APP下载

基于返排产水数据的页岩气井压裂效果评价方法

2019-07-18王妍妍王卫红胡小虎郭艳东

油气地质与采收率 2019年4期
关键词:控制流产水量产水

王妍妍 ,刘 华 ,王卫红 ,胡小虎 ,郭艳东 ,戴 城

(1.中国石化石油勘探开发研究院,北京100083;2.页岩油气富集机理与有效开发国家重点实验室,北京100083)

目前进行页岩气井压裂改造参数解释时多采用微地震监测[1]、压后评估[2-4]等技术,或以气井返排后的生产数据为对象[5]进行诊断分析。而气井压裂完成且尚未进行放喷排液时,改造缝网完全被压裂液而非气体充填,返排过程记录的产水数据必定包含了改造缝网特征信息,对这些数据的分析有助于在试采早期正确认识压裂改造效果,为下一步合理开发技术政策的制定、调整提供依据[6-7]。

中外学者已开始关注返排数据所隐含的裂缝信息。CRAFTON等提出利用早期返排数据计算裂缝导流能力的方法[8],但在渗透率等参数未知的情况下,不能计算裂缝孔隙体积;ABBASI等将生产过程分为3个阶段[9],针对第1个阶段建立规整化压力-物质平衡时间线性关系模型,但未考虑气体压缩性对返排过程中产液的影响,得到的裂缝体积往往偏大;CLARKSON 等假设地层中为单相[10]、两相[11-12]流动的情况下用产水量数据计算裂缝孔隙体积,该模型也没有考虑气体膨胀的影响;WATTENBARGER等采用数值技术模拟气水两相流动[13],给出了利用返排和产水数据计算裂缝参数的方法。除此之外,部分学者利用实验[14-15]或数值模拟方法[16]分析了气井返排过程中的微观流动规律,ZOLFAGHARI等提出利用组分模拟器进行盐离子浓度拟合来评价压裂缝网复杂程度的方法[17-18];张涛等采用商业模拟软件进行页岩气井压后返排动态模拟研究[19],分析页岩储层的特殊性对压裂液返排以及产能的影响,但这些多从渗流理论角度探索储层气水两相流动规律,不涉及返排产水的宏观特征代表的储层改造信息。

基于对气井返排阶段渗流规律的认识,在假设裂缝内流体流动为径向流和线性流的基础上,建立气井放喷排液阶段的水相渗流数学模型,并且考虑基质系统向裂缝系统供气对产水的影响,结合物质平衡方程和杜哈美原理求解渗流数学模型,分析产水量、井底压力变化规律。据此形成了利用双对数图版诊断、特征线分析确定有效裂缝体积及裂缝形状参数的方法,使其在返排或试采早期阶段评价压裂改造效果变得可行。

1 压裂液返排机理

1.1 压裂液返排特征

气井压裂完成之后会进行放喷排液。页岩气井返排率较低,中外统计得到的页岩气井返排率为10%~40%,其中深层页岩气井返排率相对较高。目前普遍认为未返排出来的压裂液有2种去向[20]:①由于毛管力作用渗吸进入直径较小的孔隙;②压裂完成后裂缝短时间内迅速闭合,导致压裂液滞留在孤立的裂缝中。这些空间由于充填压裂液而不能有效泄压,不能成为气体流动的通道,因而被称为无效孔隙空间或无效裂缝,显然其对气井产气没有贡献。可返排出的压裂液充填于改造形成的主裂缝或次生裂缝,即有效裂缝中,通过分析返排数据获得的即是有效裂缝信息,如裂缝体积。

压裂液返排开始后,有效裂缝中流体的流动过程如图1所示。早期,裂缝中可动流体为单相压裂液,处于非稳态流动阶段(图1a),由于裂缝渗透率较高,且现场早期数据记录精度不够,该阶段持续时间较短且很难监测到;中期,裂缝系统逐渐泄压,由于在不同级次裂缝中压裂液返排的时间及裂缝参数不同,可能有一部分裂缝中的压裂液仍处于非稳态流动阶段,而另一部分裂缝中的压裂液已进入边界控制流阶段(即气体开始突破进入裂缝)(图1b),该阶段属于过渡流阶段,动态响应特征规律性不明显;后期,所有缝内压力均传播至有效裂缝的边界,整个裂缝系统出现两相流动,由于毛管力作用,渗吸进入基质中的压裂液难以返排出来(图1c),此时对于单相压裂液来说,没有地层中的补给,流动将进入边界控制流阶段,由于所有级次的裂缝将出现统一的边界响应,因此该流动阶段规律性较强,易于识别。

图1 气井返排过程Fig.1 Flowback process for shale gas well

1.2 返排阶段气水两相流动规律

为定量认识返排及短期试采过程中气水两相流动规律,建立交叉型裂缝的数值模拟模型。模型基本参数包括:原始地层压力为38.2 MPa,储层温度为82℃,兰氏压力为6 MPa,兰氏体积为2.5 m3/t,岩石压缩系数为0.001 82 MPa-1,基质孔隙度为4.50%,裂缝孔隙度为0.45%,基质渗透率为0.000 1 mD,裂缝渗透率为5 mD,总含水量为380.8 m3。初始条件下裂缝网络水相饱和度设置为1。

放喷过程中裂缝内逐渐泄压,一段时间后基质中的气体进入裂缝。由裂缝内部距离井筒不同位置处含气饱和度变化(图2a)可以看出,对于页岩气井,返排期裂缝中的单相(压裂液)流动阶段持续时间很短,气体将很快突破进入两相流阶段,且距离井筒越近越早进入两相流阶段。当裂缝系统中均出现两相流时,对于水相由于基质中没有补给,流动规律显示出边界控制流特征并将伴随着气井生产持续很长时间。故在进行页岩气井产水数据分析时,需要重点研究水相边界控制流阶段的渗流规律。

图2 裂缝中不同位置处含气饱和度及进入产气控制阶段的时间(Fc=0.5 mD·m)Fig.2 Gas saturation of different points in fractures and the time entering gas control stage(Fc=0.5 mD·m)

ALKOUH等指出含气饱和度超过0.3时可认为裂缝系统进入产气控制阶段[20],此时气体膨胀能将成为驱替压裂液返排的主要能量来源,进入该阶段所需要的时间与裂缝导流能力(Fc)相关(图2b)。Fc为0.5 mD·m时,距离井筒100 m的位置在放喷7 d后已进入产气控制阶段;当Fc>0.2 mD·m时,与井筒距离小于100 m的位置均在20 d以内进入产气控制阶段。这表明在压裂液进入边界控制流阶段后,也将很容易进入产气控制阶段。因此在研究压裂液边界控制流阶段的渗流规律时,可以假设裂缝流动已进入产气控制阶段。

1.3 产气控制阶段水相物质平衡方程

由于没有能量补充,压裂液的返排完全依靠地层压力下降导致的流体体积膨胀和裂缝孔隙体积收缩释放的弹性能。整个有效裂缝孔隙体积内依靠岩石和液体的弹性能所排出的液体总体积,即水相物质平衡方程为:

由于开井后气体很快从基质进入裂缝系统,故分析产水数据时需考虑气体压缩性。分析综合压缩系数与气体压缩系数的关系(图3)也可看出,当Sg>0.3时,气体压缩系数占综合压缩系数的95%以上,意味着此时只考虑气体的压缩性即可满足现场的精度要求。压裂液进入边界控制流阶段后不久就进入产气控制阶段,因此:

图3 气体压缩系数与综合压缩系数的关系Fig.3 Relationship between gas compressibility and total compressibility

2 水相渗流数学模型

结合ABBASI模型理论[9],可假设裂缝内流体的流动为径向流或线性流,分别建立2种情况下的流动模型(图4)。当所有裂缝内水相流动均进入边界控制流阶段后,流动规律性明显,可建立该流动阶段的渗流数学模型以刻画水相流动特征。

2.1 径向流模型

若压裂改造形成的裂缝面近似为圆形,则裂缝内流体流动可看成是径向流,定产水量生产且进入边界控制流阶段后,裂缝中流体的渗流数学模型为:

根据面积加权平均法,得到圆形裂缝中平均裂缝压力的表达式为:

结合物质平衡方程,可得模型的解为:

2.2 线性流模型

若裂缝面为矩形,可假设裂缝中的流动为线性流,取裂缝一翼为分析对象,边界控制流阶段的压力分布可近似为:

图4 裂缝内压裂液流动模型Fig.4 Flow model of fracturing fluid in fracture

采用与径向流类似的解法,得到模型的解为:

2.3 变产量生产阶段模型求解

径向流和线性流模型推导的前提是气井返排阶段采用定产水量方式生产,但返排时多采用放喷方式生产,产水量不能保持恒定值。此时需要建立气井变产量生产且流动进入边界控制流阶段后的渗流数学模型。

对径向流和线性流模型压力解进行无因次处理,分别得到:

其中用到的无因次形式包括:

分析发现不管裂缝是哪种形态,无因次压力均可写为:

对(16)式进行拉普拉斯变换,再结合杜哈美原理,得到:

与压力变化规律不同,随着时间的推移,产水量呈指数递减。对于产水量进行积分得到累积产水量为:

同理,对于线性流,则:

从(21)和(22)式中可以看出,在放喷排液阶段虽然产水量不断变化,但在压裂液进入边界控制流阶段后,PNR—tmb关系曲线变为斜率为-1的直线段(双对数坐标),提取直线段数据做特征线分析,发现在常规坐标系中RNP—tmb曲线为一截距非负的直线段,利用直线段斜率可以求解有效裂缝体积:

若需要考虑多条裂缝,只需将(21)式中的qw换成总产量即可。另外由(19)和(20)式可以得出,利用直线段截距可以求取裂缝形状参数,类似采气指数,可将其定义为产水指数,其表达式为:

不论地层中气体的流动处于线性、双线性还是边界控制流阶段,产水数据一旦出现边界控制流响应,便可以利用(23)式求解裂缝有效体积。在此基础上如果已知裂缝面积,还可以分析平均裂缝宽度,反之亦然。

对于返排结束、正式进入试采阶段的气井,可以利用气井生产数据分析方法评价压裂改造效果,求取裂缝面积。根据BELLO双重介质板状模型理论[21],提取地层线性流阶段的数据,绘制产气量规整化压力(RNPg)与气体物质平衡时间(tmbg)关系曲线,二者满足直线关系,利用直线段的斜率mg可以求取基质-裂缝接触面积,其表达式为:

因此,将早期返排、后期生产2个阶段裂缝参数评价结果结合起来,可进一步获取裂缝参数,如平均裂缝宽度为:

3 模型验证

以所建立的数值模拟模型为例进行验证,分析PNR双对数曲线(图5)可知,进行规整化处理后,曲线后期出现斜率为-1的直线段,表明裂缝已经进入边界控制流阶段,对该阶段进行特征线分析(图6),求得直线段斜率为0.082,根据(23)式求得裂缝孔隙体积为393.4 m3,与模型设计值(380.8 m3)误差仅为3%,表明该方法计算结果可靠,可以进行有效裂缝控制体积计算。

图5 双对数流动阶段诊断Fig.5 Flow stage diagnosis curve in log-log coordinate

图6 特征线分析Fig.6 Characteristic line analysis

4 实例分析

以中国龙马溪组1口页岩气井的返排和生产数据为分析对象,进行裂缝特征的分析诊断。综合返排阶段和早期生产阶段的数据进行边界控制流的诊断,从图7可见,返排后期双对数曲线出现斜率为-1的直线段,表明此时裂缝产水已经进入边界控制流阶段,且之后生产阶段的数据也落在同一条直线上。但由于各种原因,现场返排早期的数据记录往往不准确甚至无记录,此时若只分析生产阶段的数据,曲线后期也出现斜率为-1的直线段,但该直线段偏离同时考虑返排和生产数据时对应的直线段。由于略去了返排阶段的累积产量,导致物质平衡时间计算结果偏小,曲线向左平移。特征直线分析发现忽略返排阶段数据求取的裂缝孔隙体积偏小。因此条件允许的情况下,应尽量记录返排阶段的数据。

图7 示例井返排产水数据分析Fig.7 Flowback water production data analysis for example well

求取裂缝孔隙体积为12 572 m3,该井生产560 d后累积产液量为8 380 m3,意味着此时采出水占可采出水量的67%,而该井总注入压裂液量为34 139 m3,产生的有效裂缝体积为总注入液量的37%,意味着注入的压裂液量有一部分漏失掉或由于裂缝闭合原因被圈闭在无效裂缝中,有近1/3的压裂液成功改造出连通性较好的有效裂缝。

该井返排结束、正式进入试采阶段后,利用气井生产数据分析方法评价压裂改造效果,求取裂缝面积为54.6×104m2,反求得到有效裂缝宽度为0.02 m,由于此时把改造区内的微裂缝体积也等效到了主裂缝中,故求取得到裂缝宽度是一个平均等效裂缝宽度。

5 结论

通过建立气井放喷排液阶段的水相渗流数学模型,得到气井产水量、井底压力变化规律,形成了利用双对数图版诊断、特征线分析确定压裂改造效果的方法。

返排阶段裂缝内逐渐泄压,当所有缝内压力传播到达有效裂缝体积的边界时,会出现边界响应。此时可以通过分析返排阶段的产水数据求解裂缝有效体积。

提取边界控制流阶段的数据做特征线分析,根据直线的斜率可以求解裂缝体积,直线与y轴的交点可以求取裂缝产水指数。若忽略返排阶段的数据,直接利用正式试气阶段的数据求解得到的裂缝体积会偏小。

符号解释

Fc——裂缝导流能力,mD·m;Bw——水的体积系数,近似为1;Wp——总放喷排液量,m3;Ct——裂缝和流体综合压缩系数,MPa-1;VEF——原始压裂液体积,即有效裂缝孔隙体积,m3;-p0——气井返排之前裂缝内平均压力,MPa;-pf——平均裂缝压力,MPa;Cf——岩石压缩系数,MPa-1;Sw——含水饱和度;Cw——水相压缩系数,MPa-1;Sg——含气饱和度;Cg——气体压缩系数,MPa-1;w——裂缝宽度,m;Re——圆形裂缝半径,m;h——储层厚度,m;xf——裂缝半长,m;r——径向距离,m;pf——裂缝压力,MPa;qw——产水量,m3/d;φf——裂缝孔隙度;μ——水相黏度,mPa·s;Kf——裂缝渗透率,mD;pwf——井底流压,MPa;Rw——井径,m;t——时间,d;x——沿裂缝延伸方向长度,m;qw1——单翼裂缝的产水量,m3;VEF1——单翼裂缝的体积,m3;下标D——无因次;M,N——中间变量,无因次;Qw——累积产水量,m3;tmb——物质平衡时间,即累积产水量与产水量比值,d;RNP——产水量规整化的压力,MPa/(m3/d);PNR——压力规整化的产水量,m3/(d·MPa);m——直线的斜率;PIW——产水指数,m3/(d·MPa);bpss——直线段截距;RNPg——产气量规整化压力,MPa/(m3/d);tmbg——气体物质平衡时间,即累积产气量与产气量比值,d;Acm——基质-裂缝接触面积,m2;T——储层温度,K;Km——基质渗透率,mD。

猜你喜欢

控制流产水量产水
基于INVEST 模型的资水流域产水量及其对环境响应的评估分析
赣江流域产水功能对土地利用变化的响应
抵御控制流分析的Python 程序混淆算法
基于返回地址签名的控制流攻击检测方法
附表3湖南省混合型饲料添加剂生产许可证企业名单(2020 年7 月1 日— 2020 年8 月31 日)
基于InVEST模型的阿克苏河流域产水量评估及环境因素影响研究
电混床在电厂锅炉补给水制备中的工程应用
基于控制流的盒图动态建模与测试
A case report of acupuncture of dysphagia caused by herpes zoster virus infection
基于Petri网数据流约束下的业务流程变化域分析