APP下载

恒流环境下锂离子电池热参数估计

2019-07-22陈英杰杨耕刘旭

电机与控制学报 2019年6期
关键词:参数估计内阻锂离子电池

陈英杰 杨耕 刘旭

关键词:锂离子电池;热模型;参数估计;内阻;开路电压;热容;换热系数

DOI:10.15938/j.emc.2019.06.000

中图分类号文献标志码:A 文章编号:1007 -449X(2019)06 -0000 -00

Abstract:Internal resistance(R), open circuit voltage(Uocv), heat capacity(mCH) and heat transfer coefficient(k) are key parameters of lithiumion battery thermal model based on simplified Bernardi equation. R and Uocv are nonlinear functions of state of charge(SOC), current(I) and battery temperature(Tbat) and mCH and k are constants. Since the hidden battery properties behind these parameters are different, existing estimation methods usually conduct different tests to excite corresponding properties respectively, resulting in massive test time and labor. This paper proposes a thermal parameters estimation method only consisting of constant current tests and corresponding data dealing procedures. The constant current tests are conducted under various ambient temperatures to provide necessary data within short test time. The battery mechanism based data dealing procedures consider the parameters nonlinear characteristics and solve the SOC and Tbat coupling variation problem. Compared with existing method, the proposed method can provide accurate R(SOC,I,Tbat), Uocv(SOC,Tbat), mCH and k estimation results simultaneously within short test time, thus more engineering applicable. Test results have verified the advantages.

Keywords:lithiumion batteries; thermal model; parameter estimation; internal resistance; open circuit voltage; heat capacity; heat transfer coefficient

0 引 言

鋰离子电池的功率和能量输出能力[1]、老化速率[2]、安全性[3]等指标均与电池温度(Tbat)密切相关。而在电池工作过程中,电池不断产热/吸热,并与周围环境发生热交换,Tbat不断变化,需要热模型描述Tbat的变化规律,并依此进行热管理工作。本文的目的即在于提出一种简便的热模型参数估计方法。

4 结 论

本文提出了一种仅仅基于恒电流实验的估计锂离子电池的热模型参数的工程性方法。模型参数有:开路电压Uocv(SOC,Tbat)、直流内阻R(SOC,I,Tbat)和mCH、k。

方法的核心是一组含典型Tamb和典型恒流的实验设计和一套基于锂离子电池的电化学机理的模型参数估计算法。据此,方法解决了恒流放电过程中SOC与Tbat同时耦合变化以及U-I非线性关系等问题。由于本方法仅需要一组恒流实验以及相关数据处理算法,与需要进行多组实验分别估计上述参数的现有方法相比,方法的实验时间缩短了50%以上。同时,方法具有足够的精确度。实验验证了方法的上述特征。

目前,方法基于对电池各部分温度一致的假设。这一假设在大电流条件下对于一些结构的电池而言误差较为明显,因此还需进一步改进。

参 考 文 献:

[1] WAAG W, KBITZ S, SAUER D U. Experimental investigation of the lithiumion battery impedance characteristic at various conditions and aging states and its influence on the application[J]. Applied Energy, 2013, 102(2):885.

[2] BIOOM I, COLE B W, SOHN J J, et al. An accelerated calendar and cycle life study of Liion cells [J]. Journal of Power Sources, 2001, 101(2):238.

[3] LU L, HAN X, LI J, et al. A review on the key issues for lithiumion battery management in electric vehicles [J]. Journal of Power Sources, 2013, 226(3):272.

[4] BEERNARDI, PAWLIKOWSKI, NEWMAN. A general energybalance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1).

[5] ONDA K, OHSHIMA T, NAKAYAMA M, et al. Thermal behavior of small lithiumion battery during rapid charge and discharge cycles [J]. Journal of Power Sources, 2006, 158(1):535.

[6] KIM U S, YI J, SHIN C B, et al. Modeling the dependence of the discharge behavior of a lithiumion battery on the environmental temperature[J]. Journal of the Electrochemical Society, 2011, 158(5):A611.

[7] GUO M, KIM G H, WHITE R E. A threedimensional multiphysicsmodel for a Liion battery [J]. Journal of Power Sources, 2013, 240:80.

[8] HALLAJ S A,PRAKASH J,SELMAN J R. Characterization of commercial Liion batteries using electrochemical calorimetric measurements [J]. Journal of Power Sources, 2000, 87(1):186.

[9] BANG H, HUI Y, YANG K S, et al. In situ studies of LixMn2O4 and LixAl0.17Mn1.83O3.97S0.03 cathode by IMC[J]. Journal of the Electrochemical Society, 2005, 152(2):A421.

[10] VAIDYANATHAN H, KELLY W H, RAO G. Heat dissipation in a lithium ion cell [J].Journal of Power Sources,2001,93(1-2):112-122.

[11] LIN R,NEWMAN J. Heatgeneration rate and general energy balance for insertion battery systems [J]. Journal of the Electrochemical Society, 1997, 144(8):2697.

[12] THOMAS K E, NEWMAN J. Thermal modeling of porous insertion electrodes[J]. Journal of the Electrochemical Society, 2003, 150: A176.

[13] BANDHAUER T M, GARIMELLA S, FULLER T F. A critical review of thermal issues in lithiumion batteries[J]. Journal of the Electrochemical Society, 2011, 158(3):R1.

[14] BARD, ALLEN J.Electrochemical methods: fundamentals and applications[M]. New York, USA: Wiley, 1980.

[15] BARAI A, WIDANAGE W D, MARCO J,et al. A study of the open circuit voltage characterization technique and hysteresis assessment of lithiumion cells[J]. Journal of Power Sources, 2015, 295:99-107.

[16] 何耀, 曹成榮, 刘新天,等. 基于可变温度模型的锂电池SOC估计方法[J]. 电机与控制学报, 2018, 22(1):43.

HE Yao, CAO Chengrong, LIU Xintian, et al. SOC estimation method for lithium battery based on variable temperature model[J]. Electric Machines & Control, 2018, 22(1):43.

[17] 何朕, 王广雄. 基于广义系统观测器的电池荷电状态估计[J]. 电机与控制学报, 2016, 20(1):94.

HE Zhen, WANG Guangxiong. Descriptor system observerbased stateofcharge estimation for batteries[J]. Electric Machines & Control, 2016, 20(1):94.

[18] ZHE Li, JUN Huang, BOR YANN LIAW, et al. On stateof charge determination for lithiumion batteries [J]. Journal of Power Sources, 2017, 348:281.

[19] USABC MANUALS.Battery test manual for electric vehicles, Revision 3[S]. U.S. Department of Energy, 2015.

[20] 何志超, 杨耕, 卢兰光, 等. 基于恒流外特性和SOC的电池直流内阻测试方法[J]. 清华大学学报(自然科学版),2015, 55(5): 532.

HE Zhichao, YANG Geng, LU Languang, et al. Battery DC internal resistance test method based on the constant current external characteristics and SOC [J]. Journal of Tsinghua University (Sci & Tech), 2015, 55(5):532.

[21] ZHANG J, HUANG J, LI Z, et al. Comparison and validation of methods for estimating heat generation rate of largeformat lithiumion batteries[J]. Journal of Thermal Analysis & Calorimetry, 2014, 117(1):447.

[22] 陈英杰, 杨耕, 祖海鹏, 等. 基于恒流实验的锂离子电池开路电压与内阻估计方法. 电工技术学报, 2018, 33(17): 3976.

CHEN Yingjie, YANG Geng, ZU Haipeng, et al. An open circuit voltage and internal resistance estimation method of lithiumion batteries with constant current tests[J].Transactions of China Electrotechnical society, 2018, 33(17): 3976.

[23] PATTIPATI B, BALASINGAM B,et al. Open circuit voltage characterization of lithiumion batteries[J]. Journal of Power Sources, 2014, 269:317.

[24] GRZEGORA PIATOWICZ, MARONGIU A, DRILLKENS J,et al. A critical overview of definitions and determination techniques of the internal resistance using lithiumion, leadacid, nickel metalhydride batteries and electrochemical doublelayer capacitors as examples[J]. Journal of Power Sources, 2015,296:365.

(編辑:贾志超)

猜你喜欢

参数估计内阻锂离子电池
基于参数组合估计的多元控制图的优化研究
探究测电源电动势和内阻的方法
基于部分相关的LFM脉冲全参数估计
浅谈死亡力函数的非参数估计方法
浅谈死亡力函数的非参数估计方法
“测定电池的电动势和内阻”复习课之八问
统计推断的研究
手机锂离子电池充电电路的设计与实现
伏安法测电源电动势和内阻的测量值与真实值
运用等效电源巧解题