某高速公路多级边坡稳定性分析
2019-06-25
(河北省高速公路石黄管理处,河北 石家庄 050006)
0 引言
随着我国经济快速发展,高速建设步伐日益加快。在高速公路建设过程中,经常遇到边坡滑塌的情况,为了保障建设和运行安全,需对边坡稳定性进行评估。对于边坡稳定性分析问题,诸多学者进行了很多有价值的探讨和总结。边坡稳定性研究经历了由经验到理论、由定性到定量、由单一到综合评价、由传统方法到新理论、新技术的发展过程,取得了大量的研究成果。总体来说边坡稳定性计算方法主要包括极限平衡法、模型试验法、极限分析法、数值模拟法以及依据概率理论基础上发展起来的各类模糊分析等方法[1]。孙超伟等[2]采用 Hoek-Brown 有限元强度折减法,提出一套求解 Hoek-Brown 准则下岩质边坡安全系数的稳定性图表。卢应发等[3]提出了推移式和牵引式边坡的多种破坏机理及推移式边坡形式。李宁等[4]指出了现有稳定性分析方法的优劣性,提出了新的有限单元法求解边坡稳定性方法。史卜涛等[5]基于广义插值物质点法以及弹塑性土体模型,提出了物质点强度折减法,并用于边坡稳定性分析。韩龙强等[6]推导了 Hoek-Brown 破坏准则中3个强度参数折减系数间的数学关系式。杨金旺等[7]针对顺层岩质高边坡稳定性问题,提出降强法与倾斜抬升超载法相结合的地质力学模型综合试验方法。陈国庆等[8]提出基于动态和整体强度折减法的边坡动态稳定性评价方法。肖锐铧等[9]针对大型边坡可能具有多个滑动方向和多级滑动面的特点,提出安全度分区的方法。赵炼恒等[10]基于能耗分析理论,采用不同边坡综合安全系数定义方式,根据虚功原理推导了安全系数的目标函数表达式。
在边坡现场勘测方面,利用地质雷达扫描岩质边坡内部情况,探测碎裂带、空洞等内部结构构造,在边坡加固和稳定性评价过程中常被采用,是目前边坡稳定性现场勘测的常规方法之一[11]。利用地质雷达扫描岩体内部结构可以定性地了解边坡结构和稳定性,但由于边坡的构造非常复杂,采用定性的分析方法远不能判断边坡的实际稳定状态和潜在滑移面,因此,结合定量分析进行综合性评估是必要的。数值模拟分析法,相对于传统的极限平衡法,具有很多优点,采用数值模拟可以获得边坡内部应力应变分布规律、塑性区、潜在滑移面等一些重要参量,并且可方便地分析不同对策措施下边坡的稳定性问题[12]。
本文采用工程物探与数值模拟相结合的方法分析此处边坡的稳定性,采用地质雷达手段得到边坡内部岩体破碎程度,利用数值反演分析得到边坡极限平衡法相关计算参数,综合利用地质雷达与数值模拟方法计算此处边坡的稳定性问题,本次采用岩土工程应用较为广泛的Flac3D软件进行计算。
1 工程概况
选取六级半深路堑边坡,中线最大挖方高度34 m,边坡最大挖方高度约55 m。边坡坡率自下到上依次为1∶0.5、1∶0.5、1∶0.5、1∶0.5、1∶0.5、1∶0.75、1∶1,每级边坡高8 m,边坡平台宽2 m。边坡整体岩性为混合岩,上部四、五、六级台阶存在大面积强烈变质现象,岩体呈薄片状,风化强烈,岩体破碎,下部台阶岩体呈块状,主要两组节理张开、无充填,胶结程度差,其倾角较大,走向与边坡走向以小角度相交,易发生倾倒破坏和局部楔形体滑移。
2 边坡工程物探分析
采用地质雷达进行现场物探扫描。地质雷达是利用地下物质介电常数的不同来探测地下目标体的一种物探手段[13]。地质雷达测试采用点测法[14],每个测点的取样点数为1 024,天线频率为100 MHz,测试深度最大为15 m,主要测试对象为三级至六级台阶岩体,距离每级台阶底部约1.5 m高的位置处均布置一条测线。4个台阶的地质雷达测试波形图见图1~图3。
图1 三级台阶岩体地质雷达波形图
图2 四级台阶岩体地质雷达波形图
图3 五、六级台阶岩体地质雷达波形图
根据图1~图3的波形可知:
(1)在测线范围内,三级台阶雷达波形较平稳,岩体结构优于四级、五级、六级台阶岩体,对于三级台阶而言,测线中部岩体质量差于两侧岩体;
(2)四级、五级、六级台阶岩体较破碎,由雷达反射波可知,由坡面至15 m深度范围内的反射波振幅较大且具有连续性,表明15 m范围内的岩体破碎程度与坡面岩体接近,因此,可判断测线范围内四级、五级、六级台阶岩体在距离坡面至少15 m深度范围内的岩体仍为风化严重、完整性差、强度较低的破碎岩体。
3 边坡稳定性计算分析
3.1 强度准则的选择
数值模型采用Hoek-Brown准则进行计算。Hoek-Brown准则综合考虑岩块强度、结构面强度、岩体结构等多种因素的影响,能够更好地反映岩体的非线性破坏特征,已被岩土工程的学者们广泛应用到裂隙岩体的稳定性分析中。广义的Hoek-Brown准则的表达式为
(1)
式中,mb为经验参数m的值,m反映岩石的软硬程度,其取值范围在0.000 000 1~25之间,对严重扰动岩体取0.000 000 1,对完整的坚硬岩体取25;s反映岩体破碎程度,其取值范围在0~1之间,对破碎岩体取0.0,对完整岩体取1.0;α为经验参数,取值范围在0.5~0.6之间,块状岩体取0.5,破碎岩体取0.6;σc表示岩块的饱和单轴抗压强度。
3.2 计算剖面的选取
选取垂直坡面的剖面作为计算剖面,剖面位置见图4。参照实际边坡建立数值计算模型,共分为六级台阶,每级边坡高度为8.0 m,台阶宽度均为2.0 m,从下至上每级台阶的坡率分别为1∶0.5、1∶0.5、1∶0.5、1∶0.5、1∶0.5、1∶0.75、1∶1。计算剖面见图5。
图4 计算剖面位置
图5 计算剖面单元网格
3.3 计算参数的获取
根据现场地质调查情况可知边坡岩块用手可掰断,为强风化岩体,岩体破碎,为软岩,基本岩体质量级别为V级。V级岩体的重力密度小于22.5 kN/m3,变形模量小于1.3 GPa,泊松比大于0.35,软岩的单轴抗压强度在5~15 MPa[4]。根据广义Hoek-Brown准则中岩体参数取值规则,此处岩体破碎,岩块之间嵌固松散,α取0.6,s取值为0。因此,主要反演的参数为mb、岩体抗压强度和变形模量。
图6 最大剪应变云图和位移矢量
经过反演得到岩体参数如下:岩体密度为2 250 kg·m-3,弹性模量为210 MPa,泊松比为0.36,σc=14.5 MPa,mb=0.35,s=0,α=0.6。按照此参数计算得到的边坡最大剪应变云图和位移矢量见图6。由图6可知,边坡稳定性受到影响主要为第二、三、四、五、六级及以上台阶,四、五、六级台阶不稳定体的影响范围自下至上依次分别是18.9 m、22.4 m、21.5 m,与地质雷达勘测结果一致,说明反演参数可靠。
3.4 治理措施分析
根据以上反演的岩体参数进行治理方案分析,治理方案考虑普通锚杆加固岩体,锚固参数如为:锚杆选用直径为25 mm,采用HRB335螺纹钢筋,注浆体为M25砂浆,钻孔直径为90 mm,水泥浆与螺纹钢筋粘接强度设计值取2.1 MPa,岩体与注浆体界面粘接强度取280 kPa,锚杆与水平面夹角取20°,二、三级台阶锚杆长度取12 m,纵、横向间距为1.2 m,四、五、六级台阶采取长短相间的布置形式,较长锚杆长度为22 m,横向间距为1.3 m,竖向间距为2.6 m,较短锚杆的长度为16 m,横向间距为1.3 m,竖向间距为2.6 m。
基于以上参数得到的最大剪应变云图见图7,位移云图见图8,安全系数计算结果见图9。由图7~图9可知,锚杆可以较好地约束住坡体的塑性应变和位移,治理措施有效。
图7 治理后最大剪应变云图
图8 治理后位移变云图
图9 治理后安全系数
4 结论
采用现场物探与数值模拟相结合的方法分析边坡的稳定性是非常有效的方法,能够满足工程需要。本次采用地质雷达手段得到边坡内部岩体破碎程度,利用数值反演分析得到边坡极限平衡法相关计算参数,综合利用地质雷达与数值模拟方法计算此处边坡的稳定性问题,得到以下结论。
(1)地质雷达探测结果表明,三级台阶雷达波形较平稳,岩体结构优于四级、五级、六级台阶岩体,四、五、六级台阶的破碎岩体范围不小于15 m深度。
(2)通过数值反演分析方法得到,不稳定体的影响范围从第二级台阶起,四、五、六级台阶不稳定体的影响范围自下至上依次分别是18.9 m、22.4 m、21.5 m,与地质雷达勘测结果一致,反演参数可靠。
(3)所采用的锚杆支护方案进行边坡支护可以较好地约束坡体的塑性应变和位移,治理方案有效。