我国畜禽饲料资源中微量元素锰含量分布的调查
2019-06-22王传龙张丽阳刘国庆王丽赛杨柳邢冠中邵玉新马雪莲李素芬王良治刘元东吕林廖秀冬罗绪刚
王传龙,张丽阳,刘国庆,王丽赛,,杨柳,,邢冠中,,邵玉新,马雪莲,李素芬, 王良治,3,刘元东,吕林,廖秀冬,罗绪刚
我国畜禽饲料资源中微量元素锰含量分布的调查
王传龙1,张丽阳1,刘国庆1,王丽赛1,2,杨柳1,2,邢冠中1,2,邵玉新1,马雪莲1,李素芬2, 王良治1,3,刘元东4,吕林1,廖秀冬1,罗绪刚1
(1中国农业科学院北京畜牧兽医研究所矿物元素营养研究室,北京 100193;2河北科技师范学院动物科技学院,河北秦皇岛 066004;3西南民族大学生命科学与技术学院,成都 610041;4北京元创智汇生物技术有限公司,北京 100020)
【】研究我国不同地区间各种饲料原料中锰含量分布情况,以及我国畜禽基础饲粮中锰水平,从而为饲粮中合理添加锰提供科学依据。对采自全国31个省、直辖市和自治区的37种共3 922个主要畜禽饲料原料,经微波消解后,用IRIS Intrepid II等离子体发射光谱仪测定其锰含量。主要畜禽饲料原料可分为七大类,包括谷类籽实(玉米、小麦、稻谷及大麦)、谷物籽实加工副产品(碎米、次粉、小麦麸、米糠、玉米DDGS、小麦DDGS、玉米胚芽粕及玉米蛋白粉)、植物性蛋白饲料(膨化大豆、豆粕、菜籽粕、棉粕、花生粕、亚麻粕、葵花粕)、动物性蛋白饲料(鱼粉、肉粉、水解羽毛粉、肠系膜蛋白粉、血浆蛋白粉和血球蛋白粉)、秸秆类饲料(玉米秸、甘薯藤、稻秸和小麦秸)、牧草类饲料(羊草、黑麦草、苜蓿和青贮玉米)和矿物质饲料(石粉、磷酸氢钙、贝壳粉和骨粉)。这37种饲料原料的平均锰含量范围为0.4—1 104.8 mg·kg-1,各类饲料原料锰含量分布规律是:矿物质饲料(335.4 mg·kg-1)>秸秆类饲料(180.8 mg·kg-1)>谷类籽实加工副产品(75.9 mg·kg-1)>牧草类饲料(53.3 mg·kg-1)>植物性蛋白饲料(44.5 mg·kg-1)>谷类籽实(38.7 mg·kg-1)>动物性蛋白饲料(19.6 mg·kg-1)。在同一类饲料中,不同种饲料的锰含量均存在显著差异(<0.0003),其中谷类籽实饲料锰含量以稻谷最高(77.7 mg·kg-1),玉米最低(5.7 mg·kg-1);谷物籽实加工副产品锰含量以米糠最高(166.0 mg·kg-1),玉米蛋白粉最低(4.6 mg·kg-1);植物性蛋白饲料锰含量以菜籽粕最高(68.0 mg·kg-1),棉粕最低(27.0 mg·kg-1);动物性蛋白饲料锰含量以鱼粉最高(48.5 mg·kg-1),血球蛋白粉最低(0.4 mg·kg-1);秸秆类饲料锰含量以稻秸最高(458.1 mg·kg-1),小麦秸最低(37.8 mg·kg-1);牧草类饲料锰含量以羊草最高(89.1 mg·kg-1),苜蓿最低(33.0 mg·kg-1);矿物质饲料锰含量以磷酸氢钙最高(1 104.8 mg·kg-1),骨粉最低(16.9 mg·kg-1)。通过比较不同省(区)玉米、小麦和豆粕的锰含量发现,不同省(区)玉米及豆粕的锰含量存在显著差异(<0.0004),其中贵州省玉米锰含量最高(7.9 mg·kg-1),而内蒙古自治区最低(4.2 mg·kg-1);浙江省豆粕锰含量最高(48.3 mg·kg-1),广东省最低(34.4 mg·kg-1)。根据全国各地猪、鸡常用的142个饲料配方所计算出的基础饲粮中锰含量范围为14.4—32.1 mg·kg-1,如按我国猪、鸡饲养标准或美国NRC锰营养需要量要求,基础饲粮中锰含量可提供鸡的锰营养需要约1/4,可提供猪全部锰营养需要,但上述估算尚未考虑不同饲料原料中锰的利用率。不同种类和不同地区饲料原料中锰含量差异较大,全国各地常用配方中的基础饲粮中锰含量可提供鸡部分锰营养需要量及猪全部锰营养需要量。因此,在实际生产中,应充分考虑不同地区基础饲粮中的锰总含量及其利用率,精准配制饲粮,以满足畜禽高效生产需要,同时减少锰的添加和排放对环境的污染。
饲料原料;锰含量;猪;鸡
0 引言
【研究意义】饲料成本约占畜禽养殖成本的60%—70%,在畜牧业发展中起着重要作用。随着畜禽养殖业的迅速发展,我国饲料资源短缺状况尤为突出,严重制约了畜牧业的发展。研究不同地区畜禽饲料资源锰含量和分布规律,可为合理高效利用我国现有饲料原料提供科学依据。【前人研究进展】锰是畜禽必需的微量元素之一,尤其对肉仔鸡等家禽具有特殊的重要性[1-4]。畜禽缺锰时会造成生长受阻、骨骼畸形、生长紊乱及营养物质代谢异常等[5-7],但在饲料中添加外源锰超出了机体正常需要量时,会随粪便排出,引起环境污染[8]。【本研究切入点】我国一直未对畜禽饲料资源中微量元素锰含量分布进行系统、专门的调研,这在很大程度上限制了畜禽饲料资源中锰的有效利用。【拟解决的关键问题】本研究对全国不同区域主要畜禽饲料中微量元素锰含量进行测定,以研究不同地区各种饲料中锰含量的分布以及全国各地猪、鸡常用配方中基础饲粮的锰水平,为畜禽饲料中合理添加锰提供科学依据。
1 材料与方法
1.1 样品采集
1.1.1 采样 根据我国不同区域主要畜禽饲料资源的分布情况,结合各省(市、区)的2013年各原料总产量及其在各县(市)或企业总产量占全省合计总产量的比例,以确定各省(市、区)及其各县(市)或代表性企业的样品数;同时还根据谷物籽实、牧草或秸秆饲料在各县(市)的镇(乡)分布情况,确定各县(市)的代表性镇(乡)及其样品数。2016年1月至2018年6月期间,共采集我国除港澳台外的31个省、直辖市和自治区,包括东北和西北(黑龙江、吉林、辽宁、陕西、甘肃、宁夏、新疆、青海,共8个省(区))、华北(北京、天津、河北、山西、内蒙,共5个省(市、区))、华东和华中(上海、山东、江苏、安徽、江西、浙江、福建、湖北、湖南、河南,共10个省(市))及西南和华南(重庆、四川、贵州、云南、西藏、广东、广西、海南,共8个省(市、区)),7大类37种共3 922个饲料样品。样品均采自当地农户、农场或饲料原料加工企业,且饲料原料加工企业的原料也产自当地。采样时应用GPS定位并拍照,并进行编码和标示条形码后,带回实验室以备分析。
1.1.2 样品种类 主要调查我国不同地区的七大类型饲料原料,包括谷物籽实(玉米、小麦、稻谷、大麦)及其加工副产品(碎米、次粉、小麦麸、米糠、玉米DDGS、小麦DDGS、玉米胚芽粕、玉米蛋白粉)、植物性蛋白饲料(膨化大豆、豆粕、菜籽粕、棉籽粕、花生粕、亚麻粕、葵花粕)、动物性蛋白饲料(鱼粉、肉粉、水解羽毛粉、肠膜蛋白粉、血浆蛋白粉、血球蛋白粉)、秸秆类饲料(玉米秸、甘薯藤、稻秸、小麦秸)、牧草类饲料(羊草、黑麦草、苜蓿、青贮玉米)和矿物质饲料(石粉、磷酸氢钙、骨粉、贝壳粉),以便较全面地了解饲料中的锰水平。
1.2 样品处理及分析方法
1.2.1 样品处理 为保证分析结果的一致性和可靠性,2016年1月至2018年10月,所采样品均集中于中国农业科学院北京畜牧兽医研究所统一处理。样品经过挑选、清洁、风干、混合均匀后以四分法缩减分取试样,于不锈钢小型高速粉碎机(IL-04BL)粉碎后,分装入自封袋,注明样品名称、编号、条形码等后冷库保存。
1.2.2 分析方法 称取0.5 g饲料样品于消化管中,加入5 mL浓硝酸和2 mL双氧水浸泡2 h后,在高通量密闭微波消解仪(CEM,美国)上消化,然后使用IRIS IntrepidⅡ等离子体发射光谱仪(TE,美国)测定饲料原料中锰含量[9-10],同时用国家标准物质猪肝粉(GBW10051)或黄豆粉(GBW10013)作为对照[11],检查分析的可靠性。
1.2.3 数据处理 所有数据均采用SAS 9.4[12]中的一般线性模型(GLM)程序进行单因素方差分析,差异显著者,以最小显著差异(LSD)法比较各组间的差异显著性。数据以平均值±标准差表示,以<0.05作为各项数据的差异显著性检验水平。
2 结果
2.1 各种饲料原料中锰含量分布
为获得对全国具有一定代表性的结果,共采集了我国除港澳台外的31个省、直辖市和自治区的3 922个饲料原料样品,测定了其中锰的含量。结果分类列于表1—6中。
表1 谷类籽实及其加工副产品中锰含量分布(风干基础)
同列数据不同大写字母表示谷物籽实类饲料差异显著(<0.05)。同列数据不同小写字母表示谷物籽实加工副产品类饲料差异显著(<0.05)。结果表示:平均值±标准差
Means lacking a common capital letter within the same columns are significant difference among the Mn contents in the feedstuffs of cereals (<0.05). Means lacking a common small letter within the same columns are significant difference among the Mn contents in the feedstuffs of cereal by-products (<0.05). Results are expressed as mean ± standard deviation
表2 植物性蛋白饲料中锰含量分布(风干基础)
同列数据不同小写字母表示差异显著(<0.05)。结果表示:平均值±标准差。下同
Means lacking a common small letter within the same column are significant difference (<0.05). Results are expressed as mean ± standard deviation. The same as below
由表中结果可以看出,在同一类别中的不同种饲料平均锰含量均存在显著差异(<0.0003)。谷类籽实中的平均锰含量为38.7 mg·kg-1,其中稻谷中的锰含量最高(77.7 mg·kg-1),玉米中最低(5.7 mg·kg-1);谷物籽实加工副产品中的平均锰含量为75.9 mg·kg-1,其中米糠中的锰含量最高(166.0 mg·kg-1),玉米蛋白粉最低(4.6 mg·kg-1);植物性蛋白饲料中的平均锰含量为44.5 mg·kg-1,其中菜籽粕中的锰含量最高(68.0 mg·kg-1),棉粕中最低(27.0 mg·kg-1),其中亚麻粕、葵花粕样本只来源于3个省,且样本之间的变异较大,因此其锰含量可能不具备代表性;动物性蛋白饲料中的平均锰含量为19.6 mg·kg-1,其中鱼粉中的锰含量最高(48.5 mg·kg-1),血球蛋白粉中最低(0.4 mg·kg-1);秸秆类饲料中的平均锰含量为180.8 mg·kg-1,其中稻秸中的锰含量最高(458.1 mg·kg-1),小麦秸中最低(37.8 mg·kg-1);牧草类饲料中的平均锰含量为53.3 mg·kg-1,其中羊草中的锰含量最高(89.1 mg·kg-1),苜蓿锰含量最低(33.0 mg·kg-1);矿物质饲料中的平均锰含量为335.4 mg·kg-1,其中磷酸氢钙中的锰含量最高(1 104.8 mg·kg-1),骨粉中最低(16.9 mg·kg-1)。由以上结果可以看出,这37种饲料原料的平均锰含量范围为0.4—1 104.8 mg·kg-1,各类饲料原料锰含量分布规律是:矿物质饲料(335.4 mg·kg-1)>秸秆类饲料(180.8 mg·kg-1)>谷类籽实加工副产品(75.9 mg·kg-1)>牧草类饲料(53.3 mg·kg-1)>植物性蛋白饲料(44.5 mg·kg-1)>谷类籽实(38.7 mg·kg-1)>动物性蛋白饲料(19.6 mg·kg-1)。
表3 动物性蛋白饲料中锰含量分布(风干基础)
表4 秸秆类饲料中锰含量分布(风干基础)
表5 牧草类饲料中锰含量分布(风干基础)
表6 矿物质饲料中锰含量分布(风干基础)
2.2 不同地区饲料原料中锰含量分布
为了明确各地区自然条件对饲料原料锰含量的影响程度,选择了3种较常见而且采样面较广的玉米、小麦和豆粕,根据玉米、小麦和豆粕的主产地及主要畜禽养殖区域分布情况,进行以省(区)为单位的平均锰含量的比较(表7)。可见,18个主要省(区)玉米中锰含量差异显著(<0.0004),其中以内蒙古玉米平均锰含量最低,为4.2 mg·kg-1,而贵州省玉米平均锰含量最高,为7.9 mg·kg-1,相差3.7 mg·kg-1;11个主要省(区)的小麦平均锰含量为39.2 mg·kg-1,其中河北省的小麦平均锰含量最低,为30.7 mg·kg-1,湖北省最高,为51.0 mg·kg-1,相差20.3 mg·kg-1;14个主要省(区)的豆粕平均锰含量具有显著差异(<0.0001),其中广东省的豆粕平均锰含量最低,为34.4 mg·kg-1,浙江省最高,为48.3 mg·kg-1,相差13.9 mg·kg-1。
表7 我国部分省(区)玉米、小麦及豆粕中锰含量分布(风干基础)
括号内的数字为样品数Number of samples in parentheses
2.3 我国猪、鸡基础饲粮中的锰含量状况
根据章世元编著的《动物饲料配方设计》[13],并参考各地现行的一般较合理的商品猪、肉仔鸡配方,初步归纳为4种饲料类型,即以玉米和豆粕为主配制的玉米-豆粕型;以玉米和各种植物油籽粕类,如大豆,菜粕,棉粕,花生粕榨油后的副产品配制的玉米-油籽粕型;以多种谷类籽实,如玉米、小麦、稻谷、大麦等为能量饲料,豆粕为蛋白饲料配制的多谷-豆粕型;以多种谷类籽实和多种植物油籽粕类配制的多谷-油籽粕型。按各品种的实测值进行基础饲料中锰含量的计算,结果列于表8。
由表8可见,各种类型的猪、鸡基础饲粮锰含量都较接近,根据全国各地猪、鸡常用的152个饲料配方中所计算出的基础饲料中猪4种基础饲料中锰含量水平在17.3—32.1 mg·kg-1之间,平均值为25.7 mg·kg-1,鸡4种基础饲料中锰含量水平在14.4—24.5 mg·kg-1之间,平均值为18.6 mg·kg-1。根据我国猪、鸡饲养标准和美国NRC中商品猪、肉仔鸡锰营养需要量[14-17],猪按3 mg·kg-1,鸡按80 mg·kg-1计算,则基础饲粮中锰含量可提供鸡约1/4的锰营养需要,提供猪全部的锰营养需要。
表8 我国猪、鸡一般基础饲粮中的锰含量状况(风干基础)
3 讨论
调查中发现小麦麸中的锰含量是全麦粒的3.7倍,玉米胚芽粕中的锰含量是玉米的2.4倍,米糠中的锰含量是全稻谷籽粒的2.1倍,谷物籽实加工副产品中,除玉米蛋白粉外,均对锰有富集作用,这同之前的研究结果矿物元素多沉积于籽实的表皮层一致[18]。我们还发现玉米秸秆中锰含量是玉米的9.1倍,水稻秸秆的锰含量是稻谷的5.9倍,这表明锰在植物不同器官分布不同[19]。此外,调查的7大类饲料中以矿物质饲料锰含量最高,但在配制饲料过程中我们经常忽略磷酸氢钙中的锰含量,因此,制定饲料配方应考虑其中的锰含量,合理配制动物饲粮,避免饲料资源浪费及环境污染。
土壤是陆生植物赖以生长发育的基地,土壤锰含量分布及其形态直接影响作物锰含量[20],全国各地区土壤中锰含量基本呈南高北低趋势[21],本次调查的玉米锰含量与这一趋势基本相同,但豆粕和小麦锰含量与南高北低规律不符,且同一种原料不同地区的锰含量也有明显不同,这可能与不同地区的土壤类型、气候条件、作物品种和遗传差异及其加工方式有关[22-23]。因此,对于不同地区来源的饲料原料,应测定其锰含量,根据饲料原料中锰含量的实测值制定合理的饲料配方。
根据我国猪、鸡饲养标准和美国NRC中猪、鸡锰营养需要量,本研究发现4种基础饲粮可提供鸡约1/4的锰营养需要,提供猪全部的锰营养需要。虽然锰在畜禽生产中有着不可或缺作用[24-26],但在实际生产猪、鸡饲粮时,由于微量元素锰添加成本较低,生产者一般不考虑基础饲粮中锰的含量,而参照锰营养需要量额外或超量添加锰添加剂配制饲粮,这不仅造成了饲料资源的浪费,还加剧了锰排放对环境的污染[27]。不同畜禽品种[28-29]、不同生产阶段、不同生理状态下的锰需要量均不同[30-31],因此,动物饲粮中锰的添加量应充分考虑不同品种及不同地区饲料原料中锰的含量及其利用率,精准配制饲粮,以减少饲粮中锰的添加及其排放对环境的污染[32]。
本次对我国不同地区间饲料原料的锰含量分布的调查研究,可为我国畜禽饲料资源的合理开发利用提供数据基础,为实际饲料生产合理添加锰降低饲料生产成本提供科学依据。
4 结论
我国畜禽不同饲料原料中锰含量分布不同,各省(区)玉米和豆粕中锰含量存在差异。全国各地常用配方中的基础饲粮锰含量可提供鸡部分锰营养需要量及猪全部锰营养需要量。因此,在实际生产中,应充分考虑不同地区基础饲粮中的总锰含量及其利用率,精准配制饲粮,以满足畜禽高效生产需要,同时减少锰的添加和排放对环境的污染。
[1] 白世平. 不同形态锰在肉仔鸡小肠中的吸收机理研究[D]. 北京:北京畜牧兽医研究所,2008.
BAI S P. Mechanisms of absorption of manganese from different manganese sources in the small intestine of broilers [D]. Beijing: Institute of Animal Science, 2008. (in Chinese)
[2] 张斌权, 杨明. 矿物微量元素锰对家禽生长的影响. 国外畜牧学(猪与禽), 2013, 33(10): 76-79.
ZHANG B Q, YANG M. Effects of mineral trace element manganese on poultry growth., 2013, 33(10): 76-79. (in Chinese)
[3] 韩晓华, 韩天龙, 王敏, 张广和, 李志明. 微量元素锰在蛋鸡养殖生产中的应用研究. 中国畜牧兽医, 2013, 40(01): 216-219.
HAN X H, HAN T L, WANG M, ZHANG G H, LI Z M. Application of trace element manganese in laying hen production.2013, 40(01): 216-219. (in Chinese)
[4] 徐明明, 曲湘勇, 陈继发, 柳序. 鸡微量元素需要量的研究进展. 中国家禽, 2017, 39 (13): 45-49.
XU M M, QU X Y, CHEN J F, LIU X. Advances in studies on trace element requirements of chickens., 2017, 39(13): 45-49. (in Chinese)
[5] KEEN C L, ENSUNSA J L, WATSON M H, BALY D, DONAVAN S M, MONACO M H, CLEGG M S. Nutritional aspects of manganese from experimental studies., 1999, 20: 213-224.
[6] GRIEGER J L. Nutrition versus toxicology of manganese in humans: Evaluation of potential markers., 1999, 20: 205-212.
[7] SCHROEDER H A, BALASSA J J, Tipton I H. Essential trace metals in man: manganese, a study in homeostasis., 1996, 19:545-571.
[8] 陈章, 李志贤. 锰污染土壤修复研究现状与展望.生态环境学报, 2017, 26(8): 1451-1456.
CHEN Z, LI Z X. Review and perspective on remediation of manganese contamination.,2017, 26(8): 1451-1456. (in Chinese)
[9] HUANG Y L, LU L, LI S F, LUO X G, LIU B. Relative bioavailabilities of organic zinc sources with different chelation strengths for broilers fed a conventional corn-soybean meal diet., 2009, 87(6): 2038-2046.
[10] SUO H Q, LU L, ZHANG L Y, ZHANG X Y, LI H, LU Y F, LUO X G. Relative bioavailability of zinc-methionine chelate for broilers fed a conventional corn-soybean meal diet., 2015, 165(2): 206-213.
[11] YU Y, LU L, LUO X G, LIU B. Kinetics of zinc absorption by in situ ligated intestinal loops of broilers involved in zinc transporters., 2008, 87(6): 1146-1155.
[12] SAS user’s guide: statistics. Version 9.4. SAS Institute Inc. 2003, Cary, NC.
[13] 章世元. 动物饲料配方设计. 南京: 江苏科学技术出版社, 2008.
ZHANG S Y.. Nanjing: Phoenix Science Press, 2008. (in Chinese)
[14] 文杰, 蔡辉益, 呙于明, 齐广海, 陈继兰, 张桂芝, 刘国华, 熊本海, 苏基双, 计成, 刁其玉, 刘汉林. NY/T 33-2004鸡饲养标准. 北京: 中华人民共和国农业部, 2004.
WEN J, CAI H Y, GUO Y M, QI G H, CHEN J L, ZHANG G Z, LIU G H, XIONG B H, SU J S, JI C, DIAO Q Y, LIU H L. NY/T 33-2004 Feeding standard of chicken. Beijing: Ministry of Agriculture of the People’s Republic of China, 2004. (in Chinese)
[15] 李德发, 王康宁, 谯仕彦, 贾刚, 蒋宗勇, 陈正玲, 林映才, 吴徳, 朱锡明, 熊本海, 杨立彬, 王凤来. NY/T65-2004猪饲养标准. 北京: 中华人民共和国农业部, 2004.
LI D F, WANG K N, QIAO S Y, JIA G, JIANG Z Y, CHEN Z L, LIN Y C, WU D, ZHU X M, XIONG B H, YANG L B, WANG F L. NY/T65-2004 Feeding standard of swine. Beijing: Ministry of Agriculture of the People’s Republic of China, 2004. (in Chinese)
[16] NRC.. Washington, D C. National Academy Press, 1994.
[17] NRC.. Washington, D C. National Academy Press, 2012.
[18] 苏琪, 段玉琴, 刘金旭, 陆肇海. 我国畜禽饲料中微量元素锌含量的调查研究. 中国农业科学, 1994, 27(2): 82-88.
SU Q, DUAN Y Q, LIU J X, LU Z H. A study on zinc contents in feedstuffs for livestock and poultry in china., 1994, 27(2): 82-88. (in Chinese)
[19] 陈铭. 麦类作物锰营养的研究. 土壤学进展, 1994, 22(2): 1622.
CHEN M. Research on manganese nutrition of wheat crops., 1994, 22(2): 1622. (in Chinese)
[20] 王秋菊, 崔战利, 王贵森, 张少良. 土壤锰的研究现状及展望. 黑龙江八一农垦大学学报, 2005, 17(3): 39-42.
WANG Q J, CUI Z L, WANG G S, ZHANG S L. The actuality and prospect of studies on soil manganese.,2005, 17(3): 39-42. (in Chinese)
[21] 吴名宇, 李顺义, 张杨珠. 土壤锰研究进展与展望. 作物研究, 2005, 19(2): 137-142.
WU M Y, LI S Y, ZHANG Y Z. Progress and prospects of soil manganese research.2005, 19(2): 137-142. (in Chinese)
[22] 杨淑芬. 湖南省主要饲料资源分析与评价[D]. 长沙: 湖南农业大学, 2017.
YANG S F. Analysis and evaluation of main feed resources in Hunan province [D]. Changsha: Hunan Agricultural University, 2017. (in Chinese)
[23] 钟茂. 肉仔鸡常用饲料原料中矿物元素生物学利用率研究[D]. 重庆: 西南大学, 2006.
ZHONG M. Research on bioavailability of minerals in feedstuff for broilers [D]. Chongqing: Southwest University, 2006. (in Chinese)
[24] 李宪华, 王利革, 宋立业, 孙博. 鸡微量元素锰缺乏症的诊治. 畜牧兽医科技信息, 2009(05): 106.
LI X H, WANG L G, SONG L Y, SUN B. Diagnosis and treatment of chicken microelement manganese deficiency.2009(05):106. (in Chinese)
[25] LU L, LUO X G, JI C, LIU B, YU S X. Effect of manganese supplementation and source on carcass traits, meat quality, and lipid oxidation in broilers.2007, 85(3): 812-822.
[26] BAI S P, LU L, LUO X G, LIU B. Kinetics of manganese absorption in ligated small intestinal segments of broilers.2008, 87: 2596–2604.
[27] 荆俊杰, 谢吉民. 微量元素锰污染对人体的危害. 广东微量元素科学, 2008, 15(02): 6-9.
JIN J J, XIE J M. Hazards of manganese pollution to human body.2008, 15(02): 6-9. (in Chinese)
[28] 王薇薇. 黄羽肉鸡锰需要量及不同锰源对黄羽肉鸡饲养效果研究. 中国畜牧兽医学会动物营养学分会.第六次全国饲料营养学术研讨会论文集, 2010: 1.
WANG W W. Study on manganese requirement of yellow feather broilers and feeding effect of different manganese sources on yellow feather broilers//National Society of Animal Nutrition Chinese Association of Animal Science and Veterinary Medicine., 2010: 1. (in Chinese)
[29] 高延玲. 固始鸡微量元素锰、锌需要量的研究[D]. 郑州:河南农业大学, 2004. (in Chinese)
GAO Y L. Requirement of trace elements Mn and Zn in Gushi chicken [D]. Zhengzhou: Henan Agricultural University, 2004. (in Chinese)
[30] 朱玉琴, 索爱萍. 0~4周龄肉仔鸡不同锰源锰需要量的研究. 畜牧兽医学报, 1998, 29(02): 26-32.
ZHU Y Q, SUO A P. Studies on manganese requirements of different manganese sources in broilers aged 0~4 weeks.1998, 29(02): 26-32. (in Chinese)
[31] 朱玉琴. 0~2周龄肉用仔鸡日粮中锰需要量的研究. 动物营养学报, 1997, 9(03): 13-22.
ZHU Y Q. Study on manganese requirement in diets of broilers aged 0~2 weeks.1997, 9(03): 13-22. (in Chinese)
[32] LIU G Q, LI S F, SU X, HE Y, ZHANG L Y, LU L, LIAO X D, LUO X G. Estimation of standardized mineral availabilities in feedstuffs for broilers.2019, 97: 794–802.
A Survey on Distribution of Manganese Contents in Feedstuffs for Livestock and Poultry in China
WANG ChuanLong1, ZHANG LiYang1, LIU GuoQing1, WANG LiSai1, 2, YANG Liu1, 2, XING GuanZhong1, 2, SHAO YuXin1, MA XueLian1, LI SuFen2, WANG LiangZhi1, 3, LIU YuanDong4, LÜ Lin1, LIAO XiuDong1, LUO XuGang1
(1Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193;2College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066004;3College of Life Science and Technology, Southwest Minzu University, Chengdu 610041;4Beijing Yuanchuang Zhihui Biotechnology Co., Ltd, Beijing 100020)
【】The purpose of this survey was to study the manganese (Mn) contents in various feed ingredients from different provinces (municipalities, regions) and the basal diets of pigs and chickens in China, so as to provide a scientific basis for the reasonable addition of Mn to the diets. 【】A total of 37 kinds of 3 922 feed samples from 31 provinces, municipalities and regions were digested by microwave, and then the Mn contents were measured by IRIS IntrepidⅡplasma emission spectrometer. The feed samples fall into seven types: cereals (corn, wheat, rice and barley), cereal by-products (broken rice, wheat middling, wheat bran, rice bran, corn DDGS, wheat DDGS, corn germ meal and corn gluten meal), plant protein ingredients (extruded soybean, soybean meal, rapeseed meal, cottonseed meal, peanut meal, linseed meal and sunflower seed meal), animal protein ingredients (fish meal, meat meal, hydrolyzed feather meal, dried porcine solubles, plasma protein powder and dried blood cells), straw ingredients (corn straw, sweet potato vine, rice straw and wheat straw), pasture ingredients (, ryegrass, alfalfa and corn silage) and mineral ingredients (limestone, dicalcium phosphate, oyster shell meal and bone meal). 【】The results showed that the average Mn contents of these 37 kinds of feed ingredients ranged from 0.4 to 1 104.8 mg·kg-1, and the distribution regularities of Mn contents in different species of feed ingredients were as follows: mineral ingredients>straw ingredients>cereal by-productscpasture ingredients>plant protein ingredients>cereals>animal protein ingredients. Among the same kind of feed samples, there were significant differences (<0.0003) in the Mn contents from all types of feed ingredients. In the cereals, the highest and lowest Mn contents were observed in the rice (77.7 mg·kg-1) and corn (5.7 mg·kg-1), respectively; in the cereal by-products, the highest and lowest Mn contents were observed in the rice bran (166.0 mg·kg-1) and corn gluten meal (4.6 mg·kg-1), respectively; in the plant protein ingredients, the highest and lowest Mn contents were observed in the rapeseed meal (68.0 mg·kg-1) and cottonseed meal (27.0 mg·kg-1), respectively; in the animal protein ingredients, the highest and lowest Mn contents were observed in the fish meal (48.5 mg·kg-1) and dried blood cells (0.4 mg·kg-1), respectively; in the straw ingredients, the highest and lowest Mn contents were observed in the rice straw (458.1 mg·kg-1) and wheat straw (37.8 mg·kg-1), respectively; in the pasture feeds, the highest and lowest Mn contents were observed in the(89.1 mg·kg-1) and alfalfa (33.0 mg·kg-1), respectively; in the mineral ingredients, the highest and lowest Mn contents were observed in the dicalcium phosphate (1 104.8 mg·kg-1) and bone meal (16.9 mg·kg-1), respectively. Regional comparisons on a basis of provinces (regions) were made of Mn contents of corn, wheat and soybean meal, showing significant effects (<0.0004) of regional environments on Mn contents in corn and soybean meal. The highest and lowest Mn contents of corn were observed in Guizhou (7.9 mg·kg-1) and Inner Mongolia (4.2 mg·kg-1), respectively; the highest and lowest Mn contents of soybean meal were observed in Zhejiang province (48.3 mg·kg-1) and Guangdong province (34.4 mg·kg-1), respectively. Calculated Mn contents in basal diets from 142 common formulations of pigs and chickens in our country ranged from 14.4 to 32.1 mg·kg-1. According to Mn requirements of pigs and chickens from feeding standards of China and NRC of the United States, the Mn contents in the basal diets could provide about one-fourth and all the nutritional needs of recommended Mn requirements for pigs and chickens, respectively. 【】 The above results showed that the Mn contents in feed ingredients varied greatly in different kinds and regions, and the Mn contents in basal diets from common formulations of pigs and chickens in our country could partly provide the nutritional requirements for chickens and the full needs of pigs. However, the bioavailabilities of Mn in different feed ingredients have not been considered in above evaluation. Therefore, the Mn contents in feed ingredients of different kinds and regions should be considered in the preparation of diets, so as to formulate the diets accurately and ensure efficient production of livestock and poultry and reduce supplemental Mn level and environmental pollution caused by Mn emission.
feedstuff; manganese content; pig; chicken
10.3864/j.issn.0578-1752.2019.11.014
2019-03-07;
2019-05-08
国家科技部科技基础性工作专项(2014FY111000)、中国农业科学院农科英才专项、中央级公益性科研院所基本科研业务费专项(2019-YWF-YTS-09)、中国农业科学院科技创新工程专项(ASTIP-IAS09)和国家现代农业产业技术体系岗位专家专项(CARS-41)
王传龙,E-mail:wangchuanlong1994@163.com。通信作者廖秀冬,E-mail:liaoxd56@163.com。通信作者罗绪刚,E-mail:wlysz@263.net
(责任编辑 林鉴非)