GMM-FBG光纤电流传感器结构优化及温补模型
2019-07-22张伟超来永宝赵洪张立永施云波
张伟超 来永宝 赵洪 张立永 施云波
关键词:光纤传感;电流传感器;温度特性;校正函数;灵敏度分析
DOI:10.15938/j.emc.2019.06.000
中图分类号文献标志码:A 文章编号:1007 -449X(2019)06 -0000 -00
Abstract:To solve the problem that the sensitivity and accuracy of GMMFBG current sensor are affected by temperature influencing center wavelength of FBG and magnetostriction coefficient of GMM, the GMMFBG sensing model with temperature parameter is presented to calibrate current values. According to Faraday electromagnetic theory, the magnetic structure is designed to increase the magnetic coupling efficiency and homogenize magnetic distribution using finite element method (FEM). Then, the experimental platform is constructed by using the wavelength demodulation system. At the temperature of 20 to 70 degrees Celsius, wavelength response amplitudes of the sensor are tested under different current value. The experimental results show that the sensitivity of GMMFBG current sensor decreases with the increase of temperature, and it is positive correlation to the target current. Analyzing the law of sensor response versus temperature, a GMMFBG sensing mathematical model with temperature compensation coefficient is established based on mathematical fitting method. Then, according to the modal, the current detecting accuracy is increased by 4.8% during measuring 60A current at the temperature of 40 ℃.
Keywords:optical fiber sensor; fiber current sensor; temperature characteristic; correction function; sensitivity analysing
0 引 言
隨着我国电力工业的高速发展,电流传感器在电能计量和监测领域起到了越来越重要的作用[1-2],然而传统的电磁式电流传感器暴露出许多严重的缺点,难以满足当代高电压、大电流和强功率的电力系统需求[3-4]。因此,人们一直在寻找一种新型电流传感器以满足当前电力系统在线监测、故障高精确度诊断、电力数字网等发展的需要。光学电流传感器(optical current transducer,OCT)[5-6]因其本征绝缘,抗电磁干扰性能优异,更适于电力系统的电流量的计量和在线监测而受到关注。
目前文献报道的光学电流传感器主要有法拉第磁光效应方式,罗氏线圈光电混合方式和磁致伸缩效应结合光纤方式。法拉第磁光效应电流传感器光纤中的线性双折射、温度引起的精确度问题以及传感头老化问题一直是此类电流传感器实用化的最大障碍[7-8];罗氏线圈光电混合式的电流互感器在实际应用中仍受到环境电磁场、高压端电路电流供电等因素的影响[9];磁致伸缩式电流传感器主要采用超磁致伸缩材料(giant magnetostrictive material,GMM)做为磁应变敏感单元,通过在GMM上集成光纤布拉格光栅(fiber Bragg gratings,FBG)将磁场强度加载到调制光波中[10],该种方式电流响应频带宽,灵敏度高,且在解调仪器配合下可以实现分布式测量,用于多点电流量同步监测成本相对较低,具有较好的工业应用前景。国内外对GMMFBG光纤电流传感器已经做了大量的研究[11-14],包括系统解调技术,GMMFBG磁路结构设计,FBG温度解耦和磁滞非线性校正等研究均有成果报道[15-16]。研究也发现GMMFBG光纤电流传感器受温度参数影响传感器传递函数会有所变化,研究者将其原因主要归结于FBG温度敏感并提出众多解耦方法[17-18]。但是超磁致伸缩材料的磁致伸缩系数也是以温度为自变量的函数,温度造成的材料磁致伸缩系数变化的问题尚未被关注,由此也造成传感器电流检测灵敏度随温度而变化。在设计高聚磁传感结构获得高灵敏度GMMFBG传感器基础上,通过测试不同温度下传感器的响应幅值,分析灵敏度受温度影响特性,获得温度灵敏度数学关系模型,以此模型为基础提出了一种传感器灵敏度校正方法,同时实现了电流和温度的同时测量。
4 结 论
在GMMFBG光纤电流传感器磁路优化设计基础上,重点分析GMM磁致伸缩系数随温度变化而影响电流检测灵敏度和准确度的问题。通过电磁场有限元分析方法,设计获得了在GMM传感区高聚磁且分布均匀的磁耦合结构。GMMFBG传感器温度实验表明,随温度升高,传感器响应灵敏度下降;且灵敏度下降大小与被测电流值大小正相关。通过温度特性实验数据分析,获得了具有温度校准参数的GMMFBG电流传感器电流和输出波长幅值数学关系模型。40 ℃下的电流测试结果表明,利用该模型校准后的电流测量值准确度获得提升。
参 考 文 献:
[1] 王廷云, 罗承沐, 田玉鑫. 电力系统中光电电流互感器研究[J].电力系统自动化,2000(01): 38.
WANG Tingyun, LUO Chenmo, TIAN Yuxin. Study on optical currenttransformer in power system[J]. Automation of Electric Power Systems,2000(01):38.
[2] Fábio Vieira Batista de Nazaré, Marcelo Martins Werneck. Compact optomagnetic bragggratingbased current sensor for transmission lines[J]. IEEE Sensors Journal, 2015,15(1):100.
[3] 李岩松, 刘君, 杨以涵, 等. 自适应光学电流互感器与保护一体化运行研究[J]. 中国电机工程学报,2007(22):57.
LI Yansong, LIU Jun, YANG Yihan, et al. Research on whole operating of adaptive optical current transducer and protection [J]. Proceedings of the CSEE, 2007(22):57.
[4] Yamagata, Toshi. Development of optical current transformers and application to fault location systems for substation [J]. IEEE Trans. On Power Delivery, 1993, 8(l):866.
[5] 劉长军,张伟刚,姜萌,等.光纤布拉格光栅自致啁啾效应的研究[J].光学学报,2008(09):1671.
LIU Changjun, ZHANG Weigang, JIANG Meng, et al. Study on selfinduced chirping for fiber Bragg grating [J].Acta Optica Sinica, 2008(09):1671.
[6] 张开玉,赵洪,张伟超, 等.基于等应变梁的光纤光栅静电电压传感器[J].光学学报,2015,35(03):0306003.
ZHANG Kaiyu, ZHAO Hong, ZHANG Weichao, et al. Fiber Bragg grating electrostatic voltage sensor based on uniform strain beam[J]. Acta Optica Sinica, 2015,35(03): 0306003.
[7] 王志, 初凤红, 吴建平. 全光纤电流传感器温度补偿研究进展[J].激光与光电子学进展,2014, 51(12):120005.
WANG Zhi,CHU Fenghong,WU Jianping.Progress in allfiber current sensor temperature compensation[J].Laser & Optoelectronics Progress,2014,51(12):120005.
[8] 王政平,刘晓瑜.线性双折射对不同类型光学玻璃电流互感器输出特性的影响[J].中国电机工程学报,2006(14):75.
WANG Zhiping, LIU Xiaoyu. Effects of linear birefringence upon performances of different designs of optical glass current transformers[J]. Proceedings of the CSEE, 2006(14):75.
[9] 杨芾藜,侯兴哲,魏东,等.基于罗氏线圈的电子式电流互感器温度误差及补偿[J].电器与能效管理技术,2014(17):15.
YANG Fuli, HOU Xingzhe, WEI Dong, et al. The temperature error and compensation for electronic current transformer based on Rogowski coil[J]. Electrical Energy Management Technology, 2014(17):15.
[10] 贾丹平,武威.基于超磁致伸缩材料的光纤光栅电流传感器[J].电子测量与仪器学报,2015,29(12):1806.
JIA Danping, WU Wei. Fiber bragg grating current sensor based on giant magnetostrictive material [J]. Journal of Electronic Measurement and Instrumentation, 2015,29(12):1806.
[11] DEBORAH R,ANDREW J W. A fiberbragggratingbased sensor for simultaneous AC current and temperature measurement[J]. IEEE Sensors Journal,2006,6(6):539.
[12] DEBASHIS S,JEFFREY A M, MICHAEL G E.Design of a terfenolD based fiberoptic current transducer[J]. IEEE Sensors Journal,2005,5(5):1057.
[13] 刘杰,赵洪,王鹏, 等.可温度自动跟踪的高精度光纤光栅电流互感器[J].中国电机工程学报,2012,32(24):141.
LIU Jie, ZHAO Hong, WANG Peng, et al. High accuracy current transformers with an automatic temperature tracking system based on FBG[J]. Proceedings of the CSEE, 2012,32(24):141.
[14] 熊燕玲, 赵洪, 张剑, 等.基于光纤光栅的光学电流互感器研究[J].光学学报,2010,30(04): 949.
XIONG Yanling, ZHAO Hong, ZHANG Jian, et al. Research on optical current transformer based on the fiber Bragg grating[J]. Acta Optica Sinica, 2010,30(04):949.
[15] 倪凱,徐海松,董新永,等.基于光纤布拉格光栅的温度不敏感的倾斜传感器[J].光学学报,2010,30(07):2104.
NI Kai, XU Haisong, DONG Xinyong,et al. Temperatureindependent fiber Bragg grating tilt sensor [J]. Acta Optica Sinica, 2010, 30(07):2104.
[16] 孙菲菲.GMM光纤电流传感器的研究[D].哈尔滨:哈尔滨理工大学,2017.
[17] KIN S C,RAMESH K,VIPUL R,et al.Temperaturecompensated fiberBragggrating based magnetostrictive sensor for dc and ac currents[J]. Opt.Eng.2003,42(7):1906.
[18] 周王民,魏志武,李文博,等.温度不敏感光纤光栅大电流传感器[J].高电压技术,2009,35(09): 2133.
ZHOU Wangmin, WEI Zhiwu, LI Wenbo, et al.Novel fiber bragg grating large current sensor insensitive to temperature[J]. High Voltage engineering, 2009,35(09): 2133.
[19] 刘慧芳,王汉玉,王洁,等.精密辞职伸缩致动器的动态非线性多场耦合建模[J].光学精密工程,2016,24(05):1128.
LIU Huifang, WANG Hanyu, WANG Jie,et al. Modeling of dynamic nonlinear multifield coupling for precision magnetostrictive actuator[J]. Optics and Precision Engineering, 2016,24(05):1128.
(编辑:贾志超)