伊拉克BU油田碳酸盐岩储层沉积过程数值模拟
2019-07-18王鹏飞霍春亮叶小明刘卫林
王鹏飞,霍春亮,叶小明,刘卫林,徐 静
(中海石油(中国)有限公司天津分公司,天津300459)
伊拉克BU油田一直采用天然能量开发,随着开发的深入,天然能量衰竭严重,采出程度仅为6%左右[1],迫切需要注水开发,以确保地层压力平衡。为制定合理可行的注水方案,需对研究区不同沉积期次储层展布范围及演化规律进行更加详细地研究,确定优势储层发育带。为此,以BU油田Mishirif组段为重点研究层位,在前人相关认识的基础上[1-2],从段沉积控制因素及沉积演化规律入手,综合应用岩心、地震、测井及分析化验等资料,选取沉积过程控制因素的定量参数,对各沉积期次的储层沉积过程进行数值模拟,获得不同岩性储层在时间和空间上的演化特征,以期为BU油田注水方案编制提供地质依据,也为类似厚层碳酸盐岩储层勘探开发提供指导和借鉴。
1 区域地质概况
BU油田属于伊拉克米桑(Missan)油田群,位于伊拉克东南部米桑省,毗邻伊朗边界,西北距巴格达约350 km,南距巴士拉约175 km。区域构造位于扎格罗斯造山带和阿拉伯台地东部边缘的过渡带上,属于扎格罗斯构造低角度褶皱带,BU油田位于西背斜构造带,分为南、北2个高点,断层不发育[2]。Mishirif组段是油田重要储油层之一,地质储量占整个油田群的70%以上[1];沉积类型为碳酸盐岩台地,储层厚度大,平均厚度为80 m;依据生物碎屑含量将其岩性划分为颗粒灰岩、泥粒灰岩、粒泥灰岩、含粒泥晶灰岩和泥晶灰岩,根据岩性和电性特征,垂向上由上到下可以划分为Ⅰ—Ⅵ共6个小层;沉积能量整体呈增高的趋势,但在Ⅴ小层和Ⅲ小层发育2个短时高能沉积带,因此,形成了高低能量交替的沉积环境。处于高能沉积环境的Ⅰ,Ⅲ和Ⅴ小层以颗粒灰岩和泥粒灰岩为主,其中Ⅰ小层储层厚度最大,平均为15 m,是油田主力产层;处于低能沉积环境的Ⅱ,Ⅳ和Ⅵ小层以泥晶灰岩、含粒泥晶灰岩和粒泥灰岩为主,其中Ⅵ小层储层厚度最大,平均为25 m。储集空间类型包括原生粒间孔、铸模孔、次生粒间溶孔、基质微孔及少量溶蚀孔洞和微裂缝。受沉积和成岩作用影响,储层非均质性较强,孔隙度和渗透率变化范围较大;其中孔隙度为1.4%~29.7%,平均为17.2%,渗透率为0.2~3 212 mD,平均为16.2 mD;Ⅰ小层为高孔高渗透储层,其余均为中孔中渗透储层。
2 沉积过程数值模拟
2.1 技术流程
沉积过程数值模拟技术已在中外油田取得了一些应用成果,证明其是可行的[3-6]。但对于碳酸盐岩储层的沉积过程模拟实例较少,本次研究依据BU油田的地震、测井、岩心和分析化验等资料,分析可容空间和碳酸盐岩产率对沉积过程数值模拟的控制作用。其中可容空间用古水深、地层沉降和海平面升降表征;碳酸盐岩产率用产率随沉积时间、深度和波浪的变化表征。由于难以获得准确的关键参数,因此,以单井地层厚度和岩性拟合程度为标准,通过优化参数,进行多次模拟实验,直至得出较为合理的沉积数值模型,分析碳酸盐岩台地沉积演化特征,具体技术流程如图1所示。
图1 沉积过程数值模拟技术流程Fig.1 Technical flow chart of numerical simulation results of reservoir sedimentary process of
2.2 沉积数值模型建立
依据上述技术流程,开展BU油田碳酸盐岩储层沉积过程数值模拟。建立的沉积数值模型长度为36.6 km,宽度为14.4 km,面积为527.04 km2,平面网格间距为0.2 km。模拟目的层为段,储层平均厚度为80 m,沉积时间为距今96~90 Ma,总沉积时长为6 Ma,时间步长为0.1 Ma,岩性设置为颗粒灰岩、泥粒灰岩、粒泥灰岩、含粒泥晶灰岩和泥晶灰岩5种。
2.3 沉积过程控制参数分析
可容空间变化、碳酸盐岩产率是影响碳酸盐岩沉积的主控因素[7-9],因此这2个因素是沉积过程数值模拟的关键参数。基于沉积背景、古生物和岩心分析化验资料,通过井震结合定量化表征关键参数的初始值。
2.3.1 可容空间变化
可容空间是指沉积物表面与基准面之间可供潜在沉积物充填的空间,由早期未被充填遗留下来的古地形和后期形成的沉积地层组成,并随地质年代发生变化。早期遗留下来的古地形为初始可容空间,由基底初始水深决定,古地貌越低,基底初始水体越深,初始可容空间越大;反之,古地貌越高,基底初始水体越浅,初始可容空间越小。沉积过程中可容空间的变化是形成地层沉积的基础,受控于基底沉降与基准面的变化。基底沉降可由现今地层厚度与水深变化来反推,基准面的变化用海平面升降曲线来表征,二者的综合即为可容空间的总变化。
由研究区古生物和沉积环境资料可知,研究区碳酸盐岩储层沉积时期的水深为0~50 m。以地震解释层位和井点分层为硬数据,建立研究区三维构造模型,对该模型进行褶皱恢复和去压实作用,恢复研究区古地貌,确定碳酸盐岩形成的初始地形。综合古生物和古地形分析,获得初始水深平面分布图(图2),确定初始可容空间。沉积过程中水深的变化幅度远小于地层厚度,因此,水深变化对可容空间的影响可以忽略。用MB21段的地层厚度与沉积时间的比值来表征基底沉降速率,平均沉降速率为14.3 m/Ma,最大沉降速率为22.7 m/Ma,最小沉降速率为7.3 m/Ma。由岩性旋回变化规律和古生物分布特征可知,底部Ⅵ小层以泥晶灰岩和含粒泥晶灰岩为主,顶部Ⅰ小层以颗粒灰岩为主,因此,从距今96~90 Ma,海平面整体是一个由深变浅的过程,在中间有2期短暂的旋回变化,岩性以颗粒灰岩、泥粒灰岩和粒泥灰岩为主。由BU-3井的单井岩性解释结果和沉积厚度变化可得BU油田MB21段相对海平面变化曲线。
图2 BU油田初始水深平面分布Fig.2 Map of initial water depth of BU Oilfield
表1 BU油田不同岩性产率随沉积时间的变化特征Table1 Variation of productivity with time for different lithology in BU Oilfield
2.3.2 碳酸盐岩产率
碳酸盐岩在孤立台地上生长,其产率受沉积时间、水深、波浪改造作用共同影响。不同的沉积环境形成不同的沉积产物。通过薄片鉴定识别出岩性,标定测井曲线,并与自然伽马、中子、密度曲线相结合,采用神经网络算法,进行单井岩性划分[10]。通过统计实钻井点各小层不同岩性含量来表征沉积时期每种岩性的产率。按沉积时间单元统计各井点岩性含量与沉积时间的比值来定义各岩性随沉积时间变化的产率(表1)。同时,从单井沉积旋回划分结果来看,水体越浅,越容易沉积颗粒灰岩等高能粗粒物质;水体越深,越容易沉积泥晶灰岩等低能细粒物质,因此,可以定义岩性随水深的变化,即从水深为0~50 m,每10 m范围内,由深到浅发育的沉积岩性依次为颗粒灰岩、泥粒灰岩、粒泥灰岩、含粒泥晶灰岩和泥晶灰岩。波浪改造作用包括波浪深度、角度及频率,不同的波浪改造作用对碳酸盐岩建造的影响不同,由岩性划分结果可见,研究区台地四周均有颗粒灰岩发育,说明在每个方向均受到波浪能量的改造,因此,波浪角度分别定义为45°,135°,225°,315°,波浪改造作用深度范围定义为5~20 m,碳酸盐岩台地呈ES—WN向延伸,其产率较高。
表2 BU油田模拟地层厚度与实钻井地层厚度对比Table2 Comparison of simulated formation thickness with drilled data of BU Oilfield
2.4 模拟结果分析
采用法国石油研究院研发的Dionisos软件开展沉积过程数值模拟。沉积过程是复杂的,获取的资料具有不完备性,模拟结果必然会存在一定的不确定性,因此,需要对模拟结果进行优选,重点检查模拟结果与实际地层厚度及岩性之间的关系。检查各沉积单元单井模拟地层厚度与实钻地层厚度的误差,当与局部井点误差较大时,对模拟地层沉降进行微调,直到与实钻井地层厚度误差控制在10%以内(表2),当进行大幅度调整时,需检查地层对比结果的等时性。当模拟结果与实钻井岩性有较大差异时,调整不同水深岩性发育及其产率,同时,考虑波浪能量的方向与大小,波浪能量作用较强的部位,颗粒灰岩发育,反之泥晶灰岩发育。
从模拟结果(图3)来看,Ⅰ,Ⅲ和Ⅴ小层主要发育颗粒灰岩和泥粒灰岩,Ⅱ,Ⅳ和Ⅵ小层主要发育含粒泥晶灰岩和泥晶灰岩,与实钻井岩性基本一致。用模拟结果定义沉积相,BU油田高部位发育生物礁,周缘发育碎屑滩,其中碎屑滩分为滩核、滩缘和开阔海。模拟结果还可以表征储层的非均质性,不同沉积时期岩性具有差异。对模拟结果做等时切片(图4),可以看出不同沉积时期沉积物的建造过程。从下向上依次为:第1期(距今96~94 Ma),沉积时期水体较深时,生物礁不发育,以开阔海为主;第2期(距今94~93.8 Ma),水体短时间下降,礁体发育,在高部位形成生物礁,周缘发育小范围滩体;第3期(距今93.8~93.1 Ma),水体上升,生物礁被淹没,仅在局部高点发育生物礁,大面积发育开阔海;第4期(距今93.1~92.5 Ma),水体下降明显,大面积发育生物礁和滩体,第5期(距今92.5~91.2 Ma),水体缓慢上升,礁体分布范围缩小,伴有周缘滩体和开阔海大面积发育;第6期(距今91.2~90 Ma),水体大幅下降,生物礁大面积发育,开阔海不发育,是最好的储层形成时期。
图3 BU油田模拟结果与实钻井岩性划分对比Fig.3 Comparison of simulated lithology with drilled data of BU Oilfield
图4 BU油田储层沉积过程数值模拟结果Fig.4 Numerical simulation results of reservoir sedimentary process of BU Oilfield
3 模拟结果应用
三维地质建模是利用随机模拟算法对储层分布进行预测,已在中外众多油田获得良好的应用效果,其关键是等时约束建模和成因控制建模[11-16]。因此,以沉积过程数值模拟结果作为地质建模的约束条件,是一种新的建模思路。将模拟结果按沉积时间做切片,输出颗粒灰岩概率分布体,对每个时间切片所反映的颗粒灰岩概率分布在三维地质模型中进行赋值,并建立颗粒灰岩三维地质模型,以该模型为约束条件,以井点解释的颗粒灰岩含量数据为基础数据建立岩相概率分布模型(图5)。在此基础上,采用相控建模的策略,运用序贯高斯随机模拟算法,进行孔隙度和渗透率模型的建立,这种建模方法既遵循地质统计学原理,又符合沉积储层分布规律。根据该研究成果,BU油田注水开发方案采用底注顶采的模式,由于底部相对致密的泥晶灰岩发育高角度微裂缝,在纵向上沟通储层,当底部注水时,水沿着微裂缝向上流动,可将顶部颗粒灰岩中的油驱出,该油田已完成4口井方案实施,恢复了地层压力,缓解了局部压力亏空现象,在剩余油富集区,日产油量能力增幅近50%,达0.38×104m3/d,BU油田整体日产油能力提高近19%,达0.94×104m3/d。
4 结论
本文提出了一种基于沉积过程的碳酸盐岩储层模拟方法,用该方法获取的模拟结果作为约束条件,与序贯高斯随机模拟算法相结合,进行三维地质模型的建立,可以得到既符合沉积规律又遵循地质统计学特征的岩相模型。对碳酸盐岩台地沉积影响因素进行分析,认为可容纳空间变化、碳酸盐岩产率等环境参数对储层分布范围的影响较大。沉积过程数值模拟可以为储层分布提供预测模型,在少井及地震资料分辨率受限的情况下,可以提供定量地质模型。