞增殖受抑制,并且增加了大细胞肺癌细胞对顺铂的敏感性[44]。
非小細胞肺癌耐药方面,多项研究提示Hedgehog异常激活和非小细胞肺癌化疗药物耐药有关,并且抑制Hedgehog通路后可增加抗药非小细胞肺癌细胞对化疗药物的敏感性[45],对36例非小细胞肺癌患者的研究中发现,12例化疗耐药患者中Gli2阳性率高于非耐药组,同时Gli2阳性的患者PSF和OS明显低于Gli2阴性组,顺铂耐药非小细胞肺癌细胞中使用vismodegib,可增加顺铂的细胞毒性[46]。近来研究发现,在药物敏感的非小细胞肺癌细胞中敲除Kif7后细胞膜原纤毛长度改变并伴有Hedgehog异常激活从而产生耐药性,恢复Kif7后耐药细胞恢复了对化疗药物的敏感性[47],该研究提示Kif7及细胞原纤毛的改变参与了非小细胞肺癌化疗药物耐药过程。靶向药物耐药方面,虽然EGFR-TKI用于治疗非小细胞肺癌取得一定进展,但是EGFR-TKI耐药成为非小细胞肺癌治疗失败的又一原因。有研究发现非小细胞肺癌EGFR-TKI耐药过程存在Hedgehog异常激活并通过诱导EMT通路激活引起非小细胞肺癌细胞上皮间质转化过程,从而获得EGFR-TKI的耐药性,使用Smo抑制剂阻断Hedgehog后可亦可抑制非小细胞肺癌的上皮间质转化过程,同时原发和继发的EGFR-TKI耐药细胞可恢复对EGFR-TKI的敏感性,同SMO抑制剂和EGFR抑制剂可完全抑制PI3K/Akt和MAPK磷酸化,进而表现出较强的抗肿瘤活性[48-49]。同时亦有研究发现Smo抑制剂可直接结合Gli1和Gli2抑制其DNA转录从而抑制Hedgehog通路,使肺腺癌和鳞癌生长受抑制并出现凋亡,且在小鼠抑制瘤实验亦证实如此[41-42]。另外T790M突变阴性的EGFR-TKI耐药非小细胞肺癌存在Hedgehog的异常激活并伴有上皮间质转化,而吉非替尼、阿法替尼和西莫替尼耐药细胞系在体外可维持EGFR-TKIs耐药性,但可使用选择性SMO抑制剂sonidegib使得细胞系恢复对EGFR-TKI的敏感性[50]。
3 展望
Hedgehog信号通路作为重要的诱导胚胎及干细胞发育的信号通路,其异常激活参与了肺癌上皮间质转化过程,并通过上皮间质转化诱导了肺癌的侵袭、转移、耐药及肺癌细胞干细胞化过程。但是不同病理类型的肺癌中Hedgehog异常激活是否存在差异,不同病理类型的Hedgehog异常激活和生存期的关系仍需要进一步研究。其二,Hedgehog异常激活参与了EGFR-TKI及顺铂等耐药过程,但是对于原发耐药和诱导耐药的差别、使用Hedgehog抑制剂后是否会对其他正常组织细胞造成影响仍需要进一步研究。其三,Hedgehog抑制剂用于小细胞肺癌广泛期虽然没有改善患者PSF和OS,但是在局限期能否改善需要进一步临床研究,同时使用Hedgehog抑制剂后是否出现Hedgehog抑制剂耐药及耐药过程需要进一步研究及观察。再次,有研究提示Gli启动区和具有表观遗传学改变活性的H3K27Ac链接,而后者具有H3组蛋白27甲基转移酶活性同表观遗传沉默甲基化有关,是否Hedgehog功能失调亦同其下游抑制因子表观遗传学沉默有关需要进一步研究。最后,Hedgehog作为胚胎发育过程中的重要通路,参与了呼吸道等发育过程,其诱导肿瘤发生过程是否存在基因差异或等位基因多态性改变,或哪种基因改变易造成肺癌发生,仍需要进一步研究。综上所述有必要进一步研究Hedgehog及交叉调节在肺癌代谢、耐药、转移等的作用,才能进一步将Hedgehog抑制剂用于肺癌的治疗从而为肺癌治疗提供新的方向。
参考文献
[1] Freddie Bray BSc,Jacques Ferlay M E.Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].Cancer Journal for Clinicians,2018,68(6):394-424.
[2] Siegel R L,Miller K D,Jemal A.Cancer statistics,2018[J].Cancer Journal for Clinicians,2018,68(1):7-30.
[3] Rami-Porta R,Asamura H,Travis W D,et al.Lung cancer-major changes in the American Joint Committee on Cancer eighth edition cancer staging manual[J].Cancer Journal for Clinicians,2017,67(2):138-155.
[4] Siegel R,Desantis C,Virgo K,et al.Cancer treatment and survivorship statistics,2012[J].Cancer Journal for Clinicians,2012,62(4):220-241.
[5] Miller K D,Siegel R L,Lin C C,et al.Cancer treatment and survivorship statistics,2016[J].Cancer Journal for Clinicians,2016,66(4):271-289.
[6] Rodgers U,Lanyonhogg T,Masumoto N,et al.Characterization of Hedgehog Acyltransferase InhibitorsIdentifies a Small Molecule Probe for Hedgehog Signaling by Cancer Cells[J].Chemical Biology,2016,11(12):3256-3262.
[7] Ciepla P,Konitsiotis A D,Serwa R A,et al.New chemical probes targeting cholesterylation of Sonic Hedgehog in human cells and zebrafish[J].Chem Sci,2014,5(11):4249-4259.
[8] Veenstra V L,Dingjan I,Waasdorp C,et al.Patched-2 functions to limit Patched-1 deficient skin cancer growth[J].Cellular Oncology,2018,41(4):427-437.
[9] Hoyos A C,Kaminagakura E,Rodrigues M,et al.
Immunohistochemical evaluation of Sonic Hedgehog signaling pathway proteins(Shh,Ptch1,Ptch2,Smo,Gli1,Gli2 and Gli3)in sporadic and syndromic odontogenic keratocysts[J].Clinical Oral Investigations,2019,23(1):153-159.
[10] Vandamme T,Beyens M,Boons G,Schepers A,et al.
Hotspot DAXX,PTCH2 and CYFIP2 mutations in pancreatic neuroendocrine neoplasms[J].Endocr Relat Cancer,2019,26(1):1-12
[11] Taeubner J,Brozou T,Qin N,et al.Congenital embryonal rhabdomyosarcoma caused by heterozygous concomitant PTCH1 and PTCH2 germline mutations[J].European Journal of Human Genetics,2018,26(1):137-142.
[12] Onodera S,Saito A,Hasegawa D,et al.Multi-layered mutation in hedgehog-related genes in Gorlin syndrome may affect the phenotype[J].PLoS One,2017,12(9):e0184702.
[13] Nachtergaele S,Whalen D M,Mydock L K,et al.Structure and function of the Smoothened extracellular domain in vertebrate Hedgehog signaling[J].Elife,2013,2(24):e01340.
[14] Bazan J F,Janda C,Garcia K C.Structural Architecture and Functional Evolution of Wnts[J].Developmental Cell,2012,23(2):227-232.
[15] Johnson J S,Meliton V,Kim W K,et al.Novel oxysterols have pro-osteogenic and anti-adipogenic effects in vitro and induce spinal fusion in vivo[J].Journal of Cellular Biochemistry,2011,112(6):1673-1684.
[16] Chong Y C,Mann R K,Zhao C,et al.Bifurcating action of Smoothened in Hedgehog signaling is mediated by Dlg5[J].Genes & Development,2015,29(3):262-276.
[17] Allen B L,Song J Y,Izzi L,et al.Overlapping roles and collective requirement for the coreceptors GAS1,CDO,and BOC in SHH pathway function[J].Developmental Cell,2011,20(6):787.
[18] Xavier G M,Seppala M,Barrell W,et al.Hedgehog receptor function during craniofacial development[J].Developmental Biology,2016,415(2):198-215.
[19] Park H L,Bai C,Platt K A,et al.Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation[J].Development,2000,127(8):1593-1605.
[20] Ooki A,Dinalankara W,Marchionni L,et al.Epigenetically regulated PAX6 drives cancer cells toward a stem-like state via GLI-SOX2 signaling axis in lung adenocarcinoma[J].Oncogene,2018,37(45):5967-5981.
[21] Chen M H,Wilson C W,Li Y J,et al.Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved[J].Genes & Development,2009,23(16):1910-1280.
[22] Hanna T,Lopez L V,Adrian S.A mechanism for vertebrate Hedgehog signaling:recruitment to cilia and dissociation of SuFu–Gli protein complexes[J].Journal of Cell Biology,2010,191(2):415-428.
[23] Liem K F,He M,Ocbina P J R,et al.Mouse Kif7/Costal2 is a cilia-associated protein that regulates Sonic hedgehog signaling[J].Proceedings of the National Academy of Sciences of the United States of America,2009,106(32):13377-13382.
[24] He M,Subramanian R,Bangs F,et al.The kinesin-4 protein Kif7 regulates mammalian Hedgehog signalling by organizing the cilium tip compartment[J].Nature Cell Biology,2014,16(7):663-672.
[25] Takahashi T,Friedmacher F,Takahashi H,et al.Kif7 expression is decreased in the diaphragmatic and pulmonary mesenchyme of nitrofen-induced congenital diaphragmatic hernia[J].Journal of Pediatric Surgery,2015,50(6):904-907.
[26] Liu Y C,Couzens A L,Deshwar A R,et al.The PPFIA1-PP2A protein complex promotes trafficking of Kif7 to the ciliary tip and Hedgehog signaling[J].Science Signaling,2014,7(355):ra117-ra117.
[27] Coles G L,Baglia L A,Ackerman K G.KIF7 Controls the Proliferation of Cells of the Respiratory Airway through Distinct Microtubule Dependent Mechanisms[J].PLoS Genetics,2015,11(10):e1005525.
[28] Wang X F,Shen Y,Cheng Q,et al.Apontic directly activates hedgehog and cyclin E for proper organ growth and patterning[J].Scientific Reports,2017,7(1):12470.
[29] Humke E W,Dorn K V,Milenkovic L,et al.The output of Hedgehog signaling is controlled by the dynamic association between Suppressor of Fused and the Gli proteins[J].Genes & Development,2010,24(7):670-682.
[30] Han Y,Shi Q,Jiang J.Multisite interaction with Sufu regulates Ci/Gli activity through distinct mechanisms in Hh signal transduction[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(20):6383-6388.
[31] Watkins D N,Berman D M,Burkholder S G,et al.Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer[J].Nature,2003,422(6929):313-317.
[32] Chen C,Breslin M B,Lan M S.Sonic hedgehog signaling pathway promotes INSM1 transcription factor in neuroendocrine lung cancer[J].Cellular Signalling,2018,46:83-91.
[33] Onishi H,Ichimiya S,Yanai K,et al.RBPJ and MAML3:Potential Therapeutic Targets for Small Cell Lung Cancer[J].Anticancer Research,2018,38(8):4543-4547.
[34] Smaele E D,Ferretti E,Gulino A.Vismodegi,a small-molecule inhibitor of the hedgehog pathway for the treatment of advanced cancers[J].Current Opinion in Investigational Drugs,2010,11(6):707-718.
[35] Belani C P,Dahlberg S E,Rudin C M,et al.Vismodegib or cixutumumab in combination with standard chemotherapy for patients with extensive-stage small cell lung cancer:A trial of the ECOG-ACRIN Cancer Research Group(E1508)[J].Cancer,2016,122(15):2371-2378.
[36]熊歡婷.Hedgehog信号通路配体Shh在肺鳞癌中发病的分子机制[D].南昌:南昌大学,2018.
[37] Li H,Yue D,Jin J Q,et al.Gli promotes epithelial-mesenchymal transition in human lung adenocarcinomas[J].Oncotarget,2016,7(49):80415-80425.
[38] Leprieur E G,Tolani B,Li H,et al.Membrane-bound full-length Sonic Hedgehog identifies cancer stem cells in human non-small cell lung cancer[J].Oncotarget,2017,8(61):103744-103757.
[39] Kasiri S,Shao C,Chen B,et al.GLI1 blockade potentiates the antitumor activity of PI3K antagonists in lung squamous cell carcinoma[J].Cancer Research,2017,77(16):4448-4459.
[40] Yue D,Li H,Che J,et al.Hedgehog/Gli promotes epithelial-mesenchymal transition in lung squamous cell carcinomas[J].Journal of Experimental & Clinical Cancer Research Cr,2014,33(1):33-34.
[41] Huang L,Walter V,Hayes D N,et al.Hedgehog-GLI signaling inhibition suppresses tumor growth in squamous lung cancer[J].Clinical Cancer Research An Official Journal of the American Association for Cancer Research,2014,20(6):1566-1575.
[42] Po A,Silvano M,Miele E,et al.Noncanonical GLI1 signaling promotes stemness features and in vivo growth in lung adenocarcinoma[J].Oncogene,2017,36(32):4641-4652.
[43] Karachaliou N,Rosell R,Viteri S.The role of SOX2 in small cell lung cancer,lung adenocarcinoma and squamous cell carcinoma of the lung[J].Translational Lung Cancer Research,2013,2(3):172-179.
[44] Ishiwata T,Iwasawa S,Ebata T,et al.Inhibition of Gli leads to antitumor growth and enhancement of cisplatin-induced cytotoxicity in large cell neuroendocrine carcinoma of the lung[J].Oncology Reports,2018,39(3):1148-1154.
[45] Giroux-Leprieur E,Costantini A,Ding V,et al.Hedgehog Signaling in Lung Cancer:From Oncogenesis to Cancer Treatment Resistance[J].International Journal of Molecular Sciences,2018,19(9):2835.
[46] Leprieur E G,Vieira T,Antoine M,et al.Sonic Hedgehog pathway activation is associated with resistance to platinum-based chemotherapy in advanced non-small cell lung carcinoma[J].Clinical Lung Cancer,2016,17(4):301-308.
[47] Jenks A D,Vyse S,Wong J P,et al.Primary Cilia Mediate Diverse Kinase Inhibitor Resistance Mechanisms in Cancer[J].Cell Reports,2018,23(10):3042-3055.
[48] Bai X Y,Zhang X C,Yang S Q,et al.Blockade of Hedgehog Signaling Synergistically Increases Sensitivity to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Non-Small-Cell Lung Cancer Cell Lines[J].PLoS One,2016,11(3):e0149370.
[49] Della Corte C M,Bellevicine C,Vicidomini G,et al.SMO Gene Amplification and Activation of the Hedgehog Pathway as Novel Mechanisms of Resistance to Anti-Epidermal Growth Factor Receptor Drugs in Human Lung Cancer[J].Clinical Cancer Research An Official Journal of the American Association for Cancer Research,2015,21(20):4686-4697.
[50] Corte C M D,Malapelle U,Vigliar E,et al.Efficacy of continuous EGFR-inhibition and role of Hedgehog in EGFR acquired resistance in human lung cancer cells with activating mutation of EGFR[J].Oncotarget,2017,8(14):23020-23032.