APP下载

黔北龙潭组菱铁质泥岩解吸气来源及元素背景

2019-07-11徐宏杰桑树勋杨景芬周效志刘会虎

煤炭学报 2019年6期
关键词:铁质气量泥岩

徐宏杰,桑树勋,杨景芬,金 军,周效志,高 为,刘会虎

(1.安徽理工大学 地球与环境学院,安徽 淮南 232001; 2.中国矿业大学 资源与地球科学学院,江苏 徐州 221008; 3.贵州省煤层气页岩气工程技术研究中心,贵州 贵阳 550008)

煤系菱铁质泥岩在煤系地层中较为常见,早期研究目的主要用于煤层对比或菱铁矿床[1-4]。近几年在煤层气和煤系气勘探开发进程中,发现多煤层地区菱铁质泥岩可能具有分划性阻隔作用而成为含气系统边界并制约煤层气排采效果[5]。主要研究点集中于菱铁质泥岩的测井识别、层序界面响应、沉积成因等[5-7]。铁离子存在具有催化生烃作用,有利于有机质富集[8-9]。然而,煤系菱铁质泥岩因其致密、低孔低渗和高突破压力仅被作为隔水阻气层认识,但煤系菱铁质泥岩本身是否具有含气性、含气性如何,与矿物成分、储层物性、沉积元素背景有何关系、能否作为非常规天然气储层而成为煤层气开发辅助气源等鲜见报道。为此,笔者以黔北林华井田LC-1井为例,通过对该井煤系泥页岩钻井段取样,系统分析了菱铁质泥岩解吸气量、解吸气来源与储层矿物成分和物性关系,并建立了其与元素地球化学背景联系,为全面研究菱铁质泥岩性质与作用提供地质依据。

1 地质背景

林华井田位于金沙—黔西向斜北西翼(图1),区域构造经历了多期构造变形,东吴运动造成了整个贵州省的隆起和抬升,大面积的海水退却形成了宽阔的剥蚀残积平原,到晚二叠世早期形成了断陷—前陆沉积盆地。自中二叠世隆起成陆,长期遭受风化剥蚀,形成了龙潭组海陆过渡相含煤岩系。龙潭组在层序上可以分为3个3级旋回层序。第1旋回以潟湖沉积为主,第2旋回以潮控三角洲沉积为主,第3旋回以泻湖沉积为主[10]。

林华井组自上而下钻遇第四系、三叠系下统茅草铺组、夜郎组玉龙山段、二叠系上统长兴组和龙潭组、二叠系下统茅口组。龙潭组整体为一套泥页岩、粉砂岩、粉砂质泥岩及若干煤层叠置互层的地层体系。沉积泥页岩有机质类型主要为Ⅲ型,TOC含量变化较大,在0.90%~2.71%;S1+S2值在0.09~0.21 mg/g。煤与泥页岩的RO值均大于3.0%,为过成熟阶段。

2 样品采集与测试方法

样品均采自于LC-1井龙潭组泥页岩样品(图1)。样品采用密封罐密封,气体解吸方法执行《煤层气含量测定方法》(GB/T19559—2008)。高压汞注入实验采用AutoPore IV 9500全自动压汞仪测试,最大压力414 MPa。低温N2和CO2孔隙测试由TraStar Ⅱ 3020比表面积仪完成。矿物成分使用仪器为D/max-2500,TTR,执行《沉积岩中黏土矿物和常见非黏土矿物X射线衍射分析方法》(SY/T 5163—2010)标准;有机碳测定采用ROCK-EVAL6分析仪,基于GB/T 18602—2012标准;碳同位素测定使用仪器为Finngan MAT-252,采用《有机物和碳酸盐岩碳、氧同位素分析方法》(SY/T5238—2008)标准;显微组分鉴定基于《透射光-荧光干酪根显微组分鉴定及类型划分方法》(SY/T 5125—1996)标准,使用仪器为Axiophot型透光—荧光高级生物显微镜。微量元素分析采用ELEMENT XR 等离子体质谱仪,测试方法和依据为《硅酸盐岩石化学分析方法 第30部分:44个元素量测定》(GB/T 14506.30—2010)。

3 解吸气含量及其来源

3.1 测井与录井解释

泥页岩因富含有机质,其测井响应与常规砂岩存在不同。气测录井可以随钻分析,初步判断气层。基于测井与录井结果,获得龙潭组整段含气层气测曲线(图2)。结果显示剖面层段含气有非均质。X4-0井在2煤和4煤之间、近11煤下部和15煤之上有较高含气峰;而X4-1井在5煤和9煤之下、10煤至13煤之间及近13煤下部含气峰较为突出。

图2 龙潭组不同层段泥页岩含气性显示Fig.2 Gas content of mudstone in different stratain Longtan Formation

3.2 现场解吸气量

岩芯样品现场解吸气量介于0.08~7.79 m3/t,平均1.60 m3/t(图3)。在中部800~900 m达到峰值,达7.79 m3/t。埋深段888.45~888.80 m和892.40~892.65 m分别为4号煤层的夹层和底板,均为深黑色泥岩。仅有靠近煤层的两个样品解吸气量在3 m3/t以上,约56%的样品解吸量大于0.5 m3/t,在不包含损失气量恢复的情况下部分层段达到工业开采标准下限[12]。测试页岩整体解吸气量远低于黔西龙潭组西页1井(解吸气量:1.24~9.42 m3/t,平均6.65 m3/t)[13],但接近于金沙参1井(总含气量:2.30~4.21 m3/t,平均2.93 m3/t)[14],落入中国南方海陆过渡相页岩含气量范围内(含气量:1.24~9.42 m3/t)[13]。解吸气组分含量以CH4为主,含有较少量的C2H6和CO2,部分样品含有N2(图4)。其中,CH4组分含量变化于59.58%~98.99%,平均90.71%;C2H6组分含量变化于0.10%~1.49%,平均为0.54%;CO2组分含量变化于0.21%~12.59%,平均3.58%。仅有868.00~868.14 m岩芯段样品N2成分含量为38.62%(无空气基组分含量,下同),936.57~936.77 m岩芯段N2成分含量为15.97%;其余样品N2含量均7%以下。

图3 不同层段现场解吸量随深度变化Fig.3 Desorbed gas content varies with burial depth

图4 解吸气成分随深度变化Fig.4 Component of desorbed gas varies with burial depth

图5 不同深度岩芯段矿物成分含量Fig.5 Mineral composition of core samples varies with depth

3.3 矿物成分

测试样品矿物组成中黏土矿物含量介于19.0%~58.8%,平均35.0%(图5),远低于龙马溪组页岩(平均53.49%)[15],但与筇竹寺组相当(<40%)[16-17];石英含量相对较低,介于7.6%~21.5%,平均15.7%。样品除883.45~883.60 m岩芯层段外,其余样品均不同程度含菱铁矿,含量介于7.6%~64.6%,平均38.1%;在约900 m层段(5煤和7煤之间)和15煤之上达最大值,超过40%。除934.70~934.85 m层段外,其余样品均含有白云石,以883.45~883.60 m层段含量最高,介于1.4%~33.0%,平均9.5%。此外,样品还不同程度含有锐钛矿、黄铁矿和钠长石等。

3.4 解吸气来源

页岩气储层的孔隙为气体提供容储空间,其发育程度对含气量有重要影响[18]。由图6可知,所有样品的累计进汞量均不大,在0.025 mL/g以下;其中,901.80~901.95,97.30~907.40和931.65~931.80 m岩芯样品均显示极低进汞量,同时958.20~958.30 m岩样进汞量仅超过0.005 mL/g,且显示几乎没有退汞;意味着这些岩样孔隙度极低致使汞不能较多进入,汞大量残留。因此,高压汞测试注入未能完全反映样品内部孔隙结构。需要注意的是,这些岩芯段样品具有高的菱铁矿含量(图5)。

图6 不同深度岩芯段压汞曲线对比Fig.6 Hg intrusion curves of core samples

解吸气含量与总BET比表面和孔体积均呈高度负相关关系(图7),表明解吸气可能并非来源于微小孔隙内表面的吸附态气体。赋气孔隙由有机质和无机矿物质提供,但石英与黏土矿物含量均与解吸气量呈一定程度负相关(图8(a)),证实石英和黏土矿物可能提供少量存储空间和供气来源。解吸气量与总有机碳含量正相关(图8(b)),表明有机质是解吸气的主要物质来源。但解吸气存储空间并非由介孔和微孔提供。

图7 解吸气量与孔隙参数关系Fig.7 Relationship of desorbed gas and pore parameters

存储空间可能来源有以下2个方面:① 样品提供的解吸气并不是吸附气,而是游离气。游离气含量可占页岩气总含量40%~60%[19],游离气可能占据了部分基质孔隙、割理或裂隙系统,而无法被低温液氮和CO2注入吸附探测[20]。浅部,游离气的贡献相对较小;但随深度增加,游离气所占总含气量的比例会随之增大。但这种可能性较小,因为岩芯在近900 m深度的提升过程中,必然会致使绝大部分游离气丧失。如果这种可能性存在,则菱铁质泥岩的总含气量将远远大于测定解吸气量。② 有机物质不仅是生烃源,且是储气空间。孔隙定量表征并不能区分存储空间的物质性,气体可能仍然存储在有机质微孔隙中。

图8 解吸量与矿物质、有机碳和菱铁矿含量关系Fig.8 Relationship of desorbed gas and minerals,organic carbon and siderite

进一步发现,样品菱铁矿含量与解吸气量正相关(图8(c))。然而,含菱铁矿泥岩及粉细砂岩具有低孔和低渗特征[5],且菱铁矿含量与比表面积并无正相关性(图9)。因此,菱铁矿自身发育的晶间孔不足以提供解吸气所赋存的容储空间。但菱铁矿与其他矿物质杂乱分布形成的粒间孔可能提供吸气赋存所需的吸附内表面基础,而该部分内比表面并没有被孔隙测试手段单独探测。菱铁矿产出状态包括结核状、透镜状及细分散状等形式,在粉砂质泥岩中常以细小条带分布在沉积有机质周围且围岩层理连续性保存完好(图10(a))[5]。这种产出状态可视为菱铁矿对有机质的包围,菱铁矿的低孔渗特征使其成为泥岩内部“微圈闭”环境(图10(b)),形成对有机质内烃类气体的有效封堵。烃类气体在成岩阶段不断生成但仅被局限在有机质分布范围内,并可能进一步发展为超压(高演化阶段有机质较少发育孔隙)。随泥岩内部菱铁矿含量增多,“微圈闭”数量增加,封闭气体量也随之增大。此外,菱铁矿的似层状、葡萄状、透镜状或结核状分布并胶结均能与有机质形成清晰接触界线,形成其他更多圈闭形式(图10(c),(d))。

图9 菱铁矿含量与比表面积、孔体积关系Fig.9 Relationship of siderite and surface area,pore volume

综上所述,解吸气主要来源于分散有机质,靠近煤层附近菱铁质泥岩含气量较高与沉积环境过渡有关。解吸气赋存状态和空间小概率为割理裂隙系统的游离气或黄铁矿与其他矿物质形成粒间孔隙赋存的吸附气,较大可能是以微圈闭形式赋存于有机质内部孔隙的吸附气。菱铁矿形成内部微圈闭致包围有机质形成“微圈闭”可能是解吸气量与菱铁矿高度正相关的主要原因。需要进一步指出的是,测试独立煤层含气量可达邻近泥岩含气量的2~10倍,暗示菱铁矿层的分划性阻气作用不仅使层序界面附近煤层含气量相对升高和各含气系统相对独立[5],而且菱铁质泥岩层自身的致密低渗使煤层与菱铁质泥岩之间可能缺少气体的运移与交换,即菱铁质泥岩层可具有独立的“微含气系统”。

图10 菱铁矿产出形态及其及微圈闭形式((a)来源于文献[5])Fig.10 Morphology of siderite and its micro-trap state ((a) modified from[5])

4 菱铁质泥岩元素地球化学背景

采用元素地球化学指标对沉积背景、物源方向、构造背景等研究已被广泛应用[21]。页岩含气性是有机质富集生烃、储集和保存等综合影响的结果,受有机质输入与供给、有机质保存受沉积底水环境、沉积速率、古气候、陆源碎屑含量等因素综合影响。依据微量元素和稀土元素含量及其相关比值,界定含气菱铁质泥岩沉积与赋存,对储层物性及其影响下的含气性有重要意义。

测试样品元素参数见表1。测试样品总稀土元素含量(∑REE)为146.87~380.61 μg/g,平均233.59 μg/g,高于北美页岩(193.18 μg/g)[22],稀土元素总含量相对富集。轻重元素比值(LREE/HREE)为5.90~10.37,平均6.17,低于北美页岩(7.83)[22]。

表1 测试岩芯样品计算元素参数Table 1 Trace elements parameters of core samples

注:∑REE=LREE+HREE;LREE=La+Ce+Pr+Nd+Sm+Eu;HREE=Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu;L/H=LREE/HREE;δEu=EuN/(SmN×GdN)1/2;δCe=CeN/(LaN×PrN)1/2;Ceanom=lg[3CeN/(2 LaN+NdN)1/2];下标N代表北美页岩标准化;北美页岩组合样(NASC)的稀土含量数据来源于文献[26]。

研究剖面菱铁质泥岩样品V/(V+Ni)值为0.63~0.86,平均0.77,指示缺氧-静海环境[23]。静海环境主要表现在剖面下方和剖面顶部(水体较深)。样品V/Cr值介于0.86~2.55,平均1.91,为含氧至贫氧环境的交替变化[24]。KIMURA等认为海洋的缺氧可造成V/Sc值增大,可以反映氧化还原条件[25]。V/Sc<9.1为含氧环境,V/Sc>9.1为缺氧、贫氧环境。样品V/Cr值介于8.1~11.0,平均9.12。剖面顶、底部样品指示缺氧—贫氧条件,中部为含氧条件。此外,δEu值均显示富集(应是还原条件下Eu3+转变为Eu2+所致,母岩为沉积岩),δCe值均显示亏损,Ceanom均大于0.1,均指示了缺氧还原环境。

结合黔西沉积海水进退和沉积环境发展过程[27,-28],研究区15号煤之后海水活动加强,到B4灰岩形成海进事件之后,至13煤附近海水迅速退却,河流作用加强;11煤之后再次发生缓慢海进,直至B1灰岩形成,形成不利成煤环境。期间,发生规模海进,如B3灰岩段。值得注意的是,稀土元素δCe值、V/(V+Ni)值、Sr/Ba值、V/Sc值由底至顶整体呈先减小后增大规律(图11),反映早期海退和晚期海进过程,并与区域内海进事件对应[27]。其中,V/(V+Ni)值、V/Cr值、V/Sc值、δCe值和Ceanom值分别在底部958.20~958.30 m和顶部883.45~883.60 m出现近极值(表1),代表了2次海进事件之下的最大覆水深度。菱铁矿、有机质和解吸气含量由底至顶呈减小—增大—减小趋势。3者在底部至中部的先减小再增大与海水退却—河流作用加强—海水再进入过程基本一致。图12反映δ13C值与TOC含量具有较好负相关趋势,表明趋陆相植物更不利于提供低含量(低品质)有机质。

剖面由中部至顶底3者含量呈现由高至底变化,代表了海水深度加深、还原条件增强致菱铁矿趋于较少形成,有机物源较远,有机质含量逐渐降低,解吸气含量减小,形成与缓慢海进相反的变化趋势。

菱铁矿形成于早期成岩阶段[5],泥砂沉积物在压实作用中随埋深增加还原性逐渐增强。砂粒间隙水携带未及时沉淀的部分可溶性含铁矿物,伴随有机质分解产生的CO2和还原性气体的加入,使含铁矿物被还原为菱铁矿是其成因机理[2]。菱铁矿形成的氧化电位(Eh)可以在-0.3~0.2,pH介于7.0~7.8;白云石沉淀一般要求pH>7.8,对Eh值没有特殊要求[2]。因此,pH值应满足在7.8左右条件,才能使菱铁矿与白云石发生共沉积。由此可见,不论是菱铁矿的单独出现还是与白云石的共同出现,要求应是在低Eh值、pH值约等于8且水循环严格受限的环境。研究区古地理特征表明,菱铁质泥岩沉积的龙潭组形成时为一典型的潮坪—泻湖环境[14]。岩芯岩性组合与微量元素指标也佐证了这一结果。

图11 海水进退下的元素与菱铁矿、有机质和解析气含量变化关系Fig.11 Relationship between trace elements and siderite,organic carbon and desorbed gas varying with depth

图12 TOC含量与δ13C值关系Fig.12 Relationship between organic carbon and δ13C

稀土元素∑REE-La/Yb图解显示所有样品全部落入沉积岩区域(图13,底图来源于文献[29]),反映稀土元素的主要物质来源为陆源碎屑。样品δ13C值介于-24.4‰~-23.5‰,进一步揭示碳源主要来自于陆源沉积有机质的降解。但邻区菱铁质泥岩δ13C值变化于-8.55‰~-0.85‰[2],高于测试样品有机质δ13C值,表明存在其他因素的加入,可能是来自有机质与正常海水(0‰)碳同位素的混合。Sr/Cu比值介于1.35~5.47,平均2.87,证实了当时温暖潮湿的古气候环境[30],对高等植物生长和喜氧微生物繁盛,并进一步为菱铁矿形成创造了合适地质背景。成岩阶段,砂粒间隙水代入的高价铁溶液与已经沉淀的分散有机质的反应,创造了菱铁矿生成的有利条件。陆源有机质分解产生的还原性气体CO2的适时加入还原高价铁而形成菱铁矿,从而在有机质上方形成菱铁矿“微圈闭”封闭条件。后期残余有机质逐渐生烃,但因菱铁矿致密而使烃类气体难以突破盖层圈闭条件而原地吸附聚集,进而对菱铁矿泥岩含气性起到直接控制作用。

图13 稀土元素∑REE-La/Yb图解Fig.13 ∑REE-La/Yb diagram

5 结 论

(1)黔西LC-1井龙潭组测井解释部分层段含气峰突出,泥岩解吸气量介于0.08~7.79 m3/t,平均1.60 m3/t;解吸气以CH4为主,含有较少量的C2H6和CO2。解吸气量与总孔体积、比表面积、石英和黏土矿物质含量均呈显著负相关,但与有机碳含量、菱铁矿含量正相关。

(2)解吸气主要来源于泥岩分散有机质,不是煤层烃类气体的近距离运移。有机质呈分散带状分布,菱铁矿以细小条带包围有机质,形成多种形式“微圈闭”,使烃类气体在有机质中得以保存。高演化阶段泥岩有机质可能使烃类气体在“微圈闭”中形成超压,菱铁泥岩层可具有独立“微含气系统”。

(3)研究区龙潭组菱铁质泥岩沉积于潮坪泻湖环境。指示性元素比值随海平面升降由底至顶先降后升,解吸气量、菱铁矿含量和有机碳含量随之规律性变化。砂粒间隙水代入高价铁溶液与有机质还原生成的还原性气体反应,生成烃类气体并被“微圈闭”封闭而原地吸附聚集,进而对菱铁质泥岩解吸气起控制作用。

猜你喜欢

铁质气量泥岩
泥岩路基填料抗剪性能实验研究
不同pH条件下红层泥岩崩解特性研究
做人要有气量,交友要有雅量
胜利油田垦119区块塑性泥岩钻井模式研究
气量可以学习吗
风化泥岩地质断层水疏排工艺探讨
王旦的气量
甜甜的柿子
气量三层次
龙眼肉补血