Na+和K+共存对A2/O工艺脱氮除磷效果及污泥性质的影响
2019-07-23张兰河陈子成郭静波贾艳萍
张兰河,郑 晶,田 蕊,陈子成,郭静波,贾艳萍,李 正,张 健
Na+和K+共存对A2/O工艺脱氮除磷效果及污泥性质的影响
张兰河1,2,郑 晶1,田 蕊1,陈子成1※,郭静波3,贾艳萍1,李 正1,张 健1
(1. 东北电力大学化学工程学院,吉林 132012; 2.吉林建筑大学松辽流域水环境教育部重点实验室,长春 130118;3. 东北电力大学建筑工程学院,吉林 132012)
为了揭示多种金属离子共存的含盐废水生物处理系统污染物的去除机制和污泥特性,考察Na+、K+共存对A2/O工艺污染物去除率、污泥性质和微生物群落的影响,采用高通量测序技术分析了厌氧区、缺氧区和好氧区的微生物群落结构,结合脱氮除磷效果和污泥性质的变化,探讨不同Na+/K+摩尔比下A2/O工艺优势种群的演替规律,以期从微生物角度明确Na+、K+共存对含盐废水污染物去除率的影响。结果表明:当进水Na+/K+摩尔比分别为2、1和0.5时,A2/O工艺的COD去除率分别为80%、84%和86%,TN去除率分别为73%、77%和80%,K+浓度的提高缓解了Na+对COD和TN去除率的抑制作用;厌氧区释磷率分别为70%、73%和74%,缺氧区吸磷率分别为53%、55%和58%,好氧区吸磷率分别为70%、72%和75%。随着进水Na+/K+摩尔比的降低,厌氧区、缺氧区和好氧区微生物群落的丰富度和多样性降低,微生物群落差异显著,变形菌门的相对丰度均升高约30%,拟杆菌门和绿弯菌门相对丰度逐渐降低。陶氏菌属和固氮弧菌属作为优势菌属,其相对丰度逐渐增大,有利于氮磷污染物的去除。通过增加K+的浓度有利于提高氮、磷去除率,增强污泥的生物絮凝性和反硝化聚磷菌的活性。
金属离子;废水;污泥;生物反应器;微生物群落结构;盐度
0 引 言
食品加工、制革、纺织、水产养殖和石油生产等过程中均会产生大量的含盐废水[1]。含盐废水进入污水处理厂与活性污泥接触后,影响活性污泥的沉降性、微生物活性和群落结构,导致污染物去除率发生变化。Na+是污水中最常见的低价盐类离子,高Na+盐度能够大大降低微生物的丰富度和多样性,导致酸类、酯类等有机污染物去除率和活性污泥的沉降性能下降,低Na+盐度下的微生物群落与高Na+盐度下的微生物群落差异性显著[2-4]。低Na+盐度对A2/O工艺缺氧区污泥的絮凝性产生促进作用,亚硝酸氧化菌(nitrite-oxidizing bacteria,NOB)对Na+盐度的耐受能力低于氨氧化菌(ammonia-oxidizing bacteria,AOB);无论是Na+盐度升高或降低时,亚硝酸盐积累率均升高[5-6],Na+盐度影响自养菌的硝化作用[2]。采用膜生物反应器处理水产养殖废水时发现,Na+盐度逐渐增大会使膜生物反应器的处理能力变差,导致短程硝化反硝化现象的发生,但是有利于提高耐盐微生物的丰度[7]。
一些学者也研究了K+对活性污泥的影响。在废水中温厌氧消化时,K+能减缓Na+盐度对厌氧菌的抑制作用,有效提高厌氧消化的甲烷产量和化学需氧量(chemical oxygen demand,COD)去除率,保持厌氧微生物的形态,提高厌氧微生物的活性[8]。当Na+和K+盐度均为30 g/L时,升流式厌氧污泥床反应器中COD降解受到抑制[9-10],K+和Na+降低了颗粒污泥和絮状污泥的产甲烷活性,Na+的盐抑制常数高于K+。低浓度的K+不会抑制酶活性,有利于污染物去除率的提高[11]。在SBR反应器中,当K+添加量为40 mg/L时,可以促进废水中COD的去除;当K+添加量为100 mg/L时,可以促进废水中氨氮的去除[12]。这些研究主要分析了单一运行条件下Na+、K+对好氧微生物或厌氧微生物活性和污染物去除率的影响,但是关于不同Na+/K+摩尔比、不同运行条件下(厌氧、缺氧和好氧)的微生物群落如何变化,以及Na+、K+共存条件下影响有机物去除和脱氮作用的主要菌群及其分布规律尚不明确。
A2/O工艺由厌氧区、缺氧区和好氧区组成,通过溶解氧的不断变化可实现同步脱氮除磷[13]。本研究分别提取不同Na+/K+摩尔比条件下A2/O工艺厌氧、缺氧和好氧区的活性污泥总DNA,并对其16S rDNA V4区进行了PCR扩增和扩增产物的高通量测序分析,研究不同Na+/K+摩尔比条件下A2/O工艺厌氧区、缺氧区和好氧区微生物群落的变化,分析盐类金属离子对COD去除和脱氮除磷效率的影响,探索含盐废水生物脱氮除磷机理。
1 材料与方法
1.1 试验装置
活性污泥取自吉林市污水处理厂二沉池。A2/O反应器(图1)采用有机玻璃制成,有效容积为48 L,其中厌氧区和缺氧区有效容积均为12 L,好氧区有效容积为24 L。厌氧区和缺氧区配有搅拌器,好氧区底部安装曝气头,采用折流方式运行。装置内部由隔板分为6部分,其中1个厌氧区,2个缺氧区,4个好氧区,好氧区的部分混合液回流至缺氧区。采用竖流式二沉池,容积为5 L。A2/O反应器连续运行,污泥回流比为50%,硝化液回流比为100%;混合液悬浮固体(mixed liquor suspended solids,MLSS)为3 000~4 000 mg/L,水力停留时间(hydraulic retention time,HRT)为8 h,温度为17~25 ℃。污泥驯化过程中按C:N:P=100:5:1的比例加入营养物质,以满足微生物的生长需求。当污染物达到稳定去除效果后,采用逐步增加盐度负荷的方法进行耐盐污泥的培养,以降低盐度冲击对微生物造成的毒害。
图1 A2/O工艺流程示意图
试验用水采用模拟城市生活污水,实际城市生活污水COD、TN和TP一般为250~800、20~70和3~12 mg/L,故配水的主要成分为:无水乙酸钠(1.2 g/L)、氯化铵(0.25 g/L)、磷酸二氢钾(0.05 g/L)、硫酸镁(0.05 g/L)和氯化钙(0.01 g/L)。培养微生物所需的微量元素,主要成分为:氯化钴(0.42 mg/L)、钼酸钠(0.15 mg/L)、硫酸锰(0.13 mg/L)、氯化铁(0.37 mg/L)和硫酸铜(0.1 mg/L)。本研究进水NaCl浓度保持稳定,Na+浓度为0.2 mol/L;K+浓度采用KCl调控,K+浓度分别为0.1、0.2和0.4 mol/L,不同K+浓度下的进水pH值均为7.5~8.0。在Na+/K+摩尔比分别为2、1和0.5条件下,考察Na+/K+对A2/O工艺反硝化除磷效果和生物絮凝性的影响。
1.2 微生物群落结构测定与分析
1.2.1 样品采集
反应器达到稳定运行后,对污泥进行取样分析。当进水Na+/K+为2、1和0.5时,YM2、YM1和YM0.5分别代表厌氧区的污泥样品,QM2、QM1和QM0.5分别代表缺氧区的污泥样品,HM2、HM1和HM0.5分别代表好氧区的污泥样品。
1.2.2 样品测定
采用CTAB法提取活性污泥样品中的DNA,利用琼脂糖凝胶电泳检测DNA纯度和浓度。以稀释后的样品基因组DNA作为模板,采用515F-806R对16S rDNA的V4区进行PCR扩增,扩增产物采用Illumina Miscq平台进行测序。所用酶和缓冲液均采用New England Biolabs公司生产的Phusion® High-Fidelity PCR Master Mix with GC Buffer;反应条件:98 ℃预变性1 min,然后30个循环(98 ℃变性10 s,50 ℃退火30 s,72 ℃延伸30 s),最后72 ℃延伸5 min。利用New England Biolabs公司生产的NEB Next® UltraTMDNA Library Prep Kit for Illumina试剂盒进行文库构建,再经过Qubit定量和文库检测合格后,利用HiSeq进行上机测序,分析污泥样品的微生物群落结构。
1.2.3 数据分析
利用Uparse (V7.0.1001)软件进行聚类分析;利用Qiime(V1.9.1)软件计算Chao1、ACE、Shannon、Simpson等指数[14]。
Chao1指数采用式(1)计算。
式中1为Chao1指数;obs为测序分析得到的物种数;1为样本中数量为1的数目;2为样本中数量为2的数目。
ACE指数采用式(2)、(3)计算。
式中ACE为ACE指数;rare为含有“abund”条序列或少于“abund”条序列的OTU(optical transform unit)数目;n为含有条序列的OTU数目;abund为多于“abund”条序列的OTU数目;abund默认为10。
Shannon指数采用式(4)计算。
式中为Shannon指数;P为样品中属于第种个体的比例。
Simpson指数采用式(5)计算。
式中为Simposon指数;为物种数目。
利用R(V2.15.3)软件进行Beta多样性指数组间差异分析。
1.3 水质分析方法
采用多参数水质测定仪(北京连华永兴科技发展公司,LH-3BA)分析COD、TN和TP浓度;采用原子吸收光谱仪(日本岛津公司,AA-7000)分析污水中Na+、K+浓度;Zeta电位采用微电泳仪(上海中晨数字技术设备有限公司,JS94H2)检测;脱氢酶活性采用TTC比色法测定[15];在反应器的每个运行周期结束,利用缺氧区的活性污泥分析不同条件下反硝化聚磷菌与聚磷菌(DPAOs/PAOs)的比例[16-17],首先取1 L缺氧区污泥置于三角瓶中,沉降10 min后弃去上清液,污泥再经过2.5 h厌氧搅拌后,平均分成2份:①投加KNO3,缺氧条件下运行3 h;②好氧条件下运行3 h。试验过程中,每隔30 min取样分析PO43--P和NO3--N的变化,最大缺氧吸磷速率与最大好氧吸磷速率的比值(PURanmax/PURomax),即为DPAOs/PAOs比例。
厌氧区释磷率采用式(6)计算。
式中S为厌氧区释磷率,%;TPY为厌氧区总磷浓度,mg/L;TPJ为进水总磷浓度,mg/L。
缺氧区吸磷率采用式(7)计算。
式中X为缺氧区吸磷率,%;TPQ为缺氧区总磷浓度,mg/L。
好氧区吸磷率采用式(8)计算。
式中X为好氧区吸磷率,%;TPH为好氧区总磷浓度,mg/L。
厌氧区COD去除率计算方法
缺氧区COD去除率计算方法
好氧区COD去除率计算方法
2 结果与分析
2.1 Na+、K+共存对污染物去除率的影响
Na+、K+共存对A2/O工艺污染物去除率的影响,如图2所示。随着进水K+浓度的提高,COD去除率增大。当进水Na+/K+摩尔比为2时,总COD去除率为80%,厌氧区、缺氧区和好氧区COD去除率分别为43%、35%和47%,Na+对COD去除率产生明显的抑制作用。Na+在维持细胞渗透压和膜电位平衡等方面起着重要作用,过高的盐浓度会导致细胞膜电位的紊乱[18]。外界环境Na+浓度过高,微生物胞内渗透压低于胞外,细胞失水,从而影响微生物胞内酶的活性,细胞失活。当进水Na+/K+摩尔比为1时,总COD去除率为84%,厌氧区、缺氧区和好氧区COD去除率分别为47%、36%和51%,随着K+浓度的升高,嗜盐微生物通过吸收K+来平衡外界的Na+盐度环境;当进水Na+/K+摩尔比为0.5时,总COD去除率为86%,厌氧区、缺氧区和好氧区COD去除率继续升高,分别为50%、40%和53%。在维持微生物细胞的渗透压方面,K+对细胞膜通透性的影响大于Na+,一些耐盐微生物的蛋白质和酶需要较高的K+浓度才能维持正常的功能和结构[19]。微生物主要通过细胞内积累大量的K+排出Na+[20],保持细胞内外的渗透压平衡和离子平衡,减缓高浓度Na+对细胞结构和功能的破坏[21],进而实现微生物的耐盐,K+的增加有利于COD的去除。
图2 Na+、K+共存对A2/O工艺污染物去除率的影响
当进水Na+/K+摩尔比为2时,TN去除率为73%,厌氧区、缺氧区和好氧区TN去除率分别为47%、36%和30%;当进水Na+/K+摩尔比为1时,TN去除率升高至77%,厌氧区、缺氧区和好氧区分别为50%、38%和32%,较高的K+浓度(>50 mg/L)可以减轻Na+对脱氮微生物的抑制作用[22],当进水Na+/K+摩尔比为0.5时,TN去除率达到80%,厌氧区、缺氧区和好氧区的TN去除率升高至53%、39%和35%。本课题组的前期研究表明,Na+浓度的增大(0、10、40 g/L)对硝化和反硝化过程均产生抑制作用[2]。本研究中,随着进水K+浓度的升高,TN去除率呈增大趋势,适量的K+可起到促进硝化菌和反硝化菌生长的作用,有效提升微生物的脱氮能力,K+的增加有利于TN的去除。
随着进水Na+/K+摩尔比的降低,A2/O工艺TP去除率逐渐增大。当Na+/K+摩尔比为2时,TP去除率为60%,厌氧区释磷率为70%,缺氧吸磷率和好氧吸磷率分别为53%和70%;当Na+/K+摩尔比为1时,TP去除率为62%,厌氧区释磷率为73%,缺氧吸磷率和好氧吸磷率分别为55%和72%;当Na+/K+摩尔比为0.5时,TP去除率为65%,厌氧区释磷率为74%,缺氧吸磷率和好氧吸磷率分别为58%和75%。有研究表明,随着盐度的增加,聚磷菌受到的抑制作用增大[23]。本研究发现,随着Na+/K+摩尔比的降低,反硝化聚磷菌所占比例增加,反硝化除磷效率提高。K+浓度的提高有利于反硝化聚磷菌数量的增加,缺氧区反硝化除磷污泥的活性逐渐增强,Na+/K+为2、1、0.5时,DPAOs/PAO分别为43%、45%、和46%。
2.2 Na+、K+共存对污泥性质的影响
在不同Na+/K+条件下,厌氧区、缺氧区和好氧区污泥脱氢酶活性的变化,如图3所示。可以看出,同时投加Na+、K+抑制脱氢酶活性,但随着进水Na+/K+摩尔比的降低,脱氢酶活性呈上升趋势。当进水Na+/K+摩尔比为2时,厌氧区、缺氧区和好氧区脱氢酶活性分别为58.3、58.7和59.4 mg/(L·h),仍低于无Na+、K+运行条件下的厌氧区、缺氧区和好氧区脱氢酶活性(分别为62.5、62.3和63.6 mg/(L·h))[24]。当进水Na+/K+摩尔比为1时,脱氢酶活性升高,厌氧区、缺氧区和好氧区脱氢酶活性分别为56.3、59.1和60.3 mg/(L·h);当进水Na+/K+摩尔比为0.5时,脱氢酶活性分别为57.1、59.9和60.7 mg/(L·h)。K+浓度的增加有利于缺氧区和好氧区脱氢酶活性的提高,污染物去除率上升。
图3 不同Na+/K+摩尔下A2/O厌氧区、缺氧区和好氧区污泥的脱氢酶活性
Na+/K+摩尔比对Zeta电位的影响,如表2所示。可以看出,随着进水Na+/K+摩尔比的下降,厌氧区、缺氧区和好氧区污泥的Zeta电位均呈上升趋势。有研究表明,K+比Na+更容易被吸附,随着进水K+的逐渐增多,污泥絮体所吸附的正电荷增多,引起Zeta电位的升高[25]。图4表明,随着进水K+浓度的增大,粒径与重絮凝(flocculation ability,FA)呈增长趋势,污泥生物絮凝性逐渐增强,Na+对污泥的解絮能力受到抑制[26-27]。
表2 不同Na+/K+摩尔比条件下Zeta电位的变化
图4 Na+/K+摩尔比对A2/O反应器不同区域污泥粒径和重絮凝的影响
2.3 Na+、K+共存对微生物群落结构的影响
2.3.1 Na+、K+共存对微生物多样性的影响
本课题组的前期研究表明,Na+质量浓度的增大(0、10、40 g/L)导致微生物多样性逐渐降低,微生物群落生长受到抑制[2]。不同Na+/K+摩尔比下A2/O工艺厌氧区、缺氧区和好氧区微生物多样性的变化,如表3所示。Chao指数和ACE指数可以表示物种丰富度的高低,数值越高,丰富度越高;Shannon指数和Simpson指数可以表示物种多样性的变化,数值升高,多样性升高。随着进水Na+/K+摩尔比的下降,厌氧区、缺氧区和好氧区中Chao指数、ACE指数、Shannon指数和Simpson指数均降低,群落丰富度和物种多样性降低,各区常见物种均减少。这可能是因为进水K+浓度升高导致不能适应K+盐度变化的微生物被淘汰,微生物多样性降低;但是,污染物去除率并未降低(图2所示)。由此可见,微生物多样性并不一定是含盐污水污染物去除的主要制约因素。有研究表明,K+盐度增加,微生物群落生长受到抑制,微生物多样性逐渐降低[28-30]。
表3 微生物多样性的变化
注:YM2、YM1、YM0.5、QM2、QM1、QM0.5、HM2、HM1和HM0.5分别代表Na+/K+为2、1、0.5时采集的厌氧区、缺氧区、好氧区的污泥样品,下同。
Note: YM2, YM1, YM0.5, QM2, QM1, QM0.5, HM2, HM1 and HM0.5 represent sludge samples collected in anaerobic, anoxic and oxic zones when the Na+/K+molar ratios are 2, 1 and 0.5, respectively, the same below.
2.3.2 Na+、K+共存对A2/O工艺微生物差异性的影响
当进水Na+/K+摩尔比分别为2、1和0.5时,厌氧区、缺氧区和好氧区污泥样品间的微生物群落差异,如图5所示。通过主坐标分析(principal coordinate analysis,PCo A)和非度量多维尺度分析(non-metric multidimensional scaling,NMDS)比较不同生态系统的Beta多样性变化,反映单个样品间是否存在群落差异[31-32]。每一个点代表一个样本,一个区域表示一个分组,两点之间距离越近表明两者的群落结构差异越小。根据图5a、b,随着进水Na+/K+摩尔比的降低,样品间距离加大,样品分布在不同空间位置上,表明污泥样品微生物群落间具有显著差异。
根据OTU聚类和微生物丰度对样品进行聚类分析,结果如图5c所示。随着进水Na+/K+摩尔比的降低,微生物群落出现分支,K+的增加导致微生物群落之间的差异性增大,这与Beta多样性分析结果相一致;结合A2/O工艺对污染物去除率的变化(图2)可知,进水Na+/K+摩尔比对污染物去除率和微生物群落具有显著影响。
2.3.3 Na+、K+共存对A2/O工艺微生物群落优势菌的影响
选取门、属2个级别对微生物群落结构进行分析。A2/O工艺不同区域活性污泥在门水平上的微生物群落相对丰度,如图6a所示。在所有污泥样品中,变形菌门()均为优势菌门,相对丰度最高。当进水Na+/K+摩尔比为2、1和0.5时,厌氧区、缺氧区和好氧区中变形菌门的相对丰度升高(升高约30%);拟杆菌门()相对丰度逐渐降低,厌氧区拟杆菌门相对丰度由20.6%降低至9.6%,缺氧区拟杆菌门相对丰度由18.2%降低至8.5%,好氧区拟杆菌门相对丰度由20.0%降低至7.1%,拟杆菌门不仅在水环境中广泛存在[33],还是厌氧消化的主要菌门之一。绿弯菌门()作为具有较强污染物降解能力的主要菌门,其相对丰度降低,厌氧区绿弯菌门相对丰度由9.5%下降至2.0%,缺氧区绿弯菌门相对丰度由4.3%下降至3.6%,好氧区绿弯菌门相对丰度由7.6%下降至1.9%。为优势菌门之一,厌氧区相对丰度由2.8%下降至1.0%,缺氧区相对丰度由1.9%下降至0.9%,好氧区相对丰度由2.7%下降至0.7%。
图5 微生物群落结构的差异性
图6 微生物物种相对丰度
图6b为优势菌属水平上的微生物群落分析。随着进水Na+/K+的变化,厌氧区、缺氧区和好氧区陶氏菌属()的相对丰度逐渐增大,始终为各区域的优势菌属。当Na+/K+摩尔比分别为2、1和0.5时,厌氧区陶氏菌属的相对丰度分别为17.4%、29.3%和43.2%,缺氧区陶氏菌属的相对丰度分别为22.6%、41.3%和42.9%,好氧区陶氏菌属的相对丰度分别为18.8%、37.6%和51.1%。陶氏菌属作为具有广泛污染物降解能力的菌属,其相对丰度的增大有利于污染物去除率的提高,这与污染物去除率变化相一致。陶氏菌属和固氮弧菌属()均为反硝化过程中的重要菌属[34-35]。随着进水Na+/K+摩尔比的降低,固氮弧菌属相对丰度逐渐增大,厌氧区、缺氧区和好氧区固氮弧菌属的相对丰度分别由2.1%、2.6%和2.2%增加至4.8%、4.2%和6.0%,从而促进反硝化的进行。同时,随着进水Na+/K+摩尔比的降低,参与反硝化的陶氏菌属和固氮弧菌属增多,未知菌属所占比例减少,有利于污染物的去除。
3 结 论
1)随着进水Na+/K+摩尔比的下降,化学需氧量、总氮和总磷去除率升高,A2/O工艺反硝化除磷效率逐渐增强。虽然同时投加Na+和K+对A2/O工艺污染物去除产生抑制作用,但进水K+浓度的增加缓解了Na+对微生物的抑制能力。
2)随着进水Na+/K+摩尔比的下降,厌氧区、缺氧区和好氧区的Zeta电位、污泥粒径和重絮凝性呈上升趋势,污泥絮凝性升高,高浓度的K+浓度缓解了Na+的解絮行为。
3)随着进水Na+/K+摩尔比的下降,厌氧区、缺氧区和好氧区的微生物群落丰富度和多样性降低,微生物的群落结构差异显著。优势菌门始终为变形菌门、拟杆菌门、绿弯菌门、厚壁菌门和绿菌门,陶氏菌属相对丰度的增大有利于污染物去除率的提高,固氮弧菌属相对丰度的提高有利于促进反硝化的进行。
[1] Church J, Hwang J H, Kim K T, et al. Effect of salt type and concentration on the growth and lipid content of Chlorella vulgaris in synthetic saline wastewater for biofuel production[J]. Bioresource Technology, 2017, 243: 147-153.
[2] 张兰河,田蕊,陈子成,等. NaCl盐度对A2/O工艺去除废水污染物和系统微生物的影响[J]. 农业工程学报,2018,34(10):231-237.
Zhang Lanhe, Tian Rui, Chen Zichen, et al. Effects of NaCl salinity on wastewater pollutants removal and microorganism in A2/O technology process[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2018, 34(10): 231-237. (in Chinese with English abstract)
[3] 张崇淼,马宇超,牛全睿,等. 渐增NaCl对印染废水处理系统活性污泥微生物的影响[J]. 工业水处理,2017,37(2):33-37.
Zhang Chongmiao, Ma Yuchao, Niu Quanrui, et al. Influences of gradual-increase NaCl on the activated sludge microbes in dyeing wastewater treatment systems[J]. Industrial Water Treatment, 2017, 37(2): 33-37. (in Chinese with English abstract)
[4] Wu G, Guan Y, Zhan X. Effect of salinity on the activity, settling and microbial community of activated sludge in sequencing batch reactors treating synthetic saline wastewater[J].Water Science & Technology, 2008, 58(2): 351-358.
[5] 赵凯峰,王淑莹,叶柳,等. NaCl盐度对耐盐活性污泥沉降性能及脱氮的影响[J]. 环境工程学报,2010,4(3):570-574.
Zhao Kaifeng, Wang Shuying, Ye Liu, et al. Effects of salinity on salt-tolerant activated sludge settling performance and nitrogen removal[J]. Chinese Journal of Environmental Engineering, 2010, 4(3): 570-574. (in Chinese with English abstract)
[6] Mannina G, Capodici M, Cosenza A, et al. Sequential batch membrane bio-reactor for wastewater treatment: The effect of increased salinity[J]. Bioresource Technology, 2016, 209: 205-212.
[7] Hong J, Li W, Lin B, et al. Deciphering the effect of salinity on the performance of submerged membrane bioreactor for aquaculture of bacterial community[J]. Desalination, 2013, 316(5): 23-30.
[8] Li J, Shi W, Jiang C, et al. Evaluation of potassium as promoter on anaerobic digestion of saline organic wastewater[J]. Bioresource Technology, 2018, 266: 68-74.
[9] 邹小玲,许柯,夏兴华,等. NaCl和KCl盐度对厌氧污泥的驯化及对比产甲烷活性的影响[J]. 中国沼气,2009,27(3):23-25.
Zou Xiaoling, Xu Ke, Xia Xinghua, et al. NaCl and KCl salinity acclimations of anaerobic sludge and their effects on specific methanogenic activity[J]. China Biogas, 2009, 27(3): 23-25. (in Chinese with English abstract)
[10] 邹小玲,许柯,丁丽丽,等. NaCl和KCl对厌氧污泥抑制的动力学研究[J]. 化工环保,2009,29(5):394-397.
Zou Xiaoling, Xu Ke, Ding Lili, et al. Kinetics study of inhibiting action of NaCl and KCl on anaerobic sludge[J]. Environmental Protection of Chemical Industry, 2009, 29(5): 394-397. (in Chinese with English abstract)
[11] LiuL, Yan H, Tan W, et al. Influence of Na+, K+, Mg2+, Ca2+, and Fe3+on filterability and settleability of drilling sludge[J]. Chinese Journal of Chemical Engineering, 2016, 25(5):658-664.
[12] 杨红薇,陈佼,张建强. K+、Ca2+、Mg2+对高盐肝素废水处理的影响[J]. 环境工程学报,2014,8(10):4267-4272.
Yang Hongwei, Chen Jiao, Zhang Jianqiang. Effects of K+,Ca2+,Mg2+on high salt heparin wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2014, 8(10):4267-4272. (in Chinese with English abstract)
[13] Hwang K L, Bang C H, Zoh K D. Characteristics of methane and nitrous oxide emissions from the wastewater treatment plant[J]. Bioresource Technology, 2016, 214: 881-884.
[14] 徐华勤,肖润林,邹冬生,等. 长期施肥对茶园土壤微生物群落功能多样性的影响[J].生态学报,2007,27(8):3355-3361.
Xu Huaqin, Xiao Runlin, Zou Dongsheng, et al. Effects of long-term fertilization on functional diversity of soil microbial community of the tea plantation[J]. Acta Ecologica Sinica, 2007, 27(8): 3355-3361. (in Chinese with English abstract)
[15] 魏民,郑国臣,李建政,等. 表征水体中生物活性及脱氢酶检测方法研究[J]. 东北水利水电,2012,30(8):43-46.
Wei Min, Zheng Guochen, Li Jianzheng, et al. Study on detection method of biological activity and dehydrogenase in water[J]. Water Resources & Hydropower of Northeast China, 2012, 30(8): 43-46. (in Chinese with English abstract)
[16] Guo H, Zhou J, Zhang S, et al. Characteristics of nitrogen and phosphorus removal in a sequencing batch reactor[J]. Journal of Environmental Sciences, 2011, 23, Suppl(11): S110-S113.
[17] Wu D, Ekama G A, Wang H G, et al. Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated enhanced biological phosphorus removal (EBPR) process[J]. Water Research, 2014, 49(2): 251-264.
[18] 林兵. 盐胁迫下好氧颗粒污泥微生物种群变化及生态响应机制[D]. 镇江:江苏科技大学,2014.
Lin Bing. Change of Microbial Community Structure and Ecology Reponse Mechanism of Aerobic Granular Sludge under Salt Stress[D]. Zhenjiang: Jiangsu University of Science and Technology, 2014. (in Chinese with English abstract)
[19] 李志华,王晓昌,王耀东. 含盐量对好氧颗粒污泥形成过程的影响[J]. 环境工程学报,2008,2(9):1228-1230.
Li Zhihua, Wang Xiaochang, Wang Yaodong. Influence of sodium chloride on formation of aerobic granules[J]. Chinese Journal of Environmental Engineering, 2008, 2(9): 1228-1230. (in Chinese with English abstract)
[20] 陶卫平. 嗜盐菌的嗜盐机制[J]. 生物学通报,1996,31(1):23-24.
[21] Shilo, Moshe. Strategies of Microbial Life in Extreme Environments [M]. Verlag Chemie, 1979.
[22] 何健. 高盐难降解工业废水微生物处理的污泥驯化研究与应用[D]. 南京:南京农业大学,2000.
He Jian. Sludge Acclimation of Microbiological Treatment of Hypersaline Refractory Waste Water[D]. Nanjing: Agricultural University of Nanjing, 2000. (in Chinese with English abstract)
[23] 李玲玲,周鹏. 活性污泥中功能性菌群抗盐度冲击性能研究[J]. 环境工程学报,2010,4(1):105-109.
Li Lingling, Zhou Peng. Effect of salinity shock on specific microorganisms in conventional activated sludge[J]. Chinese Journal of Environmental Engineering, 2010, 4(1): 105-109. (in Chinese with English abstract)
[24] 张兰河,田蕊,郭静波,等. NaCl盐度对A2/O工艺缺氧区胞外聚合物及生物絮凝性的影响[J].环境科学,2018,39(9):4281-4288.
Zhang Lanhe, Tian Rui, Guo Jingbo, et al. Effect of NaCl salinity on extracellular polymeric substances and bioflocculation of anoxic sludge in A2/O process[J]. Environmental Sciences, 2018, 39(9): 4281-4288. (in Chinese with English abstract)
[25] Zhang W, Zheng J, Zheng P, et al. Sludge-Derived biochar for arsenic(iii) immobilization: effects of solution chemistry on sorption behavior[J]. Journal of Environmental Quality, 2015, 44(4): 1119-1126.
[26] Nouha K, Kumar R S, Balasubramanian S, et al. Critical review of EPS production, synthesis and composition for sludge flocculation[J]. Journal of Environmental Sciences, 2017, 66(4): 225-245.
[27] Amatore C, Jutand A, Le Duc G. Mechanistic origin of antagonist effects of usual anionic bases (OH−, CO32−) as modulated by their Countercations (Na+, Cs+, K+) in palladium-catalyzed suzuki-miyaura reactions[J]. Chemistry, 2012, 18(21): 6616-6625.
[28] Guo X, Miao Y, Wu B, et al. Correlation between microbial community structure and biofouling as determined by analysis of microbial community dynamics[J]. Bioresource Technology, 2015, 197: 99-105.
[29] 周贵忠,许硕,姚倩,等. 不同盐度下活性污泥中微生物群落变化规律及其处理模拟染料废水[J]. 环境科学,2017,38(7):2972-2977.
Zhou Guizhong, Xu Shuo, Yao Qian, et al. Influence of salinity on microbial community in activated sludge and its application in simulated dye wastewater treatment[J]. Environmental Science, 2017, 38(7): 2972-2977. (in Chinese with English abstract)
[30] Wu G, Guan Y, Zhan X. Effect of salinity on the activity, settling and microbial community of activated sludge in sequencing batch reactors treating synthetic saline wastewater[J]. Water Sci Technol, 2008, 58: 351-358.
[31] 李墨青. 纳米银对SBR系统水处理效能及微生物菌群的影响研究[D]. 哈尔滨:哈尔滨工业大学,2014.
Li Moqing. Impacts of Silver Nanoparticles on Water Treatment Efficiencies of SBR system and Microbial Communities[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese with English abstract)
[32] Hallenbeck P C, Liu Y. Recent advances in hydrogen production by photosynthetic bacteria[J]. International Journal of Hydrogen Energy, 2016, 41(7): 4446-4454.
[33] Lin P Y, Chen H L, Huang C T, et al. Biofilm production, use of intravascular indwelling catheters and inappropriate antimicrobial therapy as predictors of fatality in Chryseobacterium meningosepticum bacteraemia[J]. International Journal of Antimicrobial Agents, 2010, 36(5): 436-440.
[34] Shen L D, Zheng P H, Ma S J. Nitrogen loss through anaerobic ammonium oxidation in agricultural drainage ditches[J]. Biology & Fertility of Soils, 2016, 52(2): 127-136.
[35] Tian M, Zhao F, Shen X, et al. The first metagenome of activated sludge from full-scale anaerobic/anoxic/oxic (A2O) nitrogen and phosphorus removal reactor using Illumina sequencing[J]. Acta Scientiae Circumstantiae, 2015, 35(9): 181-190.
Effect of coexistence of Na+and K+on sludge properties and microbial community structure in A2/O process
Zhang Lanhe1,2, Zheng Jing1, Tian Rui1, Chen Zicheng1※, Guo Jingbo3, Jia Yanping1, Li Zheng1, Zhang Jian1
(1.132012,; 2.,130118; 3.,132012)
A large amount of salty wastewater is produced from industrial processes such as food processing, tanning, textiles, aquaculture and oil production. After the salty wastewater entered the activated sludge system and contacted with the activated sludge, the sedimentation, microbial activity and community structure of activated sludge were influenced, which could result in the change of pollutant removal efficiency. A2/O process could achieve simultaneously nitrogen and phosphorus removal, but it was unclear how Na+and K+influenced the microbial communities and the removal efficiency of pollutants in the anaerobic, anoxic and oxic zones. In order to reveal the removal mechanism of the pollutants and the characteristics of activated sludge in the biological treatment system under the coexisting multiple metal ions, the effect of the coexisting Na+and K+on the removal efficiency of pollutants was investigated and the properties of sludge and microbial community in the anaerobic, anoxic and oxic zones were analyzed by high-throughput sequencing. Combined with the changes of removal efficiency of nitrogen and phosphorus and sludge properties, the succession regulation of dominant populations were explored based on the analysis of microbial community structure under different Na+/K+molar ratios to distinguish the effect of the coexistence of Na+and K+on the removal efficiency of the pollutants in the salty wastewater from the point of microorganisms. The results showed that when the influent Na+/K+molar ratio was 2, 1 and 0.5, the removal efficiencies of COD were 80%, 84% and 86%, respectively. The removal efficiencies of TN were 73%, 77% and 80%, respectively. The increase of K+concentration alleviated the inhibition of Na+on the removal efficiency of COD and TN. The release rates of TP in anaerobic areas were 70%, 73% and 74%, respectively. The phosphorus uptake rates in the anoxic zone were 53%, 55% and 58%, respectively. The phosphorus uptake rates in the oxic zone were 70%, 72% and 75%, respectively. The Zeta potential in anaerobic zone is -25.4, -23.2 and -14.7 mV, respectively. The Zeta potential in the anoxic zone is -33.0, -26.6 and -13.7 mV and the Zeta potential in oxic zone is -30.4, -18.6 and -11.0 mV, respectively. The positive charge adsorbed by sludge floc increased. Moreover, the biological flocculation of sludge increased gradually and the deflocculation ability of Na+was inhibited. The richness and diversity of microbial communities in anaerobic, anoxic and oxic zones decreased and the differences of microbial communities were significant. The relative abundance ofincreased by about 30% and the relative abundance ofanddecreased gradually. As the dominant genera, the relative abundance of nitrogen-fixingandgradually increased and the proportion of unknown bacteria decreased, which were beneficial to the removal of pollutants. Therefore, the increase of K+concentration contributed to increase the removal efficiency of nitrogen and phosphorus under the coexistence of Na+and K+. It was also beneficial to the improvement of dehydrogenase activity of sludge in anoxic zone and oxic zone and the enhancement of particle size and flocculation ability (FA) of sludge.
metal ions; wastewater; sludge; bioreactor; microbial community structure; salinity
2018-11-07
2019-04-07
国家自然科学基金(51678119,51508073);吉林省科技发展计划项目(20180201016SF,20180101309JC,20180101079JC);吉林省教育厅科学技术研究项目(JJKH20180454KJ,JJKH20180453KJ)
张兰河,博士,教授,主要研究方向为污水生物脱氮除磷技术。Email:zhanglanhe@163.com
陈子成,博士,副教授,主要研究方向为水处理技术与理论。Email:chenzicheng@126.com
10.11975/j.issn.1002-6819.2019.11.024
X703
A
1002-6819(2019)-11-0206-08
张兰河,郑 晶,田 蕊,陈子成,郭静波,贾艳萍,李 正,张 健. Na+和K+共存对A2/O工艺脱氮除磷效果及污泥性质的影响[J]. 农业工程学报,2019,35(11):206-213. doi:10.11975/j.issn.1002-6819.2019.11.024 http://www.tcsae.org
Zhang Lanhe, Zheng Jing, Tian Rui, Chen Zicheng, Guo Jingbo, Jia Yanping, Li Zheng, Zhang Jian. Effect of coexistence of Na+and K+on sludge properties and microbial community structure in A2/O process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(11): 206-213. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.11.024 http://www.tcsae.org