APP下载

竞争性内源性RNA与胃癌的相关研究进展

2019-04-25安健健姜相君

中国现代医生 2019年7期
关键词:微小RNA胃癌

安健健 姜相君

[摘要] 胃癌是全球最常见的癌症之一,是影响全球健康的一个主要问题。胃癌的发生发展是一个多因素共同作用的结果。近年来,非编码RNA(non-coding RNA,ncRNA),特别是微小RNA(microRNA,miRNA)和长链非编码RNA(long non-coding RNA,lncRNA),因在人类各种疾病中具有重要意义,包括癌症,而受到广泛关注。无疑,竞争性内源性RNA(competitive endogenous RNA,ceRNA)假说的提出为疾病中的基因调控作用提供了新思路。根据最新发现,本文描述了ceRNA在胃癌发生、发展中的作用和意义,并探讨了ceRNA在胃癌中的相互作用及其可能的分子机制。

[关键词] 胃癌;竞争性内源RNA;长链非编码RNA;微小RNA;假基因;环状RNA

[中图分类号] R735.7          [文献标识码] A          [文章编号] 1673-9701(2019)07-0152-07

[Abstract] Gastric cancer is one of the most common cancers in the world and a major problem affecting global health. The occurrence and development of gastric cancer is the result of a combination of multiple factors. In recent years, non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are important in various human diseases including cancer, and have received widespread attention. Undoubtedly, the proposal of competitive endogenous RNA (ceRNA) hypothesis provides a new idea for gene regulation in diseases. Based on the latest findings, this article describes the role and significance of ceRNA in the development and progression of gastric cancer, and explores the interaction of ceRNA in gastric cancer and its possible molecular mechanisms.

[Key words] Gastric cancer; Competitive endogenous RNA; Long-chain non-coding RNA; microRNA; Pseudogene; Circular RNA

胃癌是世界范围内的一种重要癌症,尽管在过去几十年中胃癌事件的发生率有所下降,成为第五位最常见的癌症,依然是影响全球健康的一个主要问题[1,2]。胃癌是仅次于肺癌和肝癌的第三大与癌症相关的死亡原因[3]。新病例确诊后5年存活率仅达28.3%[4]。胃癌的发生具有很大的地域差异,大约70%的病例发生在发展中国家,半数病例发生在东亚,特别是中国[1]。根据我国2010~2014年恶性肿瘤发病率及死亡率分析结果显示,胃癌是我国第二大常见恶性肿瘤,死亡率位居第三位[5-9]。胃癌的地理分布主要与饮食模式、社会经济状况和幽门螺杆菌感染的流行有关[10]。综合看来,胃癌仍然是威胁人类健康的一种重要疾病,了解胃癌发病机制,在疾病诊断、治疗及预后等方面寻找突破是十分有必要的。

1 胃癌与非编码RNA(ncRNA)

胃癌是一个多方面因素综合作用、长期积累的最终结果,这一发生发展过程甚至需要经过几十年,其发病机制涉及许多基因、分子信号通路及表观遗传学变化[11,12]。研究表明,在人类基因组中大多数的转录本是不编码蛋白质的,即非编码RNA(non-coding RNA,ncRNA),ncRNA在基因组转录产生的原始RNA转录本中占比99%,在成熟RNA中占比80%~90%[13]。ncRNA具有多种生物学功能,它们可以在转录、RNA处理和翻译水平上调控基因的表达,甚至引导基因组重组[14]。ncRNA主要根据其长度分为两类,以200个核苷酸(nt)长度为界,ncRNAs<200 nt长度称为非编码小分子RNA(Small non-coding RNAs,sncRNA),包括微小RNA(microRNA,miRNA)、小干扰RNA(small interfering RNA,siRNA)、与PIWI蛋白相互作用的RNA(Piwi-interacting RNA,piRNA)等,ncRNAs>200 nt长度为长链非编码RNA(long non-coding RNA,lncRNA)[15,16]。近年来,ncRNA调控失调在多种疾病中得到广泛关注,例如:心血管疾病、肺纤维化、流感等[17-19],同样也参与多种人类癌症相关研究,包括胃癌、乳腺癌、结肠癌、肺癌、肝癌、前列腺癌等[20]。可见ncRNA是调控肿瘤等多种疾病十分重要的一类分子,这类分子有望成为疾病研究的新标志物。

2 竞争性内源性RNA(ceRNA)假说

2011年Salmena和Pandolfi等研究人员首次提出竞争性内源RNA(competitive endogenous RNA,ceRNA)假说[21],表示除了传统的miRNA→RNA作用模式外,还存在反向的RNA→miRNA作用模式。并指出miRNA反应元件(miRNA-response elements,MREs)可以看作是RNA语言的“字符”,通过竞争结合这些“字符”,转录本之间可以相互交流,形成大规模的转录调控网络。该假说揭示了蛋白质组学和传统基因组方法所忽略的分子相互作用和基因调控网络。在癌症研究方面,该假说提出假基因(pseudogenes)和lncRNAs应该通过其ceRNA功能作为潜在的肿瘤抑制因子和癌基因被系统地研究。在ceRNA调控系统中miRNAs将RNA诱导的沉默复合体(RNA-induced silencing complex,RISC)引导到MREs,从而通过抑制翻译或破坏信使RNA(mRNA)的稳定来抑制蛋白质的产生。MRE定位于3非翻译区(UTR)、编码序列(CDS)和5UTR,除mRNAs外,还可在非蛋白质编码转录本中发现,如假基因和lncRNA。每个miRNA都有大量的RNA靶点,绝大多数RNA分子都包含几个MRE,含有相同miRNA的MRE的转录本可以相互调节,从而充当ceRNAs[21-24]。在该调控网络中lncRNAs可以充当微RNA诱饵来调控基因表达,它還包括基因间长链非编码RNA(long intergenic ncRNA,lincRNA)、反义RNA(antisense RNA,asRNA)、假基因和环状RNA(circular RNAs,circRNA)[22]。ceRNA假说的提出,无疑让我们对基因表达调控有了更深刻的理解。

随着对ceRNA调控机制的认识,有不少研究人员将目光转向ceRNA,试图探索其在肿瘤等疾病中的调控作用,以丰富对肿瘤发病机理的认知。例如,研究发现lncRNA牛磺酸上调基因(taurine-upregulated gene 1,TUG 1)转录本中可能存在miR-26a结合位点,TUG 1的表达与miR-26a在前列腺癌(Prostate cancer,PCA)中的表达呈负相关,另外TUG 1的异位过度表达抑制miR-26a的表达,促进肿瘤细胞在PCA中的迁移、侵袭和增殖。证明TUG 1可充当ceRNA,在PCA中与miRNAs相互作用[25]。类似的调控模式在多种恶性肿瘤中被发现、讨论,包括胃癌。本文将总结相关调控分子在胃癌中的作用及其指导意义。

3 LncRNA作为ceRNA在胃癌中的作用

lncRNAs在癌症生物学的许多领域都有重要贡献。研究表明lncRNAs可以作为癌基因或肿瘤抑制物发挥作用,直接或间接调节肿瘤相关信号通路,影响肿瘤的发生发展[26]。含有MREs的lncRNAs可与miRNA靶基因竞争,并通过减少游离功能的miRNA来调节其表达。长链非编码ceRNA和蛋白质编码RNA都含有miRNA的结合位点,所以长非编码ceRNA的上调可与蛋白质编码RNA竞争结合miRNA[27]。

3.1 HOTAIR

HOX反义基因间RNA(HOX Antisense Intergenic RNA.,HOTAIR)是从哺乳动物12q13号染色体上的HOXC基因簇中转录出来的,长度为2.2 kb(kilobase,千碱基)的lncRNA[28]。大量研究发现HOTAIR在多种肿瘤的增殖、存活、迁移、耐药性和基因组稳定性等方面发挥着重要作用[29]。Liu等研究人员通过实验发现,HOTAIR的过表达促进了胃癌细胞的增殖、迁移和侵袭,并验证人类表皮生长因子受体2(human epidermal growth factor receptor-2,HER2)是miR-331-3p的靶标。HOTAIR通过与miR-331-3p结合,从而消除了miRNA诱导对HER2的3‘-UTR的抑制活性,即说明了HOTAIR作为靶标HER2 mRNA的ceRNA,通过与miR-331-3p结合,调节HER2的去表达[30]。Wang等也发现HOTAIR的高表达可抑制miR-217的表达,从而增强蛋白酪氨酸磷酸酶非受体型14(protein tyrosine phosphatase non-receptor type 14,PTPN 14)的表达[31]。另外Yan等证明HOTAIR可与miR-126结合,抑制miR-126的表达,进而促进血管内皮生长因子A(vascular endothelial growth factor A,VEGFA)和磷酸肌醇3激酶调控亚单位(phosphoinositide 3-kinase regulatory subunit 2,PIK3R2)的表达,激活PI3K/AKT/MRP1通路,促进胃癌对顺铂的耐药性[32]。HOTAIR最新相关研究表明,其参与多种恶性肿瘤的发生,例如:HOTAIR通过miR-217上调锌指转录因子1(zinc-finger E-box binding homeobox 1,ZEB1)的表达介导骨肉瘤的进展[33];HOTAIR通过负调控miR-206的表达,增强细胞周期素CCND 1和CCND 2的表达,参与卵巢癌的进展,而细胞周期素(Cyclin D1,CCND 1)和细胞周期素(Cyclin D2,CCND 2)都是miR-206的下游靶点[34];在胶质瘤中发现HOTAIR可充当ceRNA通过与miR-126-5p作用调节谷氨酰胺酶(glutaminase,GLS)的表达,表明HOTAIR/miR-126/GLS通路参与了胶质瘤的进展[35]。

3.2 PVT1

浆细胞瘤变异型易位基因(plasmacytoma variant translocation gene,PVT1)位于人类8q24染色体的lncRNA[36],它在胃癌、非小細胞肺癌、结直肠癌、胰腺癌等多种人类肿瘤中都有研究,并且PVT 1的表达可作为肿瘤预后监测的生物标志物[37]。有研究发现PVT1在胃癌组织和细胞系中的表达明显上调,具有促进胃癌细胞的增殖和侵袭的作用,可通过与miR-186相互作用抑制缺氧诱导因子(hypoxia inducible factor 1α,HIF-1α)的表达[38]。同样在胃癌研究中发现,PVT1可通过调节(抑制)miR-152的表达,增加CD151分子(CD151 molecule)和成纤维细胞生长因子(fibroblast growth factor 2,FGF2)的表达[39]。最近,在膀胱癌中也有新发现,表示PVT1可能作为ceRNA与miR-128作用调控血管内皮生长因子VEGFC的表达[40]。在肺癌研究中,PVT1可通过发挥miR-199a-5p的ceRNA的作用,促进非小细胞肺癌组织中HIF-1α的表达[41]。

3.3 XIST

X染色体不活跃的特异性转录本(X inactive specific transcript,XIST)是X染色体失活(XCI)的主调节因子,是一个长17 kb的lncRNA[42,43]。大量研究提示lncRNA XIST的高表达可作为预后较差的生物标志物,可用作判断肿瘤预后和转移[44,45]。相关研究显示,在胃癌细胞中,XIST与miR-185表达呈负相关,生长因子β1(TGF-β1)为miR-185的靶基因,研究者认为XIST可作为ceRNA通过上调miR-185进而抑制TGF-β1的表达,从而抑制胃癌细胞的生长,并提示XIST可作为胃癌预后生物标志物[46]。另外lncRNA XIST参与了胃癌细胞的增殖和侵袭,研究发现XIST作为ceRNA抑制miR-497的表达,而miR-497控制着其下游靶点结肠癌相关转移因子-1(metastasis associated in colon cancer-1,MACC1),认为XIST通过miR-497/MACC 1轴在胃癌中发挥功能[47]。在其余疾病研究中,XIST也有很大贡献。在肺癌中,XIST可充当miR-137的ceRNA促进非小细胞肺癌(nonsmall-cell lung cancer,NSCLC)细胞存活和侵袭,miR-137可靶向作用桩蛋白(paxillin,PXN)的3‘UTR,抑制NSCLC细胞的存活和侵袭,即XIST通过抑制miR-137对PXN表达水平起正调节作用[48]。在宫颈癌中,XIST通过与miR-200A竞争结合而上调了肉瘤融合基因(Fused in sarcoma gene,FUS),在宫颈癌进展中发挥重要作用[49]。不止是在恶性肿瘤方面有研究,在骨关节炎、脊髓损伤等疾病中,XIST也发挥了重要作用[50,51]。

3.4 NEAT1

核旁装配转录体1(Nuclear paraspeckle assembly transcript 1,NEAT1)位于人类染色体11q13.1上,lncRNA NEAT1基因有两种转录本:NEAT1_v1(3.7 kb)和NEAT1_v2(23 kb)[52]。NEAT在胃癌、乳腺癌、肝细胞癌、甲状腺癌、卵巢癌等多种恶性肿瘤中都有相关研究,并证实其参与了肿瘤细胞的增殖、迁移、侵袭过程[53]。通过实验验证发现,NEAT1作为ceRNA通过抑制miR-506表达从而调节胃癌中信号传导及转录激活因子(signal transducers and activators of transcription,STAT 3)表达,为胃癌提供潜在的诊断及治疗靶点[54]。上调的NEAT1还可以通过抑制miR-335-5p,调控靶点Rho依赖性激酶1(Rho-dependent kinase 1,ROCK1)的表达,NEAT1/miR-335-5p/ROCK1轴在胃癌细胞的增殖、迁移和侵袭过程中发挥作用[55]。Xiong等在肺腺癌中对NEAT1进行相关研究,提示NEAT1可能作为ceRNA抑制miR-193a-3p的功能,阻断miR-193a-3p对上游转录因子1(Upstream Transcription Factor 1,USF1)的抑制,在肺腺癌进展中发挥作用[56]。实验证实miR-485是NEAT1的相互作用靶点,另外,STAT3是miR-485的直接作用靶点,所以认为NEAT1可作为ceRNA,通过抑制miR-485在肝细胞癌中调控STAT3发挥作用[57]。

3.5 MEG3

母源性表达基因(maternally expressed gene 3,MEG3)与小鼠母系印迹基因Gtl2同源,定位于人类染色体14q上,长度约为1.8 kb[58]。MEG3被认为是一个非常重要的抑癌基因,也是多种miRNA的宿主,在肿瘤发生过程中发挥作用[59]。研究证实MEG3和miR-148a表达呈正相关,miR-148a可调节靶基因DNA甲基转移酶1(DNA methyltransferase-1,DNMT-1)的表达,抑制胃癌的发生,说明抑制miR-148a可通过调节DNMT-1表达进一步下调MEG3,参与胃癌进程[60]。MEG3在胃癌细胞株(如HGC-27和MGC-803)中的异位表达抑制了细胞的增殖、迁移、侵袭并促进细胞凋亡,MEG3可以作为miR-181a的ceRNA上调B淋巴细胞瘤基因2(B-cell lymphoma-2,Bcl-2)的表达在胃癌中发挥作用[61]。根据最新研究显示,MEG3可作为ceRNA在骨肉瘤、肝糖异生及结肠癌针对奥沙利铂耐药性的研究中发挥作用[62-64]。

综上所述,提示人类基因组中可能存在大量可充当ceRNA的lncRNA,并在胃癌等多种疾病中发挥其调控作用。lncRNA在不同疾病过程中发挥作用也不同,为疾病的诊断、预后及耐药提供新的分子标志物及诊治靶点。

4 Pseudogenes作为ceRNA在胃癌中的作用

假基因(Pseudogenes)被定义为类似于真基因的基因组位点,即与它们的同源蛋白编码基因有很高的序列相似性,然而在生物学上被认为是无关紧要的,因为它们包含不成熟的终止密码子、缺失/插入和移码突变,从而使它们不能转化为功能性蛋白质[65]。然而假基因在“转录组”中占比很大,几乎和编码基因一样多[66]。Gu等[67]认为假基因就像“内源性海绵”,能够影响miRNA在其靶标上的分布。Poliseno等总结假基因可作为“诱饵”,同时竞争多个miRNA,因为它们保留了许多miRNA結合位点。假基因介导的miRNA诱饵为miRNA与其靶分子之间的相互作用提供了一个崭新的维度[65]。假基因已被证明其在各种癌症中被上调或下调,可通过ceRNA活性发挥其致癌或抑癌作用[68]。可见,对假基因进行有效的统计分析,有利于丰富对疾病进展的认识,特别是在肿瘤相关研究中。

4.1 PTENP1

PTEN假基因1(PTENP1)是最早被报道的假基因之一。PTENP 1是抑癌基因磷酸酶和张力蛋白同系物(phosphatase and tensin homolog,PTEN)的假基因,人类PTENP1位于9p13.3染色体上,该假基因与PTEN具有广泛的序列同源性,这些高度保守的序列可与PTEN靶向miRNAs相匹配,通过作为ceRNA诱导miRNAs来下调PTEN[65,69]。研究人员发现PTENP 1和PTEN在胃癌组织中同时下调,PTENP1的过表达抑制细胞生长,促进细胞凋亡,抑制胃癌细胞的迁移和侵袭,进一步证明,PTENP1可以作为一种ceRNA诱导miR-106b和miR-93靶向下调PTEN的表达,揭示了PTENP1作为ceRNA在胃癌中发挥抑癌作用[70]。另外,在乳腺癌中相关研究中,PTENP1可作为ceRNA,与miR-19b相互作用调节PTEN,在乳腺癌中发挥生物学作用[71];在膀胱癌中,miR-17作为PTENP1和PTEN的共同靶点,与lncRNA PTENP1作用调控PTEN的表达,可抑制膀胱癌的进展[72];在肝癌中,验证了PTENP1可作为ceRNA与miR-193a-3p相互作用,调控下游PTEN/Akt通路[73]。

大量实验数据证实,假基因并非无关紧要,相反,本人认为因为与亲本基因具有广泛的同源序列,使其可能成为miRNA强有力的竞争对手,进而调控靶基因的表达,在疾病中扮演重要角色,在疾病进展中发挥重要作用。

5 circRNA作为ceRNA在胃癌中的作用

已有研究人员验证,环状RNA(circular RNA,circRNA)是通过头对尾剪接外显子形成的,具有调节能力的一类RNA分子[74]。通过实验分析,circRNA是一种常见且丰富的ncRNA,与相关的线性转录因子相比,circRNA更丰富(>10倍),并且在进化上是保守的,circRNA具有丰富、保守、稳定的特性,存在miRNA结合位点,并且circRNA可以被siRNAs降解,因此被认为可以作为ceRNA发挥作用[75]。

5.1 CDR1as

小脑变性相关蛋白1反义转录子(Cerebellar Degeneration-Related protein 1 antisense transcripts,CDR1as)是由Hansen等[76]研究人员发现的一种circRNA,之后在多种疾病中被广泛研究。研究已证明CDR1as在神经元组织中具有与miR-7结合的功能[74]。受此启发,Xu等推测CDR1as的表达可能抑制胰岛细胞的miR-7功能,进而促进胰岛素的分泌,因为miR-7在胰岛细胞中大量表达。并通过实验发现CDR1as/miR-7通路调控胰岛素分泌的新靶点[77]。近年来研究显示,在非小细胞肺癌中CDR1as可作为miR-7海绵,上调miR-7的主要靶基因,包括表皮生长因子受体(epidermal growth factor receptor,EGFR)、细胞周期素E1(Cyclin E1,CCNE 1)和磷酸化磷脂酰肌醇激酶催化亚单位D(PIK3CD),抑制抑癌基因miR-7的抗肿瘤作用[78]。在喉鳞癌细胞中检测到CDR1as可促进细胞增殖、迁移和侵袭,CDR1的过度表达可抑制miR-7,而增加增殖指数CCNE 1和PIK3CD的表达,促进肿瘤生长[79]。另外CDR1as/miR-7信号轴在二氧化硅所致肺纤维化及骨肉瘤等疾病中也有研究[80,81]。因为CDR1as与miR-7有70多個结合位点,又称为miR-7的环状RNA海绵(circRNA sponge for miR-7,CIRS-7)[82]。在胃癌中,CIRS-7的过表达也通过拮抗miR-7,进而介导PTEN/PI3K/AKT通路,阻断miR-7的抑癌作用,在胃癌进展中发挥重要作用[83]。

相关研究证明circRNA也可以作为ceRNA竞争性结合miRNA在疾病中发挥作用,而且circRNA具有含量丰富、保守、稳定的特点,这将为其在疾病中发挥重要作用提供优势,可以看做是肿瘤等疾病的生物标志物。

6 潜在的问题

根据ceRNA假说,结合上述相关的ceRNA分子作用机制,我们了解了在这种RNA相互作用的调控模式中,因为可能存在相同的MREs,而可以发生相互“交流”, 从而形成大规模的转录调控网络。在ceRNA假说提出后,吸引了不少研究人员的目光,多方面的研究显示,ceRNA在多种疾病中存在并且发挥重要作用。但是同样也存在质疑声,有研究人员通过肝细胞和肝脏中miR-122靶点的表达改变细胞内靶点的丰度,并分析了对miR-122靶基因的影响,总结得出,在肝脏的生理或疾病背景中,由单个miRNA家族介导的ceRNA效应是不可能的,这种功能可能在正常组织中广泛存在[84]。面对质疑,可能需要更多的努力,更深入的探索去解决思考、解决问题。

7 总结

胃癌依然是影响全球健康的重大问题,其发病率和死亡率仍然位居前列,依旧是一种具有挑战性的疾病。胃癌的发病机制复杂且多样化,外在涉及多种相关危险因素,内在牵连复杂的分子机制,除了控制相关危险因素,提高居民的健康管理意识,建议及早消化内镜检查以筛查高风险人群,倡导“早发现,早治疗”的宗旨;更深层次的分子机制急需大量的研究成果、数据来丰富我们对发病机制和疾病发展过程的认知。ceRNA假说的提出,让我们对RNA之间的调控模式有了新的认识,其中ncRNA在调控中发挥重要作用,无论是lncRNA、假基因还是cricRNA,都可充当ceRNA在此调控模式中发挥各自的作用。本文重点描述与胃癌相关的ceRNA分子,描述了在胃癌进展中不同的ceRNA分子通过调控不同miRNA进而影响其对应靶基因的表达的证据。同样也列举说明了部分与其他疾病相关的ceRNA分子,旨在说明ceRNA不只在胃癌中可发挥重要作用,在很多疾病中(包括癌症)都可发挥其相应的作用。阐明这一新的RNA相互作用的调控模式,将为胃癌在内的多种疾病得诊断、治疗、预后、以及化疗药物耐药提供新的分子靶点。可见更好地了解这一调控模式的基本机制及其在胃癌生物学中的作用,有利于开发诊断及治疗胃癌的新策略,有望改善患者的预后及提高生存率。

[参考文献]

[1] Lazar DC,Avram MF,Romosan I,et al. Prognostic significance of tumor immune microenvironment and immunotherapy:Novel insights and future perspectives in gastric cancer[J]. World J Gastroenterol,2018,24(32):3583-3616.

[2] Bray F,Ferlay J,Soerjomataram I,et al.Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2018,68(6):394-424.

[3] Ferlay J,Soerjomataram I,Dikshit R,et al.Cancer incidence and mortality worldwide:Sources,methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer,2015, 136(5):E359-386.

[4] Marques-Lespier JM,Gonzalez-Pons M, Cruz-Correa M.Current perspectives on gastric cancer[J]. Gastroenterol Clin North Am,2016,45(3):413-428.

[5] 陈万青,郑荣寿,曾红梅,等.中国2010年恶性肿瘤发病与死亡[J].中国肿瘤,2014,23(1):1-10.

[6] 陈万青,郑荣寿,曾红梅,等.2011年中国恶性肿瘤发病和死亡分析[J].中国肿瘤,2015,24(1):1-10.

[7] 陈万青, 郑荣寿,张思维, 等.2012年中国恶性肿瘤发病和死亡分析[J]. 中国肿瘤,2016, 25(1):1-8.

[8] 陈万青,郑荣寿,张思维,等.2013年中国恶性肿瘤发病和死亡分析[J].中国肿瘤,2017,26(1):1-7.

[9] 陈万青,李贺,孙可欣,等.2014年中国恶性肿瘤发病和死亡分析[J]. 中华肿瘤杂志, 2018,40(1):5-13.

[10] Jemal A,Bray F,Center MM,et al.Global cancer statistics[J]. CA Cancer J Clin,2011,61(2):69-90.

[11] Figueiredo C,Camargo MC,Leite M,et al. Pathogenesis of gastric cancer:Genetics and molecular classification[J].Curr Top Microbiol Immunol,2017,400:277-304.

[12] 石巖岩,丁士刚.胃癌病因及发病机制的研究进展[J]. 中华临床医师杂志(电子版),2013,7(17):7941-7944.

[13] Su Y,Wu H,Pavlosky A,et al.Regulatory non-coding RNA:New instruments in the orchestration of cell death[J].Cell Death Dis,2016,7(8):e2333.

[14] Cech TR,Steitz JA.The noncoding RNA revolution-trashing old rules to forge new ones[J].Cell,2014,157(1):77-94.

[15] Nagano T,Fraser P.No-nonsense functions for long noncoding RNAs[J]. Cell, 2011,145(2):178-181.

[16] Romano G,Veneziano D,Acunzo M,et al.Small non-coding RNA and cancer[J]. Carcinogenesis,2017,38(5):485-491.

[17] Cui H,Xie N,Thannickal VJ,et al.The code of non-coding RNAs in lung fibrosis[J]. Cell Mol Life Sci,2015, 72(18):3507-3519.

[18] Das A,Samidurai A,Salloum FN.Deciphering non-coding RNAs in cardiovascular health and disease[J]. Front Cardiovasc Med,2018,5:73.

[19] Ma Y, Ouyang J,Wei J,et al.Involvement of host non-coding RNAs in the pathogenesis of the influenza virus[J].Int J Mol Sci,2016,18(1):39.

[20] Diamantopoulos MA,Tsiakanikas P,Scorilas A.Non-coding RNAs:The riddle of the transcriptome and their perspectives in cancer[J]. Ann Transl Med,2018,6(12):241.

[21] Salmena L,Poliseno L,Tay Y,et al.A ceRNA hypothesis:The rosetta stone of a hidden RNA language[J].Cell,2011,146(3):353-358.

[22] Chan JJ,Tay Y.Noncoding RNA:RNA regulatory networks in cancer[J].Int J Mol Sci,2018,19(5):1310.

[23] Karreth FA,Pandolfi PP.ceRNA cross-talk in cancer:When ce-bling rivalries go awry[J].Cancer Discov,2013, 3(10):1113-1121.

[24] Paraskevopoulou MD,Georgakilas G,Kostoulas N,et al.DIANA-LncBase:Experimentally verified and computationally predicted microRNA targets on long non-coding RNAs[J].Nucleic Acids Res,2013,41(Database issue):D239-245.

[25] Yang B,Tang X,Wang Z,et al.TUG1 promotes prostate cancer progression by acting as a ceRNA of miR-26a[J]. Biosci Rep,2018,38(5):BSR20180677.

[26] Chandra Gupta S,Nandan Tripathi Y.Potential of long non-coding RNAs in cancer patients:From biomarkers to therapeutic targets[J].Int J Cancer,2017,140(9):1955-1967.

[27] Hu Y,Tian H,Xu J,et al.Roles of competing endogenous RNAs in gastric cancer[J]. Brief Funct Genomics,2016, 15(3):266-273.

[28] Rinn JL,Kertesz M,Wang JK,et al.Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs[J].Cell,2007,129(7):1311-1323.

[29] Tang Q,Hann SS.HOTAIR:An oncogenic long non-coding RNA in human cancer[J]. Cell Physiol Biochem,2018, 47(3):893-913.

[30] Liu XH,Sun M,Nie FQ,et al.Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer[J]. Mol Cancer,2014,13:92.

[31] Wang H,Qin R,Guan A,et al.HOTAIR enhanced paclitaxel and doxorubicin resistance in gastric cancer cells partly through inhibiting miR-217 expression[J].J Cell Biochem,2018,119(9):7226-7234.

[32] Yan J,Dang Y,Liu S,et al.LncRNA HOTAIR promotes cisplatin resistance in gastric cancer by targeting miR-126 to activate the PI3K/AKT/MRP1 genes[J]. Tumour Biol,2016,37(12):16345-16355.

[33] Wang B,Qu XL, Liu J.HOTAIR promotes osteosarcoma development by sponging miR-217 and targeting ZEB1[J].J Cell Physiol,2018.doi:10.1002/jcp.27394.

[34] Chang L,Guo R,Yuan Z,et al.LncRNA HOTAIR regulates CCND1 and CCND2 expression by Sponging miR-206 in ovarian cancer[J]. Cell Physiol Biochem,2018, 49(4):1289-1303.

[35] Liu L,Cui S,Wan T,et al.Long non-coding RNA HOTAIR acts as a competing endogenous RNA to promote glioma progression by sponging miR-126-5p[J].J Cell Physiol,2018,233(9):6822-6831.

[36] Colombo T,Fara L,Macino Gin,et al.PVT1:A rising star among oncogenic long noncoding RNAs[J]. Biomed Res Int,2015,2015:304208.

[37] Chen X,Yang Y,Cao Y,et al.lncRNA PVT1 identified as an independent biomarker for prognosis surveillance of solid tumors based on transcriptome data and meta-analysis[J]. Cancer Manag Res,2018,10:2711-2727.

[38] Huang T,Liu HW,Chen JQ,et al.The long noncoding RNA PVT1 functions as a competing endogenous RNA by sponging miR-186 in gastric cancer[J].Biomed Pharmacother,2017,88:302-308.

[39] Li T,Meng XL,Yang WQ.Long Noncoding RNA PVT1 acts as a "Sponge" to inhibit microRNA-152 in gastric cancer cells[J]. Dig Dis Sci,2017,62(11):3021-3028.

[40] Yu C,Longfei L,Long W,et al.LncRNA PVT1 regulates VEGFC through inhibiting miR-128 in bladder cancer cells[J]. J Cell Physiol,2018,234(2):1346-1353.

[41] Wang C,Han C,Zhang Y,et al.LncRNA PVT1 regulate expression of HIF1alpha via functioning as ceRNA for miR199a5p in nonsmall cell lung cancer under hypoxia[J].Mol Med Rep,2018,17(1):1105-1110.

[42] Cerase A,Pintacuda G,Tattermusch A,et al.Xist localization and function:New insights from multiple levels[J].Genome Biol,2015,16:166.

[43] Pintacuda G,Young AN,Cerase A.Function by structure: Spotlights on xist long non-coding RNA[J]. Front Mol Biosci,2017,4:90.

[44] Mao H,Wang K,Feng Y,et al.Prognostic role of long non-coding RNA XIST expression in patients with solid tumors:A meta-analysis[J].Cancer Cell Int,2018,18:34.

[45] Zhu J,Kong F,Xing L,et al.Prognostic and clinicopathological value of long noncoding RNA XIST in cancer[J].Clin Chim Acta,2018,479:43-47.

[46] Zhang Q,Chen B,Liu P.XIST promotes gastric cancer(GC) progression through TGF-beta1 via targeting miR-185[J]. J Cell Biochem,2018,119(3):2787-2796.

[47] Ma L,Zhou Y,Luo X,et al.Long non-coding RNA XIST promotes cell growth and invasion through regulating miR-497/MACC1 axis in gastric cancer[J]. Oncotarget,2017,8(3):4125-4135.

[48] Jiang H,Zhang H,Hu X,et al.Knockdown of long non-coding RNA XIST inhibits cell viability and invasion by regulating miR-137/PXN axis in non-small cell lung cancer[J].Int J Biol Macromol,2018,111:623-631.

[49] Zhu H,Zheng T,Yu J,et al.LncRNA XIST accelerates cervical cancer progression via upregulating Fus through competitively binding with miR-200a[J]. Biomed Pharmacother,2018,105:789-797.

[50] Gu S,Xie R,Liu X,et al.Long coding RNA XIST contributes to neuronal apoptosis through the downregulation of AKT phosphorylation and is negatively regulated by miR-494 in rat spinal cord injury[J]. Int J Mol Sci,2017, 18(4):732.

[51] Li L,Lv G,Wang B,et al.The role of lncRNA XIST/miR-211 axis in modulating the proliferation and apoptosis of osteoarthritis chondrocytes through CXCR4 and MAPK signaling[J]. Biochem Biophys Res Commun,2018, 503(4):2555-2562.

[52] Bond CS,Fox AH.Paraspeckles:Nuclear bodies built on long noncoding RNA[J].J Cell Biol,2009,186(5):637-644.

[53] Dong P,Xiong Y,Yue J,et al.Long non-coding RNA NEAT1: A novel target for diagnosis and therapy in human tumors[J]. Front Genet,2018,9:471.

[54] Tan HY,Wang C,Liu G,et al.Long noncoding RNA NEAT1-modualted miR-506 regulates gastric cancer development through targeting STAT3[J]. J Cell Biochem, 2018,doi:10.1002/jcb.26691.

[55] Wang H,Zhang M,Sun G.Long non-coding RNA NEAT1 regulates the proliferation, migration and invasion of gastric cancer cells via targeting miR-335-5p/ROCK1 axis[J]. Pharmazie,2018,73(3):150-155.

[56] Xiong DD,Li ZY,Liang L,et al.The LncRNA NEAT1 accelerates lung adenocarcinoma deterioration and binds to Mir-193a-3p as a competitive endogenous RNA[J]. Cell Physiol Biochem,2018,48(3):905-918.

[57] Zhang XN,Zhou J,Lu XJ.The long noncoding RNA NEAT1 contributes to hepatocellular carcinoma development by sponging miR-485 and enhancing the expression of the STAT3[J].J Cell Physiol,2018,233(9):6733-6741.

[58] Miyoshi N,Wagatsuma H,Wakana S,et al.Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q[J]. Genes Cells,2000,5(3):211-220.

[59] Benetatos L,Vartholomatos G,Hatzimichael E.MEG3 imprinted gene contribution in tumorigenesis[J]. Int J Cancer,2011,129(4):773-739.

[60] Yan J,Guo X,Xia J,et al.MiR-148a regulates MEG3 in gastric cancer by targeting DNA methyltransferase 1[J]. Med Oncol,2014,31(3):879.

[61] Peng W,Si S,Zhang Q,et al.Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate gastric cancer progression[J]. J Exp Clin Cancer Res,2015,34:79.

[62] Jiang M,Wang YR,Xu N,et al.Long noncoding RNA MEG3 play an important role in osteosarcoma development through sponging microRNAs[J]. J Cell Biochem, 2018,doi:10.1002/jcb.27791.

[63] Wang H,Li H,Zhang L,et al.Overexpression of MEG3 sensitizes colorectal cancer cells to oxaliplatin through regulation of miR-141/PDCD4 axis [J]. J Cell Biochem,2018, 106:1607-1615.

[64] Zhu X,Li H,Wu Y,et al.CREB-upregulated lncRNA MEG3 promotes hepatic gluconeogenesis by regulating miR-302a-3p-CRTC2 axis[J]. J Cell Biochem,2018,doi:10.1002/jcb.27706.

[65] Poliseno L,Salmena L,Zhang J,et al.A coding-independent function of gene and pseudogene mRNAs regulates tumour biology [J]. Nature,2010,465(7301):1033-1038.

[66] Harrison PM,Zheng D,Zhang Z,et al.Transcribed processed pseudogenes in the human genome:An intermediate form of expressed retrosequence lacking protein-coding ability[J]. Nucleic Acids Res,2005,33(8):2374-2783.

[67] Gu S,Jin L,Zhang F,et al.Biological basis for restriction of microRNA targets to the 3' untranslated region in mammalian mRNAs[J]. Nat Struct Mol Biol,2009,16(2):144-150.

[68] Glenfield C,McLysaght A.Pseudogenes provide evolutionary evidence for the competitive endogenous RNA hypothesis[J]. Mol Biol Evol,2018,35(12):2886-2899.

[69] Haddadi N,Lin Y,Travis G,et al.PTEN/PTENP1: 'Regulating the regulator of RTK-dependent PI3K/Akt signalling', new targets for cancer therapy[J].Mol Cancer,2018,17(1):37.

[70] Zhang R,Guo Y,Ma Z,et al.Long non-coding RNA PTENP1 functions as a ceRNA to modulate PTEN level by decoying miR-106b and miR-93 in gastric cancer[J]. Oncotarget,2017,8(16):26079-26089.

[71] Li RK,Gao J,Guo LH,et al.PTENP1 acts as a ceRNA to regulate PTEN by sponging miR-19b and explores the biological role of PTENP1 in breast cancer[J]. Cancer Gene Ther,2017,24(7):309-315.

[72] Yu G,Ou ZY,Tao QY,et al.Role of lncRNA PTENP1 in tumorigenesis and progression of bladder cancer and the molecular mechanism [J]. Nan Fang Yi Ke Da Xue Xue Bao,2017,37(11):1494-1500.

[73] Qian YY,Li K,Liu QY,et al.Long non-coding RNA PTENP1 interacts with miR-193a-3p to suppress cell migration and invasion through the PTEN pathway in hepatocellular carcinoma[J]. Oncotarget,2017,8(64):107859-107869.

[74] Memczak S,Jens M,Elefsinioti A,et al.Circular RNAs are a large class of animal RNAs with regulatory potency[J].Nature,2013,495(7441):333-338.

[75] Jeck WR,Sorrentino JA,Wang K,et al.Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. Rna,2013,19(2):141-157.

[76] Hansen TB,Wiklund ED,Bramsen JB,et al.miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA[J]. Embo J,2011,30(21):4414-4422.

[77] Xu H,Guo S,Li W,et al.The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells[J]. Sci Rep, 2015,5:12453.

[78] Zhang X,Yang D,Wei Y.Overexpressed CDR1as functions as an oncogene to promote the tumor progression via miR-7 in non-small-cell lung cancer[J]. Onco Targets Ther,2018,11:3979-3987.

[79] Zhang J, Hu H,Zhao Y,et al.CDR1as is overexpressed in laryngeal squamous cell carcinoma to promote the tumour's progression via miR-7 signals[J]. Cell Prolif,2018,51(6):e12521.

[80] Xu B,Yang T,Wang Z,et al.CircRNA CDR1as/miR-7 signals promote tumor growth of osteosarcoma with a potential therapeutic and diagnostic value[J]. Cancer Manag Res,2018,10:4871-4880.

[81] Yao W,Yan L,Han L,et al.The CDR1as/miR-7/TGFBR2 axis modulates EMT in silica-induced pulmonary fibrosis[J]. Toxicol Sci,2018,166(2):465-478.

[82] Hansen TB,Jensen T,Clausen BH,et al.Natural RNA circles function as efficient microRNA sponges[J]. Nature,2013,495(7441):384-388.

[83] Pan H,Li T,Jiang Y,et al.Overexpression of circular RNA ciRS-7 abrogates the tumor suppressive effect of miR-7 on gastric cancer via PTEN/PI3K/AKT signaling pathway[J]. J Cell Biochem,2018,119(1):440-446.

[84] Denzler R,Agarwal V,Stefano J,et al.Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance[J]. Mol Cell, 2014,54(5):766-776.

(收稿日期:2018-12-17)

猜你喜欢

微小RNA胃癌
风心病合并房颤患者心肌microRNA表达谱分析与靶基因预测
MiRNA在肺癌诊断与治疗中的应用进展
微小RNA和肿瘤治疗的研究进展
鼻咽癌肿瘤干细胞miRNAs和 lncRNAs及mRNAs表达谱分析
胃癌组织中PGRN和Ki-67免疫反应性增强
P53及Ki67在胃癌中的表达及其临床意义
胃癌组织中Her-2、VEGF-C的表达及意义
胃癌组织中LKB1和VEGF-C的表达及其意义
胃癌组织中VEGF和ILK的表达及意义
乳腺癌与糖尿病关联研究的新进展