APP下载

基于相似度模型耦合角度制约规则的图像匹配算法

2019-04-09宋大伟马凤娟

关键词:图像匹配潍坊山东

宋大伟,马凤娟,赵 华



基于相似度模型耦合角度制约规则的图像匹配算法

*宋大伟1,马凤娟1,赵 华2

(1. 潍坊工程职业学院,山东,潍坊 262500;2. 山东科技大学,山东,青岛 266590 )

图像匹配;FAST特征检测;SURF机制;SSIM模型;相似度模型;角度制约规则

0 引言

数字图像给人们的生活带来了便利,为当代信息的传递提供了媒介[1]。人们通过数字图像可以实现快速的信息传递以及便捷的信息储存。目前,数字图像匹配技术已被应用到了刑事侦查、目标追踪以及人脸识别等多项技术范畴,是当下热门的研究技术之一[2]。

数字图像匹配技术的发展对人们有着重要的影响,目前出现了较多的数字图像匹配方法。如Hossain等人[3]设计了利用局部信息获取特征描述子的方法,通过局部信息的灰度等特征实现匹配,实验结果表明,这种方法能够较好地获取图像的特征信息,较准确地对图像特征进行匹配。Zhao等人[4]设计了一种利用线段方法对多模态图像进行匹配的技术,通过多模态鲁棒线段描述符对图像特征进行区分,并通过描述符的相似性检测获取匹配结果。张焕龙等人[5]对布谷鸟算法进行研究,将其引入图像匹配,通过获取图像的HOG特征,利用布谷鸟搜索方法获取特征匹配结果。Tsai等人[6]将不同图像的特征描述符进行比较,设计了分类环机制,将未校正的匹配对进行滤除,提高匹配结果的正确性。

1 所提图像匹配算法设计

图1 所提算法的匹配过程

1.1 图像特征检测

1.2 图像特征描述

1.3 图像特征匹配

对于匹配正确的特征点而言,其与特征点间构成的角度具有一定的接近度。为了进一步提高图像特征匹配的正确率,在此,将利用特征点间角度,建立角度制约规则,对特征点进行精匹配。

3)将三对正确匹配点中的一组替换成一对新的匹配点,并返回步骤(1),若新加入的匹配点组成的角度差值满足步骤(2)的判断条件,则判定新加入的匹配点对为正确匹配点对,否则为错误匹配点对给予剔除,从而实现特征的精匹配。

2 实验结果

图2 不同算法对光照度变化图像的匹配效果

将图5作为图像A,将其进行不同角度的旋转,形成图像B。利用不同算法对图像A与旋转形成的图像B进行匹配,并对匹配结果的正确度进行统计,以测试所提算法的匹配性能。

图5 测试目标

图6 匹配正确度的测试结果

3 结论

[1] 汤鹏杰,谭云兰,李金忠. 基于双流混合变换CNN特征的图像分类与识别[J]. 井冈山大学学报:自然科学版, 2015, 36(5): 53-59.

[2] Tony L. Image Matching Using Generalized Scale-Space Interest Points[J].Journal of Mathematical Imaging and Vision, 2015, 52(1): 3-36.

[3] Hossain M T, Shyh W T. Multimodal Image Registration Technique Based on Improved Local Feature Descriptors[J]. Journal of Electronic Imaging, 2013, 1(24): 1-17.

[4] Zhao C Y, Zhao H C, Lv J F. Multimodal Image Matching Based on Multimodality Robust Line Segment Descriptor[J]. Neurocomputing,2016,177(1):290-303.

[5] 张焕龙,张秀娇,贺振东. 基于布谷鸟搜索的图像匹配方法研究[J].郑州大学学报:理学版,2017,49(4):51-56.

[6] Tsai C H, Lin Y C. An Accelerated Image Matching Technique for UAV Orthoimage Registration[J].ISPRS Journal of Photogrammetry and Remote Sensing,2017, 128(1): 130-145.

[7] 陈剑虹,韩小珍. 结合FAST-SURF和改进k-d树最近邻查找的图像配准[J].西安理工大学学报,2016,32(2): 213-217.

[8] Jia D, CAO J, Song W D. Colour FAST (CFAST) Match: Fast Affine Template Matching for Colour Images [J]. Electronics Letters, 2016, 52(14): 1220-1221.

[9] 彭勃宇,王崴,周诚. 面向增强现实的SUSAN-SURF快速匹配算法[J]. 计算机应用研究,2015,32(8): 2538-2542.

[10] Dou J F, Qin Q, Tu Z M. Robust Image Matching with Cascaded Outliers Removal[J].Pattern Recognition and Image Analysis,2017,27(3):480-493.

[11] Beatriz O, Eva R, Jacint V. SURF-Based Mammalian Species Identification System[J]. Multimedia Tools and Applications, 2017,76(7):10133-10147.

[12] Zhang E L, Ma J, Wang X T. Improved SURF Algorithm for Color Remote Sensing Image Registration[J]. Chinese Journal of Liquid Crystals and Displays, 2017,32(2):144-152

[13] Sun Y W, Li H, Sun L. Use of Satellite Image for Constructing the Unmanned Aerial Vehicle Image Matching Framework[J].Journal of Applied Remote Sensing,2017,11(1): 1-12.

[14] Bo Y, Bahetiyaer B, Ke L. Learning Quality Assessment of Retargeted Images[J]. Signal Processing: Image Communication, 2017,56(1): 12-19.

[15] Seonyeong P, Siyong K, Byongyong Y. A Novel Method of Cone Beam CT Projection Binning Based on Image Registration[J].IEEE Trans Med Imaging,2017,36(8): 1733-1745.

[16] 吴鹏徐,洪玲,宋文龙. 结合小波金字塔的快速NCC图像匹配算法[J].哈尔滨工程大学学报,2017,38(5): 791-796.

[17] Sebastián C C, JoséG G. SIFT Otimization and Automation for Matching Images from Multiple Temporal Sources[J]. International Journal of Applied Earth Observation and Geoinformation,2017,57(1): 113-122.

Image Matching Method Based on Similarity Model Coupling Angle Constraint Rule

*SONG Da-wei1,MA Feng-juan1,ZHAO Hua2

(1. Weifang engineering Career Academy, Weifang, Shandong 262500, China;2. Shandong University of Science and Technology, Qingdao, Shandong 266590, China)

The current image matching methods mainly achieve image matching by measuring the distance, which neglect the similarity between images and result in more mismatches and poor robustness. In this paper, an image matching algorithm based on similarity degree model and coupling angle constraint rule is proposed. High-speed and high-accuracy feature detection method is used to detect the image features, and the feature points with high accuracy can be obtained fast, which is helpful to improve the matching accuracy of the algorithm. Using the feature description mechanism, the feature points are described by calculating the wavelet response values in the feature circle domain. The structure similarity model is introduced and combined with Euclidean distance model to construct similarity model. The feature points are roughly matched from the aspects of structure similarity and measurement distance. The cosine relation of feature points is used to calculate the angle between feature points, and the angle restriction rules are established to match the feature points accurately. Experimental results show that this matching algorithm has better matching performance and higher matching accuracy compared with the typical matching method.

image matching; FAST feature detection; SURF mechanism; SSIM model; similarity model; angle constraint rule

TP391

A

10.3969/j.issn.1674-8085.2019.02.008

1674-8085(2019)02-0039-06

2018-11-23;

2018-12-27

山东省自然科学基金项目(ZR2013FQ030)

*宋大伟(1976-),男,山东潍坊人,副教授,主要从事图像处理、计算机网络技术、数据库技术等方面的研究(E-mail: songdiv@sohu.com);

马凤娟(1975-),女,山东潍坊人,副教授,主要从事计算机图像、多媒体技术、数据库等方面的研究(E-mail: juanfm@tom.com);

赵 华(1980-),女,山东泗水人,副教授,博士,主要从事图像处理、话题检测与跟踪、网络舆情挖掘等方面的研究(E-mail:Zhaoh19SLK80S@163.com).

猜你喜欢

图像匹配潍坊山东
图说山东
逆势上扬的山东,再出发
『山东舰』入列一周年
“筝”艳潍坊四月天
山东的路幸福的路
一种用于光照变化图像匹配的改进KAZE算法
风筝之都潍坊
潍坊 巧用资源做好加法
挖掘机器人图像匹配算法研究
基于SIFT和LTP的图像匹配方法