APP下载

胆汁酸的合成调控及其在生理与病理中的功能机制

2019-05-21刘笑王琰

遗传 2019年5期
关键词:糖基化胆汁酸小肠

刘笑,王琰



胆汁酸的合成调控及其在生理与病理中的功能机制

刘笑,王琰

武汉大学生命科学学院,细胞稳态湖北省重点实验室,武汉 430072

胆汁酸是一类胆固醇的代谢物,在机体胆固醇与能量代谢平衡和小肠营养物质吸收等方面起着重要作用。肝脏是合成胆汁酸的主要场所。饥饿条件下,胆汁酸从肝脏分泌进入胆管并被储存到胆囊;进食后胆囊收缩,贮存的胆汁酸被排出进入小肠。在小肠中,95%的胆汁酸会被小肠重新吸收,通过肝门静脉返回肝脏,这一过程被称为胆汁酸的肝肠循环。胆汁酸一方面作为乳化剂促进小肠中脂类等物质的吸收及转运,同时也作为重要的信号分子与多种受体结合,包括核受体法呢醇X受体(farnesoid X receptor, FXR)、维生素D受体(vitamin D receptor, VDR)、孕烷X受体(pregnane X receptor, PXR)以及细胞膜表面受体G蛋白偶联受体(cell membrane surface receptor-G protein coupled receptor, TGR5)等,在调节体内胆汁酸的代谢平衡、糖脂代谢与能量代谢平衡等方面发挥重要作用。肝细胞生长因子(hepatocyte growth factor, HGF)、白介素1-b(interleukin-1b, IL-1b)及肿瘤坏死因子(tumor necrosis factora, TNF-a)等协同作用构成了胆汁酸合成的精密调控网络。本文主要综述了胆汁酸的合成调控及其功能方面的最新研究进展,旨在为胆汁酸代谢相关研究提供参考。

胆汁酸;胆固醇7a羟化酶;法呢醇X受体;代谢;调控

胆固醇是机体内膜性结构的重要组成物质,其代谢紊乱会引发动脉粥样硬化和冠心病等一系列代谢性疾病[1]。体内胆固醇的来源可以分为外源食物摄取和内源机体合成。机体无法直接将胆固醇分解,但是可以利用胆固醇为原料,经过一系列的酶促催化反应将其转化为胆汁酸。肝脏合成的胆汁酸以及部分游离胆固醇以胆汁的形式从肝脏分泌进入胆管,并最终分泌至小肠。进入小肠中的胆汁酸95%以上会被小肠重新吸收,然后通过肝脏门静脉循环进入肝脏,另外5%左右会以粪便的形式排出体外[2]。机体通过调节胆汁酸的合成、分泌及重吸收等过程精确调节体内胆汁酸及胆固醇的稳态平衡。而体内的胆汁酸也是一种信号分子,能够与其受体核受体法呢醇X受体(farnesoid X receptor, FXR)和细胞膜表面受体G蛋白偶联受体(cell membrane surface receptor-G protein coupled receptor, TGR5)等相互作用,启动下游信号通路。本文将从胆汁酸的生物合成、肝肠循环及胆汁酸合成限速酶CYP7A1的表达调控等方面,总结近年来胆汁酸的合成调控及功能机制研究进展,以期为胆汁酸代谢调控分子机制的研究提供参考。

1 胆汁酸的生物合成

体内胆固醇水平的稳态主要由胆固醇的外源摄取、胆固醇的体内合成及胆固醇外排协调控制的,其中胆固醇经过一系列的酶促反应生成胆汁酸是胆固醇代谢的主要去路[3]。人体内胆汁酸的合成通路包括经典通路和非经典通路[4]。经典通路是在肝脏中,以定位于肝细胞内质网上的胆固醇7-a羟化酶(cholesterol 7a-hydroxylase, CYP7A1)为主要限速酶经过一系列的催化反应发生的,生成胆酸(cholic acid, CA)和鹅脱氧胆酸(chenodeoxycholic acid, CDCA)两种疏水性初级胆汁酸。非经典通路发生在多种组织及巨噬细胞中,以定位于线粒体的甾醇27A羟化酶(sterol 27A-hydroxylase, CYP27A1)和定位于内质网的氧甾醇和类固醇7a-羟化酶(oxysterol and steroid 7a-hydroxylase, CYP7B1)启动发生的[5,6]。Axelson等[7]的研究认为,非经典通路主要发生在一些病理状态下,当肝脏中CYP7A1的活性下降时,非经典通路通过产生鹅脱氧胆酸调节体内的代谢平衡。肝脏中生成的疏水性初级胆汁酸可以被甘氨酸或牛磺酸共价修饰形成胆酸盐。胆酸盐较初级胆汁酸的水溶性增加,降低了胆汁酸的毒性[8],使其可以被分泌到小肠。小肠中的肠道菌群可进一步代谢胆酸盐,使其脱去羟基,移去甘氨酸和牛磺酸形成次级胆汁酸,即脱氧胆酸(deoxycholic acid, DCA)和石胆酸(lithocholic acid, LCA)。CA、DCA及CDCA可以被小肠的刷状缘细胞重吸收经过门静脉循环被运回到肝脏[9]。

2 胆汁酸的肝肠循环

肝脏中生成的胆酸盐通过肝细胞表面的胆汁酸转运蛋白-胆盐输出泵(bile salt export pump, BSEP)被运送到胆小管,并储存在胆囊中。当进食后,胆囊收缩,将胆汁酸分泌到肠道[10],少部分胆汁酸可通过被动吸收的方式被十二指肠吸收。其中95%的胆汁酸在回肠中被主动吸收[9],这一过程依赖于小肠刷状缘细胞表面的Na+依赖的胆汁酸转运体(apical sodium dependent bile acid transporter, ASBT)。进入小肠细胞内的胆汁酸可以从肠上皮细胞极性膜一侧转移到基底膜,通过基底膜上的有机溶质转运体(organic solute transporteraandbheterdimer, OSTa/OSTb)异源二聚体排出细胞,进而被转运到肝脏门静脉。到达肝脏的胆汁酸被肝细胞细胞膜表面的Na+依赖的牛磺酸盐协同转运肽(Na+-dependent taurocholate co­transport peptide, NTCP)吸收进入肝细胞。这一过程被称为胆汁酸的肝肠循环。人体内的胆汁酸总量大约有3 g,每天可以进行4~12次的肝肠循环。人体粪便中每天排出的胆汁酸大约有0.5 g,这部分胆汁酸通过肝脏中胆汁酸的从头合成途径生成,从而维持胆汁酸总量的动态平衡[4,7]。

胆汁酸的肝肠循环促进了脂类及维生素等营养物质的乳化和吸收[11],并且使肝脏内胆汁酸的合成和小肠内胆汁酸的重吸收协同作用,共同维持机体胆汁酸及胆固醇的代谢平衡。

3 以CYP7A1为靶标的胆汁酸合成的代谢调控

CYP7A1作为胆汁酸合成的关键限速酶[3],其表达调控对于维持机体胆汁酸的稳态发挥了重要作用。研究发现,FXR作为胆汁酸的受体,在机体胆汁酸负反馈调节过程中发挥了重要作用[12,13]。FXR主要表达于肝脏和小肠[14],响应胆汁酸的刺激,在小肠和肝脏中分别通过不同的调控途径负反馈抑制CYP7A1的表达。机体中CYP7A1的表达水平除了受FXR调节之外,还受到FXR非依赖途径的调节,这一途径受到多种细胞因子、激素和酶的调节。这些因子共同作用,确保机体能够响应不同环境刺激,维持机体的正常运行。

3.1 FXR依赖的CYP7A1表达调控

3.1.1 肝脏中FXR参与的CYP7A1表达调控

FXR作为胆汁酸的感应器负反馈抑制CYP7A1的表达[12,15]。FXR高表达于肝脏和小肠,在肝脏中CA及CDCA可以激活FXR核受体活性[5]。但是CYP7A1启动子区没有FXR的结合域,FXR通过与其他基因相互作用间接抑制CYP7A1的表达。活化的FXR首先与视黄酸X受体a(retinoid X receptora, RXRa)结合形成异源二聚体,此异源二聚体可与目的基因启动子区的法呢醇X受体响应元件(farnesoid X receptor response element, FXREs)结合,进而上调或抑制基因的表达[16]。Goodwin等[15]经过大量筛选找到了FXR特异性的激活剂GW4064,发现GW4064对FXR的激活作用是CDCA的1000倍。GW4064刺激人和大鼠肝细胞时,小异二聚体伴侣(small heterodimer partner-1, SHP-1)的mRNA含量明显增加[17]。SHP-1是一个非典型的核孤儿受体家族成员,它缺乏DNA结合域,含有一个N端受体二聚化结合域,SHP-1通过其N端二聚化受体结合域招募其他受体,并通过抑制这些受体的转录来调节其他下游基因的表达。SHP-1在肝脏中低表达,在胆汁酸刺激的情况下表达量迅速升高。SHP-1 KO小鼠中,CYP7A1的表达水平明显上调,胆汁酸池明显增大。SHP-1过表达小鼠中胆汁酸池明显减小,并伴随甘油三酯的堆积[18,19]。SHP-1可以与核孤儿受体肝脏相关同系物1 (liver related homologue-1, LRH-1)结合并抑制此受体的活性。LRH-1是核受体家族的胞内转录因子,可以与CYP7A1的启动子区结合,上调CYP7A1的转录[17,20]。另一方面,LRH-1可以通过促进肠上皮细胞分泌成纤维细胞生长因子15 (fibroblast growth factor 15, FGF15)进而抑制CYP7A1的合成[16,18]。

综上所述,在肝脏中,CA及CDCA可以结合并活化FXR,活化的FXR首先与RXRa结合形成异源二聚体,此异源二聚体可以与SHP-1的启动子区结合并上调SHP-1的表达,SHP-1通过与LRH-1相互作用从而抑制CYP7A1的表达(图1)[17,19]。

3.1.2 小肠中FXR参与的CYP7A1表达调控

小肠中的FXR通过调节内分泌成纤维细胞生长因子15/19 (fibroblast growth factor 15/19, FGF15/19)的表达来抑制肝脏中CYP7A1的表达[20~22]。FGF19是成纤维细胞生长因子(fibroblast growth factor, FGFs)亚家族的成员之一,包括FGF19、FGF21和FGF23,是胆汁酸合成、葡糖糖吸收、脂代谢、维生素D和磷酸盐稳态的重要调控因子。小鼠中没有FGF19,研究发现小鼠FGF15蛋白的氨基酸序列与人FGF19蛋白的氨基酸序列有51%的同源性,并发挥了相似作用[23]。FGF19高表达于十二指肠和回肠,低表达于肝脏[24]。当小肠中的胆汁酸浓度增加时FXR被激活,活化的FXR进而上调FGF19的表达,FGF19可以通过旁分泌和内分泌途径发挥作用(图1)。FGF19分泌到血液后随肝门静脉循环被运回到肝脏,与肝细胞表面的成纤维细胞生长因子受体4 (fibroblast growth factor receptors 4, FGFR4)结合并磷酸化激活FGFR4受体酪氨酸激酶活性,通过有丝分裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)级联反应抑制CYP7A1的表达[25,26]。FGF19与FGFR4的作用需要b-Klotho的辅助。b-Klotho是一个大小为130 kDa的1型跨膜蛋白,主要表达于肝脏、脂肪以及胰腺[27]。b-Klotho缺失小鼠与FGFR4基因敲除鼠的表型非常一致,都伴随着CYP7A1转录水平的增加和胆汁酸池的增大[21]。b-Klotho可与FGFs作用并促进FGFs与受体的结合[28]。研究发现FGFR4与b-Klotho的相互作用发生在内质网。FGFR4含有3个糖基化修饰位点(N112、N258和N290),在内质网中形成核心糖基化FGFR4,核心糖基化FGFR4转运到高尔基体后经过进一步的修饰形成终端糖基化FGFR4。在b-Klotho存在时,FGFR4主要以终端糖基化形式存在。在内质网中b-Klotho与核心糖基化FGFR4相互结合,促进了核心糖基化FGFR4的蛋白酶体降解,从而使细胞内的终端糖基化FGFR4得到富集。研究还发现FGF19只与终端糖基化FGFR4结合并磷酸化激活FGFR4受体酪氨酸激酶活性,进而抑制CYP7A1的表达[29,30]。小肠中的FXR对肝脏中胆汁酸的合成起了重要的负反馈调节作用[31]。

3.2 FXR非依赖的CYP7A1表达调控

3.2.1 组蛋白去乙酰化酶参与的胆汁酸代谢调控

胆固醇水平过高会引发动脉粥样硬化以及心脑血管等疾病。胆固醇转变为胆汁酸是胆固醇代谢的主要去路,在这个过程中发挥关键催化作用的酶是胆固醇7-a羟化酶CYP7A1[3]。研究发现,在HepG2细胞中,用CDCA刺激1 h后CYP7A1的表达有显著下调,但此时FXR、SHP和FGF19的表达没有变化,刺激16 h后SHP和FGFG19的mRNA含量明显增加[32]。但是用FXR的特异性激活剂GW4064刺激1 h[33],并未看到CYP7A1的下调。这说明起始CYP7A1的下调不依赖于FXR途径[34]。研究还发现在CDCA刺激的初始阶段,组蛋白去乙酰化酶7 (histone deacetylase 7, HDCA7)参与了CYP7A1的抑制调控。HDCA7正常情况下定位在细胞膜上,但是在BA刺激情况下会移位到细胞核内,并被招募到CYP7A1的启动子区,与组蛋白去乙酰化酶3(histone deacetylase 3, HDAC3)、视黄酸和甲状腺受体沉默介质(silencingmediator forretinoid andthyroid receptors, SMRT–a)以及核受体辅阻遏物(nuclear receptor co­repressor, N-COR)相互作用促进RNA聚合酶2的解离,从而抑制CYP7A1的表达[32,35]。

图1 胆汁酸的肝肠循环及代谢调控

肝脏中的胆固醇在CYP7A1等一系列酶的催化作用下可代谢为胆汁酸。一方面,肝脏中的胆汁酸通过激活FXR/SHP信号通路,抑制LRH-1的表达进而抑制的CYP7A1的表达。另一方面,肝脏中合成的胆汁酸在BSEP和ASBT的作用下被吸收进入小肠。在小肠中,胆汁酸激活FXR通路,刺激肠上皮细胞分泌FGF15/19,分泌的FGF15/19通过肝肠循环途径进入肝脏与肝细胞表面的FGFR4及b-Klotho相互作用抑制CYP7A1的表达。小肠中的胆汁酸通过OSTa/OSTb和NTCP的作用被吸收进入肝细胞。GW4064是FXR的特异性激活剂。

3.2.2 胰高血糖素参与的胆汁酸代谢调控

在肝脏中胰高血糖素通过蛋白激酶A (protein kinase A, PKA)通路激活磷酸烯醇丙酮酸羧化激酶(phosphoenolpyruvate carboxykinase, PEPCK)并磷酸化肝细胞核因子(hepatocyte nuclear factor 4a, HNF4a)第304位的丝氨酸残基,从而抑制CYP7A1的表达。HNF4a是一个核转录因子,可以与CYP7A1的DR-1序列结合,从而激活CYP7A1的转录[36]。但是当HNF4a第304位丝氨酸残基被磷酸化后就会降低其与CYP7A1的结合能力和反式激活能力。因CYP7A1特异性的在肝脏中表达,PKA依赖的CYP7A1的抑制是肝脏特异性的,但是PKA依赖的PEPCK的活化在肝脏和肾脏中都存在。胰高血糖素在饥饿时分泌增加,所以CYP7A1的表达受饥饿进食影响[37]。胰高血糖素刺激下CYP7A1的转录被抑制,使体内胆汁酸的合成被抑制,进一步在胆汁酸乳化作用下脂的吸收水平下降[38],从而确保糖异生最大程度的被活化以维持体内的糖代谢和能量代谢。

3.2.3 细胞因子参与的胆汁酸代谢调控

肝细胞生长因子(hepatocyte growth factor, HGF)通过与酪氨酸激酶受体c-Met结合使其磷酸化被活化,进而调控了下游包括Ras、MAPK、PIP3及PKC等信号通路,在促进细胞生长、增殖、凋亡、创伤修复和组织再生等过程中发挥了重要作用[39]。肝脏部分切除后,在肝脏再生过程中胆汁酸的合成及CYP7A1的表达被抑制,同时血液中HGF的含量明显上调,HGF在肝再生过程中对胆汁酸的代谢调控发挥了重要作用[40~42]。研究发现,在人的原代肝细胞中,HGF可以显著抑制CYP7A1的表达。其作用机理是HGF通过与c-Met结合激活c-Met的磷酸酪氨酸激酶活性,通过磷酸化Erk1/2、JNK及PKC来抑制CYP7A1的表达。同时,HGF可以上调SHP-1的表达,进而抑制CYP7A1的转录(图2)[43]。HGF对CYP7A1的抑制,在肝损伤再生过程中发挥了重要作用,使肝细胞内胆汁酸浓度维持在一个较低水平,防止高胆汁酸浓度对细胞的毒害作用。

肿瘤坏死因子a(tumor necrosis factora, TNF-a)通过激活MAPKs家族的促分裂原活化蛋白激酶1 (mitogen-activated protein kinase kinase kinase 1, MEKK-1)进而磷酸化结合在CYP7A1胆汁酸响应元件序列区的HNF4a,从而降低HNF4a与CYP7A1的结合,抑制转录因子HNF4a的反式激活能力,从而下调CTP7A1的表达(图2)[34]。

胆汁酸可以激活肝脏巨噬细胞分泌炎症因子IL-1b,同时IL-1b又可以抑制胆汁酸的合成[43]。研究发现,IL-1b可以激活c-Jun的转录,一方面c-Jun可以抑制HNF4a招募过氧化物酶体增生激活受体γ的共活化因子1a(peroxisome proliferator-activated receptor γ co-activator 1a, PGC1-a);另一方面c-Jun可以被c-Jun-NH2末端激酶JNK磷酸化活化并抑制HNF4a与CYP7A1的结合,从而抑制CYP7A1的表达,以保护肝细胞免受炎症介导的毒害作用(图2)[44]。

4 其他胆汁酸受体参与的代谢调控

4.1 TGR5参与的代谢调控

胆汁酸作为细胞膜表面蛋白-G蛋白偶联受体TGR5的配体在能量代谢过程中发挥了重要作用[5,45]。TGR5广泛表达于小肠及胆囊的内皮细胞、肝窦内皮细胞和星状巨噬细胞,但是在肝实质细胞中不表达[46,47]。研究发现,在人和小鼠脂肪细胞中,DCA和LCA可以激活TGR5,活化的TGR5通过腺苷酸环化酶(cyclic adenosine monophosphate, cAMP)通路促进了甘油三酯的分解、脂肪酸的b氧化及线粒体的分裂和形成,从而促进了皮下白色脂肪组织的米色化和能量代谢[48]。在小鼠的棕色脂肪组织中,胆汁酸通过与TGR5结合,可激活腺苷酸环化酶,进而激活2型碘化甲状腺氨酸脱碘酶(type2 iodothyronine deiodinases, D2),D2可以使抑制型的甲状腺激素T4转变为活跃型的甲状腺激素T3[49],从而促进能量代谢,抑制肥胖的发生并提高胰岛素敏感性[50]。在小鼠肠内分泌细胞系中,胆汁酸通过激活TGR5进而促进了胰高血糖素样肽-1 (glucagon-like peptide-1, GLP-1)的分泌。GLP-1可刺激胰岛素的合成,促进胰岛素从胰岛b细胞分泌,在调节血糖平衡,抑制糖尿病发生过程中发挥了重要作用[46,51]。最近的研究发现,当用小肠FXR的特异性激动剂Fexaramine (FEX)刺激小鼠时,可诱导肠道微生物分泌LCA,分泌的LCA可激活TGR5/GLP-1通路,进而提高了胰岛素的敏感性以及白色脂肪组织的棕色化,促进了能量代谢[47]。这为治疗肥胖、糖尿病和非酒精性脂肪肝的研究提供了靶标。

图2 FXR非依赖的CYP7A1表达调控

在肝脏中,FXR非依赖的CYP7A1表达调控主要有以下几条途径:(1)胆汁酸通过激活炎症因子IL-1b,进一步激活c-Jun的转录,通过磷酸化HNF4a来抑制CYP7A1的表达;(2)胆汁酸也可激活HDCA7,在HDAC3以及共轭抑制子SMRT–a和N-COR的相互作用下抑制CYP7A1的表达;(3)肿瘤坏死因子TNF-a通过激活MEKK1进而磷酸化HNF4a来抑制CYP7A1的表达;(4)肝细胞生长因子HGF通过激活c-Met,进而激活Erk1/2、PKA或JNK通路从而抑制CYP7A1的表达。

胆汁酸激活的TGR5代谢通路在天然免疫、细胞的增殖和迁移以及癌症发生过程中也发挥重要的作用。最近的研究发现,病毒感染后诱导胆汁酸合成与转运通路的激活,胞内的胆汁酸通过其受体TGR5激活RIG-1和MAVS通路,在抗病毒天然免疫过程中发挥重要作用[52]。也有文献报道,TGR5被胆汁酸(包括LCA、DCA、CDCA和CA)活化后,通过Janus激酶2/信号转导和转录活化因子3 (janus kinase 2/signal transducer and activator of transcription 3, JAK2/STAT3)通路可促进非小细胞肺癌的增值和迁移[53,54],促进癌症的发生,这为非小细胞肺癌的治疗提供了靶点[55]。

4.2 孕烷X受体参与的代谢调控

研究发现,在慢性胆汁淤积性肝病患者体内,LCA的浓度偏高[56]。胆汁淤积,即胆汁流动停止或减少,会导致营养代谢失衡,脂质吸收不良,并导致对肝脏具有毒性的胆汁酸的淤积,从而使肝脏遭受不可逆的损伤[57]。肝脏主要通过两条途径排出毒性胆汁酸:一是羟基化;二是氨基酸修饰。孕烷X受体(pregnane X receptor, PXR)可以与孕烷孕烯醇酮16a-碳腈以及LCA结合并被激活,活化的PXR通过激活细胞色素P450-3A (cytochrome P450-3A, CYP3A)的表达促进LCA的6羟基化[58,59],增加了疏水性LCA的水溶性,从而降低其毒性。研究还发现,丹参酮IIA (tanshinone IIA, Tan IIA)是PXR的有效激活剂,活化的PXR通过诱导CYP3A的表达降低LCA的毒性[60]。Tan IIA是从丹参根中提取的天然活性物质,具有肝保护作用[61]。

PXR可以与HNF4a和PGC1-a相互作用调节CYP7A1的表达。半合成药物利福平,可以激活PXR核受体活性,活化的PXR可以与HNF4a相互作用,抑制PGC1-a与HNF4a的相互作用,进而抑制CYP7A1的转录[62]。

4.3 维生素D受体参与的代谢调控

维生素D受体(vitamin D receptor, VDR)在小肠中高表达,在人的肝细胞中表达量较低,在小鼠的肝脏中不表达。VDR作为LCA的受体,对于小肠中毒性胆汁酸LCA的代谢具有重要意义[63]。研究发现LCA对VDR的敏感性是PXR的10倍。在LCA或维生素D作用下VDR可被活化,活化的VDR通过CYP3A途径对LCA进行羟基化,从而降低毒性胆汁酸的浓度[64]。

小肠中VDR的缺失可降低小肠CYP3A的表达,抑制LCA的代谢,但同时可间接上调胆汁酸转运蛋白的表达,促进胆汁酸的肝肠循环,使大量的毒性胆汁酸被转运到肝脏,造成肝脏胆汁淤积并产生肝毒性。小肠中的VDR对于维持小肠屏障具有重要意义,在小肠中过表达CYP3A可促进小肠LCA的羟基化,保护小肠屏障[65]。

5 结语与展望

胆汁酸作为信号分子广泛参与了体内的糖脂代谢和能量代谢。近年来,对CYP7A1依赖的胆汁酸的合成调控已有深入的研究。形成了以CYP7A1为核心,核受体、细胞膜表面受体、细胞因子和酶等共同参与的代谢调控网络。多基因共同调控以确保机体在不同生理及外界刺激条件下体内代谢稳态的维持。

然而,在该领域内仍有一些问题尚未解决。胆汁酸受体FXR能够响应胆汁酸和GW4064的刺激,抑制胆汁酸合成限速酶CYP7A1的表达,GW4064激活的FXR通路主要通过SHP-1来抑制CYP7A1的表达,但是胆汁酸激活的FXR通路存在SHP-1依赖和SHP-1非依赖两条途径[18,19]。SHP-1非依赖的胆汁酸负反馈调节通路的分子机制尚不清楚。TGR5是已知的胆汁酸膜蛋白受体,该受体主要表达在胆囊等器官,在肝脏和小肠等胆汁酸代谢相关重要器官几乎不表达。越来越多的证据表明,胆汁酸是体内一类非常重要的信号分子,在肝脏和小肠等胆汁酸代谢重要组织中是否存在其他的胆汁酸的膜蛋白受体仍完全未知。这些问题的解决是全面认识胆汁酸及胆固醇代谢的重要途径。

[1] Wang L, Xu YM, Cheng ZJ, Xiong ZP, Deng LB. Advances in genetics of metabolic disorders of cholesterol., 2014, 36(9): 857–863.王立, 徐颜美, 程竹君, 熊招平, 邓立彬. 胆固醇代谢紊乱的遗传学研究进展. 遗传, 2014, 36(9): 857–863.

[2] Hofmann AF. Detoxification of lithocholic acid, a toxic bile acid: relevance to drug hepatotoxicity., 2004, 36(3–4): 703–722.

[3] Akerlund JE, Björkhem I. Studies on the regulation of cholesterol 7α-hydroxylase and HMG-CoA reductase in rat liver: effects of lymphatic drainage and ligation of the lymph duct., 1991, 31(12): 2159–2166.

[4] Vlahcevic ZR, Heuman DM, Hylemon PB. Regulation of bile acid synthesis., 1991, 13(3): 590–600.

[5] Chiang JYL. Bile acid metabolism and signaling., 2013, 3(3): 1191–1212.

[6] Chiang JYL. Recent advances in understanding bile acid homeostasis., 2017, 6: 2029.

[7] Axelson M, Sjovall J. Potential bile acid precursors in plasma-possible indicators of biosynthetic pathways to cholic and chenodeoxycholic acids in man., 1990, 36(6): 631–640.

[8] Carey MC, Small DM. Micellar properties of sodium fusidate, a steroid antibiotic structurally resembling the bile salts., 1971, 12(5): 604–613.

[9] Albaugh VL, Banan B, Ajouz H, Abumrad NN, Flynn CR. Bile acids and bariatric surgery., 2017, 56: 75–89.

[10] Zhang JC, Nie QH. Bile acid metabolism and its related progress., 2008, 17(11): 953– 956.张久聪, 聂青和. 胆汁酸代谢及相关进展. 胃肠病学和肝病学杂志. 2008, 17(11): 953–956.

[11] Ferrebee CB, Dawson PA. Metabolic effects of intestinal absorption and enterohepatic cycling of bile acids., 2015, 5(2): 129–134.

[12] Wang DP, Stroup D, Marrapodi M, Crestani M, Galli G, Chiang JY. Transcriptional regulation of the human cholesterol 7alpha-hydroxylase gene (CYP7A) in HepG2 cells., 1996, 37(9): 1831–1841.

[13] Ding L, Yang L, Wang Z, Huang W. Bile acid nuclear receptor FXR and digestive system diseases., 2015, 5(2): 135–144.

[14] Molinaro A, Wahlström A, Marschall HU. Role of bile acids in metabolic control., 2017, 29(1): 31–41.

[15] Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, Galardi C, Wilson JG, Lewis MC, Roth ME, Maloney PR, Willson TM, Kliewer SA. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis., 2000, 6(3): 517–526.

[16] Lee H, Zhang Y, Lee FY, Nelson SF, Gonzalez FJ, Edwards PA. FXR regulates organic solute transporters alpha and beta in the adrenal gland, kidney, and intestine., 2005, 47(1): 201–214.

[17] Boulias K, Katrakili N, Bamberg K, Underhill P, Greenfield A, Talianidis I. Regulation of hepatic metabolic pathways by the orphan nuclear receptor SHP., 2005, 24(14): 2624–2633.

[18] Seol W, Choi HS, Moore DD. An orphan nuclear hormone receptor that lacks a DNA binding domain and heterodimerizes with other receptors., 1996, 272(5266): 1336– 1339.

[19] Nitta M, Ku S, Brown C, Okamoto AY, Shan B. CPF: an orphan nuclear receptor that regulates liver-specific expression of the human cholesterol 7alpha-hydroxylase gene., 1999, 96(12) 6660–6665.

[20] Kliewer SA, Mangelsdorf DJ. Bile acids as hormones: the FXR-FGF15/19 pathway., 2015, 33(3): 327– 331.

[21] Ito S, Fujimori T, Furuya A, Satoh J, Nabeshima Y, Nabeshima Y. Impaired negative feedback suppression of bile acid synthesis in mice lacking beta Klotho., 2005, 115(8): 2202–2208.

[22] Li T, Chiang JYL. Bile acids as metabolic regulators.. 2015, 31(2): 159–165.

[23] Kuro-o M. Endocrine FGFs and Klothos: emerging concepts., 2008, 19(7): 239–245.

[24] Zhou H, Hylemon PB. Bile acids are nutrient signaling hormones., 2014, 86: 62–68.

[25] Yu C, Wang F, Jin C, Huang X, McKeehan WL. Independent repression of bile acid synthesis and activation of c-Jun N-terminal kinase (JNK) by activated hepatocyte fibroblast growth factor receptor 4 (FGFR4) and bile acids., 2005, 280(18): 17707–17714.

[26] Fu T, Kim YC, Byun S, Kim DH, Seok S, Suino-Powell K, Xu HE, Kemper B, Kemper JK. FXR primes the liver for intestinal FGF15 signaling by transient induction ofb-Klotho., 2016, 30(1): 92–103.

[27] Ito S, Kinoshita S, Shiraishi N, Nakagawa S, Sekine S, Fujimori T, Nabeshima YI. Molecular cloning and expression analyses of mouse β-klotho, which encodes a novel Klotho family protein., 2000, 98(1–2): 115–119.

[28] Yu C, Wang F, Kan M, Jin C, Jones RB, Weinstein M, Deng CX, McKeehan WL. Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4., 2000, 275(20): 15482–15489.

[29] Triantis V, Saeland E, Bijl N, Oude-Elferink RP, Jansen PL. Glycosylation of fibroblast growth factor receptor 4 is a key regulator of fibroblast growth factor 19-mediated down-regulation of cytochrome P450 7A1., 2010, 52(2): 656–666.

[30] Wu X, Ge H, Lemon B, Weiszmann J, Gupte J, Hawkins N, Li X, Tang J, Lindberg R, Li Y. Selective activation of FGFR4 by an FGF19 variant does not improve glucose metabolism in ob/ob mice., 2009, 106(34): 14379–14384.

[31] Fang S, Suh JM, Reilly SM, Yu E, Osborn O, Lackey D, Yoshihara E, Perino A, Jacinto S, Lukasheva Y, Atkins AR, Khvat A, Schnabl B, Yu RT, Brenner DA, Coulter S, Liddle C, Schoonjans K, Olefsky JM, Saltiel AR, Downes M, Evans RM. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance., 2015, 21(2): 159–165.

[32] Mitro N, Godio C, De Fabiani E, Scotti E, Galmozzi A, Gilardi F, Caruso D, Vigil Chacon AB, Crestani M. Insights in the regulation of cholesterol 7alpha-hydroxylase gene reveal a target for modulating bile acid synthesis., 2010, 46(3): 885–897.

[33] Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J, Mangelsdorf DJ. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors., 2000, 6(3): 507–515.

[34] De Fabiani E, Mitro N, Anzulovich AC, Pinelli A, Galli G, Crestani M. The negative effects of bile acids and tumor necrosis factor-aon the transcription of cholesterol 7a-hydroxylase gene (CYP7A1) converge to hepatic nuclear factor-4., 2001, 276(33): 30708–16.

[35] Guenther MG, Lane WS, Fischle W, Verdin E, Lazar MA, Shiekhattar R. A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness., 2000, 14(9): 1048–1057.

[36] Stroup D, Chiang JY. HNF4 and COUP-TFII interact to modulate transcription of the cholesterol 7alpha-hydroxylase gene (CYP7A1)., 2000, 41(1): 1–11.

[37] De Fabiani E, Mitro N, Gilardi F, Caruso D, Galli G, Crestani M. Coordinated control of cholesterol catabolism to bile acids and of gluconeogenesis via a novel mechanism of transcription regulation linked to the fasted-to-fed cycle., 2003, 278(40): 39124–39132.

[38] Song KH, Chiang JY. Glucagon and cAMP inhibit cholesterol 7alpha-hydroxylase (CYP7A1) gene expression in human hepatocytes: discordant regulation of bile acid synthesis and gluconeogenesis., 2006, 43(1): 117–125.

[39] Uehara Y, Mori C, Noda T, Shiota K, Kitamura N. Rescue of embryonic lethality in hepatocyte growth factor/scatter factor knock-out mice., 2015, 27(3): 99–103.

[40] Cheng Z, Liu L, Zhang XJ, Lu M, Wang Y, Assfalg V, Laschinger M, von Figura G, Sunami Y, Michalski CW, Kleeff J, Friess H, Hartmann D, Hüser N. Peroxisome proliferator-activated receptor gamma negatively regulates liver regeneration after partial hepatectomy via the HGF/ c-Met/ERK1/2 pathways., 2018, 8(1): 11894.

[41] Huang W, Ma K, Zhang J, Qatanani M, Cuvillier J, Liu J, Dong B, Huang X, Moore DD. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration., 2006, 312(5771): 233–236.

[42] Limaye PB, Bowen WC, Orr AV, Luo J, Tseng GC, Michalopoulos GK. Mechanisms of hepatocyte growth factor-mediated and epidermal growth factor-mediated signaling in transdifferentiation of rat hepatocytes to biliary epithelium., 2008, 47(5): 1702–1713.

[43] Li T, Jahan A, Chiang JY. Bile acids and cytokines inhibit the human cholesterol 7α-hydroxylase gene via the JNK/ c-jun pathway in human liver cells., 2006, 43(6): 1202–1210.

[44] Miyake JH, Wang SL, Davis RA. Bile acid induction of cytokine expression by macrophages correlates with repression of hepatic cholesterol 7ahydroxylase., 2000, 275(29): 21805–21808.

[45] Wang XX, Edelstein MH, Gafter U, Qiu L, Luo Y, Dobrinskikh E, Lucia S, Adorini L, D'Agati VD, Levi J, Rosenberg A, Kopp JB, Gius DR, Saleem MA, Levi M. G protein-coupled bile acid receptor TGR5 activation inhibits kidney disease in obesity and diabetes., 2015, 27(5): 1362–1378.

[46] Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1..,2005, 329(1): 386–390.

[47] Pathak P, Xie C, Nichols RG, Ferrell JM, Boehme S, Krausz KW, Patterson AD, Gonzalez FJ, Chiang JYL. Intestine farnesoid X receptor agonist and the gut microbiotaactivate G-protein bile acid receptor-1 signaling to improve metabolism., 2018, 68(4): 1574–1588.

[48] Velazquez-Villegas LA, Perino A, Lemos V, Zietak M, Nomura M, Pols TWH, Schoonjans K. TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue., 2018, 9: 245.

[49] Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases., 2002, 23(23): 38–89.

[50] Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, Schoonjans K, Bianco AC, Auwerx J. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation., 2006, 439(7075): 484–489.

[51] Ladurner A, Zehl M, Grienke U, Hofstadler C, Faur N, Pereira FC, Berry D, Dirsch VM, Rollinger JM. Allspice and clove as source of triterpene acids activating the G protein-coupled bile acid receptor TGR5., 2017, 8: 468.

[52] Hu MM, He WR, Gao P, Yang Q, He K, Cao LB, Li S, Feng YQ, Shu HB. Virus-induced accumulation of intracellular bile acids activates the TGR5-a-arrestin-SRC axis to enable innate antiviral immunity., 2019, 193–205.

[53] He M, Xue Y. MicroRNA-148a suppresses proliferation and invasion potential of non-small cell lung carcinomas via regulation of STAT3., 2017, 10: 1353–1361.

[54] Deb D, Rajaram S, Larsen JE, Dospoy PD, Marullo R, Li LS, Avila K, Xue F, Cerchietti L, Minna JD, Altschuler SJ, Wu LF. Combination therapy targeting BCL6 and phospho-STAT3 defeats intra-tumor heterogeneity in a subset of non-small cell lung cancers., 2017, 77(11): 3070–3081.

[55] Liu X, Chen B, You W, Xue S, Qin H, Jiang H. The membrane bile acid receptor TGR5 drives cell growth and migration via activation of the JAK2/STAT3 signaling pathway in non-small cell lung cancer., 2017, 412: 194–207.

[56] Fischer S, Beuers U, Spengler U, Zwiebel FM, Koebe HG. Hepatic levels of bile acids in end-stage chronic cholestatic liver disease., 1996, 251(2): 173–186.

[57] Carazo A, Hyrsova L, Dusek J, Chodounska H, Horvatova A, Berka K, Bazgier V, Gan-Schreier H, Chamulitrat W, Kudova E, Pavek P. Acetylated deoxycholic (DCA) and cholic (CA) acids are potent ligands of pregnane X (PXR) receptor., 2016, 265: 86–96.

[58] Hrycay E, Forrest D, Liu L, Wang R, Tai J, Deo A, Ling V, Bandiera S. Hepatic bile acid metabolism and expression of cytochrome P450 and related enzymes are altered in Bsep(-/-) mice., 2014, 389(1–2): 119–132.

[59] Staudinger JL, Goodwin B, Jones SA, Hawkins-Brown D, MacKenzie KI, LaTour A, Liu Y, Klaassen CD, Brown KK, Reinhard J, Willson TM, Koller BH, Kliewer SA. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity., 2001, 98(6): 3369–3374.

[60] Zhang X, Ma Z, Liang Q, Tang X, Hu D, Liu C, Tan H, Xiao C, Zhang B, Wang Y, Gao Y. Tanshinone IIA exerts protective effects in a LCA-induced cholestatic liver model associated with participation of pregnane X receptor., 2015, 164: 357–367.

[61] Sung HJ, Choi SM, Yoon Y, An KS. Tanshinone IIA, an ingredient of Salvia miltiorrhiza BUNGE, induces apoptosis in human leukemia cell lines through the activation of caspase-3., 1999, 31(4): 174–178.

[62] Li T, Chiang JYL. Mechanism of rifampicin and pregnane X receptor inhibition of human cholesterol 7β-hydroxylase gene transcription., 2005, 288(1): 74–84.

[63] Ishizawa M, Akagi D, Makishima M. Lithocholic acid is a vitamin D receptor ligand that acts preferentially in the ileum., 2018, 19(7): 1975.

[64] Cheng J, Fang ZZ, Kim JH, Krausz KW, Tanaka N, Chiang JY, Gonzalez FJ. Intestinal CYP3A4 protects against lithocholic acid-induced hepatotoxicity in intestine-specific VDR-deficient mice., 2013, 55(3): 455–465.

[65] Jurutka PW, Thompson PD, Whitfield GK, Eichhorst KR, Hall N, Dominguez CE, Hsieh JC, Haussler CA, Haussler MR.Molecular and functional comparison of 1,25-dihydroxyvitamin D(3) and the novel vitamin D receptor ligand, lithocholic acid, in activating transcription of cytochrome P450 3A4., 2005, 94(5): 917–943.

An overview of bile acid synthesis and its physiological and pathological functions

Xiao Liu, Yan Wang

Bile acids are a class of cholesterol derivatives that play important roles in cholesterol and energy homeostasis and intestinal nutrition absorption. Bile acids are mainly synthesized in the liver. During fasting, bile acids are secreted from the liver and stored in the gallbladder. After a meal, the stored bile acids are released into small intestines. In the intestine, about 95% of bile acids will be re-absorbed and travel back into the liver through port veins, which is called bile acid enterohepatic circulation. This enterohepatic circulation of bile acids plays important roles in the emulsification and intestinal absorption of lipids and other nutrition. On the other hand, bile acids function as ligands for a number of receptors, such as farnesoid X receptor (FXR), proterane X receptor (PXR), vitamin D receptor (VDR) and cell membrane surface receptor-G protein coupled receptor (TGR5), which play important roles from metabolic homeostasis to innate immunity. A number of cytokines such as hepatocyte growth factor (HGF), interleukin-1b(IL-1b) and tumor necrosis factora(TNF-a) regulate the homeostasis of bile acids. In the current review, we will summarize the recent progress in the regulation of bile acid synthesis and its physiological and pathological functions from energy homeostasis to innate immunity and cancer progression to provide a reference for the study of bile acid metabolism.

bile acid; CYP7A1; FXR; metabolism; regulation

2019-01-09;

2019-03-18

国家自然科学基金项目(编号:91754101)资助[Supported by the National Natural Science Foundation of China (No. 91754101)]

刘笑,硕士研究生,专业方向:脂类代谢。E-mail: 2016202040152@whu.edu.cn

王琰,博士,教授,博士生导师,研究方向:脂类代谢。E-mail: Wang.y@whu.edu.cn

10.16288/j.yczz.19-011

2019/3/26 9:24:44

URI: http://kns.cnki.net/kcms/detail/11.1913.R.20190326.0924.001.html

(责任编委: 陈雁)

猜你喜欢

糖基化胆汁酸小肠
胆汁酸代谢与T2DM糖脂代谢紊乱的研究概述
胆汁酸代谢在慢性肝病中的研究进展
一根小肠一头猪
蛋白质O-GlcNAc糖基化修饰在妇科肿瘤中的研究进展
养好女人小肠经
新生儿胆红素和总胆汁酸测定的临床意义
糖基化终末产物对胰岛β细胞的损伤及作用机制研究进展
糖基化终末产物与冠脉舒张功能受损
成人先天性小肠旋转不良长期误诊1例
总胆汁酸和前清蛋白在肝炎及肝炎后肝硬化中的临床意义