APP下载

脑靶向脂质体构建及其靶分子Ac4MAN体外结构稳定性研究

2019-05-28李茹冰王娜刘肖莹

中国医药导报 2019年11期
关键词:酯酶脂质体胶质瘤

李茹冰 王娜 刘肖莹

[摘要] 目的 构建修饰的Ac4MAN(p-羧基苯-α-D-乙酰甘露糖)脑靶向脂质体,并探讨Ac4MAN结构稳定性。方法 将Ac4MAN与猪肝酯酶(PLE)于37℃、pH 7.4条件下孵育,于不同时间点取样;采用高效液相色谱(HPLC)和超高效液相色谱-质谱(UPLC-MS)联用技术对其进行分析。制备Ac4MAN脂质体并对其进行表征,用流式细胞仪检测脑胶质瘤细胞U87摄取Ac4MAN脂质体和Ac4MAN脂质体加PLE的情况。 结果 HPLC结果显示,孵育0~3 h,Ac4MAN峰面积从578.4减少到37.9;孵育4~7 h,Ac4MAN峰面积接近于0;孵育0~7 h,生成的MAN(p-氨基苯-α-D-吡喃甘露糖苷)的峰面积从0增长到363.0,表明随孵育时间延长,Ac4MAN逐漸减少,MAN逐渐增多。 结论 本研究制备的Ac4MAN脂质体粒径约为(120.3±2.0)nm,电位约为(-15.76±1.23)mV。Ac4MAN脂质体中加入酶后,U87细胞对其摄取能力有一定的增强。

[关键词] 靶向脂质体;p-羧基苯-α-D-乙酰甘露糖;p-氨基苯-α-D-吡喃甘露糖苷;猪肝酯酶;稳定性;摄取

[中图分类号] R283 [文献标识码] A [文章编号] 1673-7210(2019)04(b)-0004-05

Preparation of braining-targeting liposomes and the structural stability of Ac4MAN on the surface of liposome in vitro

LI Rubing1 WANG Na2 LIU Xiaoying2 TANG Shukun2 PENG Haisheng1,2 TAO Haiquan3

1.Research Center of Life Sciences and Environmental Sciences, Harbin University of Commerce, Heilongjiang Province, Harbin 150028, China; 2.Department of Pharmaceutics, Campus of Harbin Medical University(Daqing), Heilongjiang Province, Daqing 163319, China; 3.Department of Neurosurgery, the 2nd Affiliated Hospital of Harbin Medical Hospital, Heilongjiang Province, Harbin 150000, China

[Abstract] Objective To construct a modified Ac4MAN (p-carboxybenzene-α-D-acetylmannose) brain-targeted liposome and investigate the structural stability of Ac4MAN. Methods Ac4MAN was incubated with porcine liver esterase (PLE) at 37°C, pH 7.4 and sampled at different time points. High performance liquid chromatography (HPLC) and ultra performance liquid chromatography-mass spectrometry (UPLC-MS) were used to analyze it. Ac4MAN liposomes were prepared and characterized. Flow cytometry was used to detect the uptake of Ac4MAN liposomes and Ac4MAN liposomes plus PLE by glioma cells U87. Results The results of HPLC showed that the area of Ac4MAN decreased from 578.4 to 37.9 after incubation for 0-3 h. The area of Ac4MAN peak was close to 0 after incubation for 4-7 h. The peak area of the formed MAN (p-aminobenzene-α-D-pyran mannoside) increased from 0 to 363.0, indicating that with the prolongation of incubation time, Ac4MAN gradually decreased and MAN gradually increased. Conclusion The Ac4MAN liposome prepared in this study has a particle size of (120.3±2.0) nm and a potential of (-15.76±1.23) mV. The uptake of AC4MAN liposomes by U87 cells is enhanced after adding enzymes.

[Key words] Targeted liposomes; P-carboxybenzene-α-D-acetylmannose; P-aminobenzene-α-D-pyran mannoside; Porcine liver esterase; Stability; Uptake

恶性脑胶质瘤的发生率和致死率较高,威胁人类生命健康,是亟待解决的难题[1]。脑肿瘤有侵袭性生长特性,手术难以完全切除,且放化疗毒副作用大[2-3]。随着生物医学及纳米科学的交叉融合,纳米靶向制剂逐渐受到重视[4]。纳米靶向给药系统具有亲和性、可靶向性及缓释性等优点,能提高药物稳定性[5]。靶向脂质体对机体的毒性低,能精确地靶向到靶细胞或靶组织,可用于脑胶质瘤的治疗[6-8]。制备靶向脂质体的脂材或相应配体应该稳定、没有毒性且能高效识别靶组织[9]。研究[10]表明,葡萄糖转运体(GLUTs)可介导与其结构相似的物质跨越血脑屏障。p-氨基苯-α-D-吡喃甘露糖苷(MAN)是一种甘露糖衍生物,能通过葡萄糖转运载体介导的运输功能,跨越血脑屏障并靶向脑胶质瘤细胞[11-13]。在此基础上,本研究将p-羧基苯-α-D-乙酰甘露糖(Ac4MAN)作为研究目标,构建了一种新的前体脂质体,通过与猪肝酯酶(PLE)在体外共同孵育,研究其在模拟人体环境下的结构变化,探究其产生MAN以及其被摄取情况。

1 材料与方法

1.1 材料

Ac4MAN和MAN由本课题组人员合成(纯度达到98%)、猪肝酯酶(杭州创科生物有限公司)、乙腈色谱纯(天津市大茂化学试剂厂)、甲醇(色谱纯,北京百灵威科技有限公司)、聚乙二醇-二硬脂酰磷脂酰乙醇胺(DSPE-PEG2000)、蛋黄卵磷脂(上海艾韦特医药科技有限公司)、罗丹明(Rho,北京海德生物技术有限公司)、胆固醇(上海生物科学技术有限公司)、纯净水(黑龙江娃哈哈饮料有限公司)。

1.2 试验方法

1.2.1 HPLC测定

1.2.1.1 溶液的配制 PLE溶液:精密称取PLE粉末3 mg,加1 mL纯水溶解,配成浓度为3 mg/mL的溶液,即得。MAN溶液:精密称取MAN粉末4 mg,加1 mL甲醇溶解,配成浓度为4 mg/mL的溶液,即得。Ac4MAN溶液:精密称取Ac4MAN粉末6份,分别为0.2、0.4、0.6、0.8、1.0、1.2 mg,每份加1 mL甲醇溶解成浓度为0.2、0.4、0.6、0.8、1.0、1.2 mg/mL的溶液,即得。

1.2.1.2 样品制备 精密吸取3.0 mg/mL的PLE溶液1.9 mL,加4.0 mg/mL的Ac4MAN溶液0.1 mL,调温度37°C、pH 7.4,置于磁力搅拌器上进行孵育,于0~7 h整点时取出200 μL作为样品;取1.9 mL纯水,加入4.0 mg/mL的MAN溶液(pH 7.4)0.1 mL,作为对照组。

1.2.1.3 HPLC色谱条件 使用Agilent 1200型高效液相色谱仪(美国Agilent公司),色谱柱为Zorbax Eclipse XDB-C18(4.6 mm × 150 mm,5 μm);流动相为乙腈-纯水(50∶50,V/V)等度洗脱;流速1.0 mL/min;检测波长296 nm;进样量20 μL;柱温30°C。

1.2.1.4 标准曲线 分别精密吸取浓度为0.2、0.4、0.6、0.8、1.0、1.2 mg/mL的Ac4MAN 溶液20 μL,以相应的试剂为空白,按照高效液相色谱法于296 nm波长处测定其峰面积,以峰面积为纵坐标,以浓度为横坐标,绘制标准曲线。

1.2.1.5 样品测定 精密吸取“1.2.1.2”项下制备的样品溶液20 μL,注入高效液相色谱仪,按照“1.2.1.3”项下的色谱条件检测。

1.2.2 UPLC-MS

1.2.2.1 样品制备 按“1.2.1.2”中的操作制备样品,孵育时间为15 h。

1.2.2.2 UPLC色谱条件 使用Waters AcquityTM型超高效液相色谱-质谱联用仪(美国Waters公司);色谱柱为Waters AcquityTM UPLC BEH-C18(2.1 mm×100 mm,1.7 μm);流动相A:0.1%甲酸-乙腈,流动相B:0.1%甲酸-10 mmol/L甲酸铵-水;进样量:0.5 μL;柱温:30℃;梯度洗脱:0~7 min,30%A~100%A;7~8.5 min,100%A~30%A;8.5~10 min,30%A。

1.2.2.3 MS条件 电离源模式:电喷雾离子化;电离源极性:负模式;电喷雾电压:2500 V;离子源温度:110℃;干燥气温度:200℃;质量范围:100~1100 m/z。

1.2.2.4 样品测定 精密吸取“1.2.2.1”项下制备的样品20 μL,注入超高效液相色谱仪,按照“1.2.2.2”“1.2.2.3”的色谱和质谱条件进行检测。

1.2.3 脂质体摄取研究

1.2.3.1 制备Ac4MAN脂质体 称取胆固醇、蛋黄卵磷脂和DSPE-PEG2000适量,根据需要加入Rho,用薄膜分散法制备脂质体,将DSPE-PEG1000-Ac4MAN制备成胶束,取1 mL脂质体,加入0.5 mL Ac4MAN胶束,于室温下孵育2 h,生理盐水透析,得到Ac4MAN修饰的脂质体溶液。

1.2.3.2 脂质体摄取检测 分别制备用Rho标记的Rho-LIP、Ac4MAN-Rho-LIP和Ac4MAN-Rho-LIP+PLE,将U87胶质瘤细胞悬液铺于6孔板中,向每孔中加入等量的NaCl、Rho-LIP、Ac4MAN-Rho-LIP和Ac4MAN-Rho-LIP+PLE,孵育后用胰酶消化液消化,再用磷酸盐(PBS)缓冲液重悬细胞,于流式细胞仪上检测。

2 结果

2.1 含量測定

0~3 h整点样品的含量分别为3.98、0.80、0.42、0.19 μg;4~7 h整点样品含量较小,忽略不计。

2.2 HPLC檢测Ac4MAN加酶后稳定性

Ac4MAN对照品峰面积为578.4;MAN对照品峰面积为1066.0。Ac4MAN加酶1 h后,可以水解生成新物质且最显著的是MAN。随着时间延长,0~7 h整点取样,Ac4MAN逐渐减少,峰面积分别为578.4、120.5、69.5、37.9、0.0、0.0、0.0、0.0;MAN逐渐增多,峰面积分别为0.0、344.4、396.5、412.3、408.3、392.8、374.2、363.0,最终Ac4MAN消失,MAN逐渐增多。见图1。

2.3 UPLC-MS探究Ac4MAN水解的变化过程

采用UPLC-MS对Ac4MAN加酶后的物质进行分析。Ac4MAN相对分子质量为440.180;MAN相对分子质量为271.115;Ac4MAN加酶孵育15 h后依次脱去乙酰基后产生的4种物质,其相对分子质量分别为398.150、356.142、314.127、272.115。Ac4MAN脱去4个乙酰基后生成的物质的分子量与MAN标准物的分子量相同,提示生成的物质为MAN。见图2。

2.4 脂质体表征及加酶后对脂质体摄取的影响

本研究所制备的脂质体呈球形,外表光滑,大小均匀,电位为负。见表1、图3~4。流式细胞仪(美国BD公司)结果显示,U87细胞对Rho-LIP、Ac4MAN-Rho-LIP和Ac4MAN-Rho-LIP+PLE的荧光吸收值分别为8367、13198、14119。每组孵育4 h,空白组加入NaCl,不加入脂质体。空白对照组的荧光吸收值为4857,表明U87胶质瘤细胞对Rho-LIP、Ac4MAN-Rho-LIP和Ac4MAN-Rho-LIP+PLE都有一定的摄取作用。此外,Ac4MAN-Rho-LIP组加PLE,U87胶质瘤细胞对其脂质体摄取能力高于Ac4MAN-Rho-LIP单独处理组。见图5。

3 讨论

近年来,脂质体在作为抗肿瘤及抗癌药物的载体的发展迅速[14]。脂质体是磷脂双分子层结构,可以通过吸附、融合和吞噬的方式进入靶细胞[15-17]。其具有动态特性的脂质体膜,能更方便地将配体吸附到脂质体的表面,与靶分子更容易地结合,而在其他部位的游离药物少,可实现靶向释药[18]。为改善脂质体的靶向性和体内外稳定性,人们试图改变脂质体的表面性质,用合适的材料修饰脂质体[19]。葡萄糖转运体是在脑毛细血管内皮细胞、脑胶质瘤细胞表面高度表达的转运体,是靶向治疗脑胶质瘤的潜在靶点[20]。

为探究Ac4MAN是否和MAN一样,能靶向脑组织或脑胶质瘤部位而发挥靶向作用,本研究对Ac4MAN进行了稳定性研究。通过HPLC和UPLC-MS发现,在37℃、pH 7.4条件下,将Ac4MAN与PLE共同孵育,随时间延长,Ac4MAN会逐渐减少,最终生成MAN。Ac4MAN制备的脂质体形态外观良好,粒径电位均在稳定可用的纳米范围内,可以增加药物在靶部位的累积量,从而提高药效。加酶孵育后的Ac4MAN脂质体比Ac4MAN脂质体更容易被胶质瘤细胞摄取。因此,可以大胆假设Ac4MAN在人体环境中,在适宜的温度、pH值和酶的作用下,可以水解生成MAN,从而发挥脑靶向作用。

[参考文献]

[1] Jahan ST,Sadat SMA,Walliser M,et al. Targeted therapeutic nanoparticles:An immense promise to fight against cancer [J]. J Drug Deliv,2017:9 090 325.

[2] Castro MG,Candolfi M,Kroeger K,et al. Gene therapy and targeted toxins for glioma [J]. Curr Gene Ther,2011,11(3):155-180.

[3] Shukla GH,Kour Khera A,Kumar S,et al. Therapeutic potential, challenges and future perspective of cancer stem cells in translational oncology:a critical review [J]. Curr Stem Cell Rest,2017,12(3):207-224.

[4] Bar-Zeev M,Livney YD,Assaraf YG. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance [J]. Drug Resist Update,2017,31:15-30.

[5] Mujokoro B,Adabi M,Sadroddiny E,et al. Nano-structures mediated co-delivery of therapeutic agents for glioblastoma treatment:A review [J]. Mater Sci Eng C Mater Biol Appl,2016,69:1092-1102.

[6] Riaz MK,Riaz MA,Zhang X,et al. Surface functionalization and targeting strategies of liposomes in solid tumor therapy:A revie [J]. Int J Mol Sci,2018,19(1):195-212.

[7] Pinto MP,Arce M,Yameen B,et al. Targeted brain delivery nanoparticles for malignant gliomas [J]. Nanomedicine (Lond),2017,12(1):59-72.

[8] Maherani BE,Arab-Tehrany M, Mozafari R,et al. Liposomes: a review of manufacturing techniques and targeting strategies [J]. Curr Nano Sci,2011,7(3):436-452.

[9] Siafaka PI,Ustundag Okur N,Karavas E,et al. Surface modified multifunctional and stimuli responsive nanoparticles for drug targeting:current status and uses [J]. Int J Mol Sci,2016,17(9):1440.

[10] Szablewski L. Glucose Transporters in Brain: In Health and in Alzheimer′s Disease [J]. J Alzheimers Dis,2017, 55(4):1307-1320.

[11] Hao ZF,Cui YX,Li MH,et al. Liposomes modified with P-aminophenyl-alpha-D-manno-pyranoside: a carrier for targeting cerebral functional regions in mice [J]. Eur J Pharm Biopharm,2013,84(3):505-516.

[12] Nishioka T,Oda Y,Seino Y,et al. Distribution of the glucose transporters in human brain tumors [J]. Cancer Res,1992,52(14):3972-3979.

[13] Du D,Chang N,Sun S,et al. The role of glucose transporters in the distribution of p-aminophenyl-alpha-D-mannopyranoside modified liposomes within mice brain [J]. J Control Release,2014,182:99-110.

[14] Miranda A,Blanco-Prieto MJ,Sousa J,et al. Breaching barriers in glioblastoma. Part Ⅱ: Targeted drug delivery and lipid nanoparticles [J]. Int J Pharm,2017,531(1):389-410.

[15] Woodle MC,Newman MS,Working PK. Biological properties of sterically stabilized liposomes,in Stealth liposomes [J]. CRC Press,2018:123-138.

[16] Pradhan P,Banerjee R,Bahadur D,et al. Targeted Magnetic Liposomes Loaded with Doxorubicin,in Liposomes [J]. Springer,2017:257-272.

[17] Weissig V. Liposomes came first:The early history of liposomology,in Liposomes [J]. Springer,2017:1-15.

[18] Bnyan R,Khan I,Ehtezazi T,et al. Surfactant Effects on Lipid-Based Vesicles Properties [J]. J Pharm Sci,2018, 107(5):1237-1246.

[19] Mu LM,Ju RJ,Liu R,et al. Dual-functional drug liposomes in treatment of resistant cancers [J]. Adv Drug Deliver Rev,2017,115:46-56.

[20] Jurcovicova J. Glucose transport in brain-effect of inflammation [J]. Endocr Regul,2014,48(1):35-48.

(收稿日期:2018-09-21 本文編辑:王 蕾)

猜你喜欢

酯酶脂质体胶质瘤
PEG6000修饰的流感疫苗脂质体的制备和稳定性
地黄梓醇和乙酰胆碱酯酶作用的分子动力学模拟
蜈蚣草化学成分及抑制乙酰胆碱酯酶生物活性研究
超滤法测定甘草次酸脂质体包封率
黄芩总黄酮脂质体的制备及其体外抗肿瘤活性
新的药根碱三唑的合成与抗菌以及乙酰胆酯酶抑制活性评价
TPGS修饰青蒿琥酯脂质体的制备及其体外抗肿瘤活性
DCE-MRI在高、低级别脑胶质瘤及脑膜瘤中的鉴别诊断
P21和survivin蛋白在脑胶质瘤组织中的表达及其临床意义
Sox2和Oct4在人脑胶质瘤组织中的表达及意义