APP下载

煤矸石填充对沟道导排水性能和土壤肥力及重金属污染的影响

2019-03-05王忠波张金博李殿兴张兴义

农业工程学报 2019年24期
关键词:肥力煤矸石土壤肥力

王忠波,张金博,王 斌,李殿兴,张兴义

煤矸石填充对沟道导排水性能和土壤肥力及重金属污染的影响

王忠波1,2,张金博2,王 斌2,李殿兴2,张兴义3

(1. 农业部农业水资源高效利用重点实验室,哈尔滨 150030;2. 东北农业大学水利与土木工程学院,哈尔滨 150030;3. 中国科学院东北地理与农业生态研究所,哈尔滨 150081)

为探寻适合东北黑土区侵蚀沟复垦的技术方法,该文研究了一种基于复垦后导排水能力最大的侵蚀沟煤矸石填充复垦技术方法,通过模拟一定深度的沟道、应用响应曲面法探究覆土和煤矸石填充厚度的变化对于复垦沟道导排水性能的影响及最优厚度搭配组合预测。同时引入土工布并考察土工布对煤矸石淋溶过程中重金属的隔绝作用。选择一条用煤矸石填充复垦4 a后的侵蚀沟,在耕层(0~20 cm)进行土壤肥力以及重金属污染情况的调查研究。结果表明:1)土层厚度增加减弱沟道导排水能力,混合粒径、大粒径煤矸石层厚度增加增大沟道导排水能力,土层与大粒径煤矸石层组合存在交互作用。覆土、混合粒径及大粒径煤矸石层厚度分别为53.42、38.51、90 cm时,模拟2 m深沟道导排水能力最强。2)沟道复垦4 a后,容重增加、酸度改善、全磷含量持平于对照土壤,全氮、全钾及有机质含量显著低于对照土壤。综合肥力小于对照土壤,略高于黑龙江省第二积温带的土壤综合肥力。3)复垦土壤Pb含量持平于当地对照土壤及背景值,Cr、Cu含量高于当地对照土壤及背景值,但均未超过环境质量二级标准值,3种重金属存在轻度污染及富集现象。研究结果可为土地整理规划提供一定借鉴。

侵蚀;复垦;重金属;煤矸石;导排水;土壤肥力

0 引 言

中国黑土区开垦较晚,但由于高强度掠夺式的经营方式,水土流失严重部分地区甚至出现了“破皮黄”现象[1]。水利部2013年《第一次全国水利普查水土保持情况公报》显示,东北黑土区超过100 m长度的侵蚀沟有29.6万条,沟道本身损毁土地约4 000 km2,60%以上侵蚀沟分布于耕地中,88.7%侵蚀沟处于发展状态[2]。侵蚀沟形成和发展过程造成的土地破碎、土壤肥力下降、农业机械化生产困难等问题也得到了学者们的广泛关注[3-7]。

面对日益严峻的土地资源短缺威胁,广大科研工作者结合实际,总结得到了一些土地复垦的技术方法与经验。如:引污泥复垦土地[8-10],引黄河泥沙填充复垦土地[11-14],回收固体废弃物粉煤灰复垦土地[15-16]等。而在中国,煤矸石的堆放侵占了大量的耕地、林地,每生产一定数量的原煤会附带产生15%~20%的煤矸石[17],如能将煤矸石作为复垦土地的填充材料,既能变废为宝,又可为国家节约土地资源。目前,国内关于利用煤矸石填充复垦土地已经取得一部分成果,但针对复垦后土壤的理化性质[18-19]、土壤菌群与微生物状况[20-21]、土壤重金属污染[22-24]等复垦效应问题上的研究较多,填充复垦技术上的研究较少,缺乏技术上的实质性研究。如:李正军[25]总结徐州张双楼煤矿煤矸石深埋充填塌陷地工程,对土地复垦与煤矸石综合利用结合的问题进行了探讨,在土地利用率及经济效益上得到了肯定性结论。然而深究侵蚀沟发生的根本原因是长期的水力侵蚀,那么在填充复垦侵蚀沟时,如何衰减地表径流量,增大沟道导排水性能,从根源上杜绝二次侵蚀及土壤养分流失当为首先要考虑的因素,基于此目的煤矸石填充复垦技术研究在国内外的研究还未见报道。

本文在综合前人研究成果基础上,初步研究一种基于复垦后导排水能力最大的侵蚀沟煤矸石填充复垦技术方法,通过模拟一定深度的沟道、应用响应曲面法(RSM)探究覆土和煤矸石填充厚度的变化对于复垦沟道导排水性能的影响及最优厚度搭配组合预测。针对一条用煤矸石填充复垦4 a后的侵蚀沟,在耕层(0~20 cm)进行土壤肥力及重金属污染情况的调查研究与评价。试图探讨此煤矸石填充侵蚀沟技术的可行性及突破点,为中国复垦规划提供一定的借鉴。

1 材料与方法

1.1 研究区概况

黑龙江新华农场位于三江平原腹地、小兴安岭南麓,地处黑龙江省第二积温带(47°08′49″N、130°06′16″E,海拔143.4 m)。总面积约647 km2。平均年降水量651.5 mm,年平均风速2.8 m/s,年平均气温3.8 ℃,全年日照时间2 518.7 h。土地利用以坡耕地为主,沟蚀和面蚀均较重。

复垦4 a的监测沟行政区域位于新华农场一连。复垦前侵蚀沟长度258 m,沟宽1.90 m,最深沟深1.14 m,沟底比降4.27%。复垦时在沟头对沟道进行整形,使沟道整形后沟深1 m,底部铺设50 cm深煤矸石并设置出流管,煤矸石取材自鹤岗矿区,随后在煤矸石上覆土50 cm,总体复垦长度100 m。

1.2 试验设计

本次试验模拟实际沟道深度为2 m,试验槽长×宽×深为2 m×1 m×2.2 m。基于最大程度上将地表径流转换为地下导排水的原则并保证一定的土层厚度,拟定大粒径煤矸石厚度范围为70~90 cm,覆土厚度为40~60 cm,同时在二者之间填放一定厚度的混合粒径煤矸石起到承上启下的作用,拟定厚度为30~50 cm,试验方案见表1。试验中,材料填充完毕后,用水车以固定流量开始向试验槽内灌水,以出流管承接固定水量的出流时间来表征复垦沟道导排水能力。本次试验采取比较接满第一桶水时间大小来比较平均出流速率(经过预试验观察,接满第一桶水过程中,出流管流态变化过程基本一致,均为开始出流到小股流再逐渐变大到稳定大股流,基本代表了整个入渗过程)。出流时间越短,平均出流速率越大,复垦沟道导排水能力越大;反之,复垦沟道导排水能力越小。试验槽中各种材料填放完毕后,开始灌水随即计时,当出流水接满第一桶水后停止灌水,计时结束。每组试验完成置换新料石与新土,重复此过程至所有试验结束。总体试验重复2次,最后取平均值。

图1 复垦材料填放顺序

1.3 复垦沟道土壤肥力、重金属调查与评价

土壤肥力调查指标选取土壤容重、pH值、有机质、全氮、全磷、全钾,土壤重金属指标选取煤矸石中含量较高且易发生转移的Cr、Pb、Cu 3种元素[26]。土壤采集于2018年10月秋收期后,由于调查沟道属于狭长地形,故采用“S”型采样法,复垦沟内取5处采样点(T1,T2,T3,T4,T5),远离复垦沟1km处取一处对照点CK,共计6处采样点。每个采样点划分出0.5 m×0.5 m的采样网格区域,首先在每个网格区域用环刀取样测定土壤容重,每个采样点取3个处理,随后在每个网格区域,先用铁铲在垂直方向0~20 cm深将土样挖出,依照四分法用木铲混合后分别取土样2.0 kg用于土壤肥力及重金属含量的测试分析。

表1 试验设计分组结果

1.3.1 土壤肥力评价

土壤肥力综合评价方法采用基于模糊评判的土壤肥力综合评价法(IFI),IFI值越高,土壤综合肥力水平越高。其基本形式为

式中W为第个指标的权重;N为第个指标的隶属度值。

由变异系数法和熵权法确定养分指标的客观权重并取平均,计算步骤详见文献[26-27]。式(2)为隶属度函数表达式,用以计算各土壤养分因子的隶属度值。为下限,为上限。表2为各土壤养分因子的隶属度函数值上下限[28]。

表2 土壤养分因子隶属度上下限值

1.3.2 土壤重金属污染评价

土壤重金属污染评价采用单因子污染指数法(PI)、富集因子法(EF)。单因子污染指数法(PI)用以评价单项重金属元素的污染情况。富集因子法(EF)用以评价土壤是否受到人为活动的影响而发生重金属的富集污染,选用Co[29]作为参比元素。计算公式分别如下

表3 重金属污染、富集程度及潜在生态风险分级标准

1.4 指标测定

烘干法测土壤容重,玻璃电极法测土壤pH值,重铬酸钾外加热法测有机质,流动分析仪测全氮、全磷、全钾,原子吸收分光光度计测重金属Cr、Pb、Cu含量。

1.5 数据处理方法

试验数据采用响应曲面法配套软件Design Expert、Excel 2010、Origin分别进行数据整理、方差分析以及作图。

2 结果与分析

2.1 煤矸石填充复垦侵蚀沟沟道导排水能力研究

2.1.1 多元二次回归模型的建立

以覆土厚度、混合粒径煤矸石层厚度、大粒径煤矸石层厚度为变量,以出流时间为响应值,消除量纲的影响,应用Design Expert得到编码值多元二次回归模型如下

式中为出流时间,s;1为覆土厚度,cm;2为混合煤矸石层厚度,cm;3为大粒径煤矸石层厚度,cm。

对建立的模型进行方差分析,结果见表4。从方差分析中,模型显著性=12.45,模型=0.000 2<0.001,R=0.918 1。模型达到极显著水平,建立的二次回归模型可靠度高,建立的模型有效。覆土厚度1、混合粒径煤矸石层厚度2和大粒径煤矸石层厚度3的值分别为0.025 8、0.002 1和<0.000 1,三者均为因变量显著影响项(<0.05),其中大粒径煤矸石层厚度3达到极显著水平。

表4 响应回归模型参数方差分析结果

2.1.2 填充材料厚度变化对整体出流时间的影响

为探究填充材料厚度变化对整体出流时间的影响,对建立的多元二次回归模型进行单因素效应分析。单因素效应分析即是对回归模型进行降维处理,目的是仅考查某一因素变化对于因变量影响。同时对得到的单因素效应函数进一步求导,得到单因素边际效应函数,用以探究影响因素对于结果的正负效应及效应能力的大小。由式 (5)得出覆土厚度、混合煤矸石层厚度、大粒径煤矸石层厚度对于整体出流时间影响单因素效应函数为

对单因素效应函数求导,得到单因素边际效应函数为

各因素单因素效应曲线及单因素边际效应函数见图 2。整体上,在有效编码值范围内(-1~1),整体出流时间随着覆土厚度增加呈逐渐增大趋势、随着混合粒径煤矸石层厚度、大粒径煤矸石层厚度增加呈减小趋势。覆土厚度呈现正效应,即随着覆土厚度增加,整体出流时间会逐渐增大。混合粒径煤矸石层厚度先呈现负效应后呈现正效应。大粒径煤矸石整体上都呈现负效应。对比单因素边际效应函数斜率大小可以得出:边际效应大小从大到小顺序为大粒径煤矸石厚度>覆土厚度>混合粒径煤矸石层厚度。

2.1.3 填充材料间的交互作用

交互项方差分析结果只有土层厚度与大粒径煤矸石层厚度组合达到显著水平(=0.0087<0.05)。土与混合粒径煤矸石(=0.9045>0.05)、混合粒径与大粒径煤矸石(=0.5086>0.05)交互作用不显著,故不再做分析。采用Design Expert软件绘制三维响应曲面图和等高线图,并分析自变量与响应值之间交互作用关系。图3为覆土厚度和大粒径煤矸石层厚度相互影响出流时间响应面图和等高线图。一般来说,响应面图中,圆形等高线图表示因素间交互作用不明显,椭圆形或马鞍形等高线图则表示因素间交互作用较强。由图3可知土层厚度与大粒径煤矸石层厚度二者之间交互作用较强。

图2 单因素效应与单因素边际效应

图3 覆土厚度和大粒径煤矸石层厚度相互影响出流时间等高线和响应面

2.1.4 最优厚度搭配组合及验证

由Design Expert软件计算多元二次回归模型得到的最优厚度搭配结果为:覆土厚度53.42 cm、混合粒径煤矸石层厚度38.51 cm、大粒径煤矸石层厚度90 cm,预测最小出流时间为:145.129 s。设置覆土厚度53 cm、混合粒径煤矸石层厚度38 cm、大粒径煤矸石层厚度90 cm试验组对模型结果加以验证。重复3次,验证的出流时间分别为:141、147、145 s,验证偏差率分别为2.84%、1.38%、0.08%,满足预期设想。

2.2 复垦沟道土壤肥力调查与评价

表5给出了用煤矸石填充侵蚀沟复垦4 a后耕层土壤5个采样点T1、T2、T3、T4、T5及对照土壤CK的肥力现状,相比当地对照土壤CK,在单项肥力指标上,土壤容重略有所增加,增幅在0.84%~5.88%之间,土壤酸碱度有所改善,增幅在14.20%~17.96%。对于植物生长最为重要的营养物质方面,磷素水平基本持平于对照土壤CK,但氮素、钾素及土壤有机质含量均有不同程度上的亏欠,亏欠幅度分别为37.33%~48.24%、19.05%~38.10%和33.86%~46.06%。通过变异系数法及熵权法计算的容重、pH值、有机质、全氮、全磷、全钾权重分别为0.133、0.110、0.208、0.199、0.203、0.147和0.139、0.122、0.201、0.192、0.196、0.153,综合权重为0.139、0.122、0.201、0.192、0.196、0.150。计算的综合肥力评价指数如图4所示,复垦土壤耕层综合肥力IFI值在0.497至0.602之间,明显小于当地对照土壤综合肥力IFI值0.745,综合肥力水平只达到对照土壤的66.71%~80.81%,均值只达到72.75%,说明用煤矸石填充侵蚀沟复垦4 a后耕层土壤的综合肥力相比于当地正常土壤有所欠缺。但对比于黑龙江省第二积温带的土壤综合肥力[28],复垦土壤耕层综合肥力总体略高于地区平均水平,土壤综合肥力水平尚可。

表5 监测沟土壤肥力调查现状

注:T1~T5均为复垦沟内采样点。CK为距复垦沟1km处的对照点。下同。

Note:T1-T5 are sampling points in the reclamation gully. CK is the comparison point at 1km from reclamation gully. The same as below.

图4 土壤综合肥力评价结果

2.3 复垦沟道重金属调查与风险评价

表6给出了用煤矸石填充侵蚀沟复垦4 a后耕层土壤重金属调查现状及描述统计分析。可以看出土壤重金属中Pb含量对比于当地对照土壤CK及背景值基本持平,Cr、Cu含量要高于当地对照土壤CK及背景值,说明相比于正常对照土壤,监测沟复垦土壤受到一定程度上的重金属污染,但对比于国家环境质量二级标准值[34],调查的3 种重金属均未超过标准值。变异系数结果显示Cr、Pb、Cu 3种重金属均不超过15%,属于低度变异[36],说明现阶段受到外来因素的影响较小,比较3种重金属的变异系数:Cr>Pb>Cu,说明重金属Cr更容易在“煤矸石-土壤系统”中向上迁移,其次是Pb元素,最后是Cu元素。图5为复垦沟道土壤重金属污染及富集状况,计算的Cr、Pb、Cu 3种重金属元素单因子污染指数PI值均处在1~2之间,富集因子法EF值处在1~3之间,比较分级标准可以得出,复垦沟土壤受到了Cr、Pb、Cu 3种重金属元素的轻度污染,已经发生轻微的富集现象,但程度较低。

表6 监测沟土壤重金属调查现状及描述统计

图5 土壤重金属污染与富集状况

3 讨 论

3.1 煤矸石填充侵蚀沟复垦后沟道导排水能力

本文通过模拟一定深度侵蚀沟,探究了一种“土-混合粒径煤矸石-大粒径煤矸石”结构填充复垦侵蚀沟后沟道导排水能力,结果显示,覆土厚度对复垦沟道的整体出流时间呈现正效应,混合粒径及大粒径煤矸石层厚度呈现负效应,即增加土厚会减弱复垦沟道导排水能力,增加煤矸石厚度会增强复垦沟道导排水能力,这与党宏宇等[36]及马保国等[37]的部分研究结果一致。产生这种现象的原因是土体本身孔隙度对比堆石体要小,水通过的速率要慢,同时土体本身也能保存一部分水,只有土体中蓄水能力达到饱和时,水分才会继续流向下一层结构,随着土层厚度的增加,土层也会截留更多的水分,水分通过土层的时间也会越来越长。而混合粒径煤矸石以及大粒径煤矸石几乎没有蓄水能力,水分通过两种介质的时间只跟介质间的孔隙度有关。混合粒径煤矸石由于粒径较小,试验中也观察到混合粒径煤矸石填充后,整体结构较为致密,介质间的孔隙度自然比大粒径煤矸石要小,水分通过的时间要比大粒径要长。同时马保国等的试验结果还表明不同矸土质量比下,水分入渗时间不同,这与本文的研究结果相似,不同类型介质之间的确存在一定的交互作用,但马保国等[37]的试验研究并未对矸石不同粒径大小与土复合体下与水分整体入渗速率之间的关系进行研究。

3.2 复垦沟道土壤肥力调查与评价

通过对煤矸石填充复垦侵蚀沟后土壤肥力进行调查,发现复垦土壤容重有所增加(0.84%~5.88%),土壤酸性有所改善(14.20%~17.96%),氮素(37.33%~48.24%)、钾素(19.05%~38.10%)及土壤有机质含量(33.86%~46.06%)均有所亏欠,仅磷素水平基本持平于对照土壤CK。综合肥力相比对照土壤有所欠缺,水平相当于对照土壤CK的66.71%~80.81%,均值只达到72.75%。究其综合肥力欠缺的原因主要是复垦沟道地理位置处在黑土区漫山漫岗区域,本身处于汇水线范围内,复垦前就已经形成侵蚀沟,是水蚀的重灾区,沟道在用煤矸石填充复垦后,沟道的导排水能力得以进一步加强,承接了更多的水分入渗,伴随而来的是土壤淋溶现象的加剧。调查可知,对照土壤pH值为5.07,土壤本身呈酸性,复垦土壤在长期淋溶的过程,会带走土壤中过量的氢离子,使土壤酸性得以改善,土壤中的黏粒也会随水被带走,土壤容重增大[38],对于复垦土壤重要的营养物质,特别是氮、磷、钾及可溶有机质的淋溶作用更强[39-40],综上造成了复垦土壤综合肥力的欠缺。在今后耕作过程中,需注重复垦沟道土壤的肥料补充。

3.3 复垦沟道土壤重金属调查与评价

煤矸石是产煤过程中的产生的固体废弃物,自身含有一定量的重金属元素。许多研究[41-42]也证明煤矸石露天堆放形成的矸石山在雨水或酸雨的淋溶作用下,也会迫使周围的生态环境发生改变甚至造成人为的二次污染,最明显的污染情况是土壤重金属的严重富集。本文研究显示,用煤矸石填充复垦侵蚀沟4 a后,通过计算3种重金属元素Cr、Pb、Cu:单因子污染指数法1

4 结 论

1)覆土厚度增加会增大复垦沟道整体出流时间,导排水能力变弱,混合粒径煤矸石厚度、大粒径煤矸石厚度增加会减少复垦沟道整体出流时间,导排水能力增强。覆土厚度与大粒径煤矸石厚度间交互作用明显。覆土、混合粒径及大粒径煤矸石层厚度分别为53.42、38.51、90 cm时,模拟2 m深沟道导排水能力最强。

2)在用煤矸石填充复垦侵蚀沟4 a后,相较于对照土壤CK,监测沟复垦土壤容重有所增加,土壤酸性有所改善,氮素、钾素及土壤有机质含量均有所亏欠,仅磷素水平基本持平于对照土壤CK。土壤综合肥力水平相当于对照土壤CK的66.71%~80.81%,均值只达到72.75%。但对比于黑龙江省第二积温带地区土壤综合肥力平均水平,复垦土壤综合肥力略高与该水平,土壤肥力尚可。

3)监测沟复垦土壤重金属Pb含量基本持平于当地对照土壤CK及背景值,但复垦土壤中Cr、Cu含量要高于当地对照土壤CK及背景值,但3种监测沟复垦土壤重金属均未超过国家环境质量二级标准值。单因子污染指数法及富集因子法计算结果表明:监测沟复垦土壤重金属Cr、Pb、Cu存在轻度污染及轻微富集,可以将煤矸石作为侵蚀沟填充复垦的一种材料,但在长时间上,复垦时还需注意土壤重金属富集的问题。

[1]水利部,中国科学院,中国工程院,中国水土流失防治与生态安全:东北黑土区卷[M].北京:科学出版社,2010:64-66.

[2]张兴义,刘晓冰,赵军,黑土利用与保护[M].北京:科学出版社,2018:131-132.

[3]李益敏,管成文,郭丽琴,等.基于生态敏感性分析的江川区土地利用空间格局优化配置[J].农业工程学报,2018,34(20):267-276. Li Yimin, Guan Chengwen, Guo Liqin, et al. Optimization of land use spatial pattern in Jiangchuan district based on ecological sensitivity analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 267-276. (in Chinese with English abstract)

[4]成玉婷,李鹏,徐国策,等.冻融条件下土壤可蚀性对坡面氮磷流失的影响[J].农业工程学报,2017,33(24):141-149. Cheng Yuting, Li Peng, Xu Guoce, et al. Effect of soil erodibility on nitrogen and phosphorus loss under condition of freeze-thaw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 141-149. (in Chinese with English abstract)

[5]Artem V Gusarov, Valentin N Golosov, Aidar G Sharifullin. Contribution of climate and land cover changes to reduction in soil erosion rates within small cultivated catchments in the eastern part of the Russian Plain during the last 60 years[J]. Environmental Research, 2018, 167: 21-33.

[6]Liu Chun, Li Zhongwu, Chang Xiaofeng, et al. Soil carbon and nitrogen sources and redistribution as affected by erosion and deposition processes: A case study in a loess hilly-gully catchment, China[J]. Agriculture, Ecosystems and Environment, 2018, 253: 11-22.

[7]Ali Reza Vaezi, Morvarid Ahmadi, Artemi Cerdà. Contribution of raindrop impact to the change of soil pHysical properties and water erosion under semi-arid rainfalls[J]. Science of the Total Environment, 2017, 583: 382-392.

[8]朱红霞,汪海英,王华春,等.剩余活性污泥用于铅污染土地复垦的初步研究[J].环境科学与技术,2015,38(S1):281-284,311. Zhu Hongxia, Wang Haiying, Wang Huachun, et al. A preliminary study for activated sludge of lead-contaminated land reclamation [J]. Environmental Science & Technology,2015,38(S1):281-284, 311. (in Chinese with English abstract)

[9]Wenlin Yvonne Lin, Wei Cheng Ng, Belinda Shu Ee Wong, et al. Evaluation of sewage sludge incineration ash as a potential land reclamation material[J]. Journal of Hazardous Materials, 2018, 357: 63-72.

[10]时洪超. 湖泥充填采煤沉陷区复垦技术在大屯公司的应用[J].中国高新技术企业,2010(3):69-70.

[11]胡振琪,王培俊,邵芳.引黄河泥沙充填复垦采煤沉陷地技术的试验研究[J].农业工程学报,2015,31(3):288-295. Hu Zhenqi, Wang Peijun, Shao Fang. Technique for filling reclamation of mining subsidence land with Yellow River sediment[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(3): 288-295. (in Chinese with English abstract)

[12]李晶,殷守强,于加春,等.黄河流域矿区充填复垦泥沙供需状况及输沙路径分析[J].农业工程学报,2019,35(5):268-277. Li Jing, Yin Shouqiang, Yu Jiachun, et al. Analysis of supply-demand and transportation path of sediments for filling reclamation of mining areas in Yellow River basin[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(5): 268 -277. (in Chinese with English abstract)

[13]王晓彤,胡振琪,梁宇生,等.基于水分特性的采煤沉陷地充填复垦黄河泥沙容重优选[J].农业工程学报,2018,34(16):258-264.Wang Xiaotong, Hu Zhenqi, Liang Yusheng, et al. Optimal bulk density infilling reclamation of mining subsidence land with Yellow River sediment based on water characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(16): 258 -264. (in Chinese with English abstract)

[14]胡振琪,邵芳,多玲花,等.黄河泥沙间隔条带式充填采煤沉陷地复垦技术及实践[J].煤炭学报,2017,42(3):557-566. Hu Zhenqi, Shao Fang, Duo Linghua, et al. Technique of reclaiming subsided land with Yellow River sediments in the form of spaced strips[J].Journal of China Coal Society,2017,42(3):557-566. (in Chinese with English abstract)

[15]徐良骥,许善文,严家平,等.基于粉煤灰基质充填覆土复垦的最佳覆土厚度[J].煤炭学报,2012,37(S2):485-488. Xu Liangji, Xu Shanwen, Yan Jiaping, et al. Optimum soil coverage thickness of reclamation land filled with fly ash [J]. Journal of China Coal Society, 2012, 37(S2): 485-488. (in Chinese with English abstract)

[16]宁松瑞,韩霁昌,张扬,等.粉煤灰在土地整治工程中的研究及应用现状[J].环境工程,2016,34(S1):1025-1028,1033. Ning Songrui, Han Jichang, Zhang Yang, et al. The status of applications and researches of fly ash used in land consolidation engineering[J]. Environmental Engineering, 2016, 34(S1): 1025-1028,1033. (in Chinese with English abstract)

[17]郭彦霞,张圆圆,程芳琴.煤矸石综合利用的产业化及其展望[J].化工学报,2014,65(7):2443-2453. Guo Yanxia, Zhang Yuanyuan, Cheng Fangqin. Industrial development and prospect about comprehensive utilization of coal gangue[J]. CIESC Journal, 2014, 65(7): 2443-2453. (in Chinese with English abstract)

[18]严家平,陈孝杨,蔡毅,等.不同风化年限的淮南矿区煤矸石理化性质变化规律[J].农业工程学报,2017,33(3):168-174. Yan Jiaping, Chen Xiaoyang, Cai Yi, et al. Physicochemical property change regularities of coal gangue with different weathering ages in Huainan mining area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2017,33(3):168-174.(in Chinese with English abstract)

[19]陈孝杨,周育智,严家平,等.覆土厚度对煤矸石充填重构土壤活性有机碳分布的影响[J].煤炭学报,2016,41(5):1236-1243. Chen Xiaoyang, Zhou Yuzhi, Yan Jiaping, et al. Effects of topsoil thickness on active organic carbon distribution in reconstruction soil filled with coal gangue[J]. Journal of China Coal Society,2016,41(5) :1236-1243. (in Chinese with English abstract)

[20]Lourdes Luna, Roberta Pastorelli, Felipe Bastida, et al. The combination of quarry restoration strategies in semiarid climate induces different responses in biochemical and microbiological soil properties[J]. Applied Soil Ecology, 2016, 107: 33-47.

[21]马守臣,张合兵,王锐,等.煤矸石填埋场土壤微生物学特性的时空变异[J].煤炭学报,2015,40(7):1608-1614. Ma Shouchen, Zhang Hebing,Wang Rui, et al. Spatial-temporal variation of soil microbial characteristics in coal gangue field[J]. Journal of China Coal Society,2015,40(7) : 1608-1614. (in Chinese with English abstract)

[22]Hua Chunyu, Zhou Guangzhu, Yin Xin, et al. Assessment of heavy metal in coal gangue: Distribution, leaching characteristic and potential ecological risk[J]. Environmental Science and Pollution Research International, 2018, 25: 32321-32331.

[23]Shi Yakun, Mu Xingmin, Li Kairong, et al. Soil characterization and differential patterns of heavy metal accumulation in woody plants grown in coal gangue wastelands in Shaanxi, China.[J]. Environmental Science and Pollution Research International, 2016, 13: 13489-13497.

[24]宋天奇,黄艳利,张吉雄,等. 底板岩性对煤矸石充填体重金属元素迁移影响规律数值模拟[J].煤炭学报,2018,43(7):1983-1989. Song Tianqi, Huang Yanli, Zhang Jixiong, et al. Numerical simulation on migration effects of heavy metal elements in coal gangue backfilling body caused by the lithology of coal seam floor[J]. Journal of China Coal Society, 2018, 43(7): 1983-1989. (in Chinese with English abstract)

[25]李正军.煤矸石深埋充填采煤塌陷区复垦造地技术研究[J]. 煤炭科技,2017(2):42-46. Li Zhengjun. Study on reclaimed land reclamation technology of coal gangue in deep filling mining subsidence area[J]. Coal Science and Technology, 2017(2): 42-46. (in Chinese with English abstract)

[26]汪嘉杨,翟庆伟,郭倩,等.太湖流域水环境承载力评价研究[J].中国环境科学,2017,37(5):1979-1987. Wang Jiayang, Zhai Qingwei, Guo Qian, et al. Study on water environmental carrying capacity evaluation in Taihu lake Basin[J]. China Environmental Science, 2017, 37(5): 1979-1987. (in Chinese with English abstract)

[27]顾晓昀,徐宗学,刘麟菲,等. 北京北运河河流生态系统健康评价[J].环境科学,2018,39(6):2576-2587. Gu Xiaoyun, Xu Zongxue, Liu Linfei, et al. Health assessment of the stream ecosystem in the North Canal River Basin,Beijing,China[J]. Environmental Sciences, 2018, 39(6): 2576-2587. (in Chinese with English abstract)

[28]于秋竹,孔宇,陈东升,等. 寒地不同积温带黑土土壤肥力评价的研究[J].现代化农业,2015(3):11-12.

[29]史文娇,汪景宽,魏丹,等. 黑龙江省南部黑土区土壤微量元素空间变异及影响因子——以双城市为例[J].土壤学报,2009,46(2):342-347. Shi Wenjiao, Wang Jingkuan, Wei Dan, et al. Spatial variability of soil trace elements in black soil region of south Heilongjiang province and its affecting factors: A case study of Shuangcheng city[J]. Acta Pedologica Sinica, 2009, 46(2): 342-347. (in Chinese with English abstract)

[30]李永亮,李健,李桂莲. 水稻田重金属污染调查及环境风险评价[J].甘肃农业大学学报,2016,51(5):95-99. Li Yongliang, Li Jian, Li Guilian. Investigation and soil environmental quality assessment on heavy metal pollution of rice fields in jiamusi[J]. Journal of GanSu agricultural university, 2016, 51(5): 95-99. (in Chinese with English abstract)

[31]王粟,孙彬,汪潮柱,等.东北典型黑土区土壤重金属污染现状评价与分析[J].安徽农业科学,2013,41(10):4350-4352. Wang Su, Sun Bin, Wang Chaozhu, et al. Appraisal and analysis of soil heavy metal pollution of typical black soil region in the Northeast of China [J]. Journal of Anhui Agricultural Sciences, 2013, 41(10): 4350-4352. (in Chinese with English abstract)

[32]郭彦海,孙许超,张士兵,等.上海某生活垃圾焚烧厂周边土壤重金属污染特征、来源分析及潜在生态风险评价[J].环境科学,2017,38(12):5262-5271. Guo Yanhai, Sun Xuchao, Zhang Shibing, et al. Pollution characteristics,source analysis and potential ecological risk assessment of heavy metals in soils surrounding a municipal solid waste incineration plant in Shanghai [J]. Environmental Sciences, 2017, 38(12): 5262-5271. (in Chinese with English abstract)

[33]李芳,李新举.鲁西南煤矿区农田耕层重金属分布特征及污染评价[J].煤炭学报,2018,43(7):1990-1998. Li Fang, Li Xinju. Distribution and pollution assessment of heavy metals in farmland tillage soil at coal mine area of the western-south Shandong Province[J]. Journal of China Coal Society,2018,43(7): 1990-1998. (in Chinese with English abstract)

[34]李保杰,王思宇,周生路,等.田块尺度下农田重金属污染特征及其源汇关系响应解析[J].农业工程学报,2018,34(6):204-209. Li Baojie, Wang Siyu, Zhou Shenglu, et al. Heavy metal pollution characteristics and its response of source-sink relationship in agricultural soil at field scale[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(6): 204-209. (in Chinese with English abstract)

[35]徐夕博,吕建树,徐汝汝.山东省沂源县土壤重金属来源分布及风险评价[J].农业工程学报,2018,34(9):216-223. Xu Xibo, Lü Jianshu, Xu Ruru. Source spatial distribution and risk assessment of heavy metals in Yiyuan county of Shandong province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(9): 216-223.(in Chinese with English abstract)

[36]党宏宇,邵明安,陈洪松,等.不同煤矸石厚度及位置对土壤水分入渗过程的影响[J].水土保持学报,2012,26(3):62-66. Dang Hongyu, Shao Mingan, Chen Hongsong, et al. Effects of thickness and location of coal gangue on the process of water infiltration [J]. Journal of Soil and Water Conservation, 2012, 26(3): 62-66. (in Chinese with English abstract)

[37]马保国,王健,刘婧然,等.煤矸石基质土壤的水分入渗试验研究[J].煤炭学报,2014,39(12):2501-2506.Ma Baoguo, Wang Jian, Liu Jingran, et al. Experimental study on water infiltration of soil weathering coal gangue[J]. Journal of China Coal Society,2014,39(12) : 2501-2506. (in Chinese with English abstract)

[38]吴林川,王冬梅,卢洋,等. 漓江水陆交错带硝态氮淋失规律的模拟研究[J].水土保持学报,2016,30(1):20-25. Wu Linchuan, Wang Dongmei, Lu Yang, et al. Simulation study onNO3--N leaching law in aquatic—terrestrial ecotone of Lijiang river[J]. Journal of Soil and Water Conservation, 2016, 30(1): 20-25. (in Chinese with English abstract)

[39]Wang Aihua, Marisa Gallardo, Zhao Wei, et al. Yield, nitrogen uptake and nitrogen leaching of tunnel greenhouse grown cucumber in a shallow groundwater region[J]. Agricultural Water Management, 2019, 217: 73-80.

[40]Lee Mi-Hee, Ok Yong Sik, Hur Jin. Dynamic variations in dissolved organic matter and the precursors of disinfection by-products leached from biochars: Leaching experiments simulating intermittent rain events[J]. Environmental Pollution, 2018,242:1912-1920.

[41]张治国,胡友彪,郑永红,等.煤矸石堆存对土壤盐分空间分布特征的影响及主要因子的研究[J].煤炭学报,2018,43(4):1118-1126. Zhang Zhiguo, Hu Youbiao, Zheng Yonghong, et al. Effect of coal gangue stockpiling on spatial distribution characteristics and main factors of soil salinity[J]. Journal of China Coal Society, 2018, 43(4): 1118-1126. (in Chinese with English abstract)

[42]Liu B, Tang Z, Dong S, et al. Vegetation recovery and groundwater pollution control of coal gangue field in a semi-arid area for a field application[J]. International Biodeterioration & Biodegradation, 2017,128:134-140.

Effects of coal gangue filling on drainage performance, soil fertility and heavy metal pollution in erosion gully

Wang Zhongbo1,2, Zhang Jinbo2, Wang Bin2, Li Dianxing2, Zhang Xingyi3

(1.,,150030,;2.,,150030,; 3.,,150081,)

In order to explore the suitable technology for the reclamation of erosion gullies in the black soil area of the Northeast China. In this paper, Xinhua farm is selected as the research area which is located in Hegang City, Heilongjiang Province, China. Aiming at the cause of erosion gullies, a new technology of filling and reclamation erosion gully with coal gangue was introduced and the post effect of the new technology was studied, including, the technological process of filling and reclamation, the influence of the thickness change of reclamation filling materials on the drainage characteristics of the gully, the fertility status and heavy metals pollution degree in the reclaimed soil. This paper aimed to explore the feasibility and breakthrough points of the technology of filling erosion gullies with coal gangue. The results showed that: 1) The increase in soil layer thickness could weaken the drainage capacity of the gully, while the increase of mixed size coal gangue thickness and large size coal gangue could increase the drainage capacity of the gully in different degrees. The interaction between the soil layer thickness and large size coal gangue layer thickness obviously influenced the drainage capacity of the gully. When the thickness of soil layer, mixed size coal gangue layer and large size coal gangue layer were 53.42, 38.51, 90 cm respectively, the shortest outflow time was 145.129 s , the drainage capacity of simulated 2 m deep gully was the strongest in this mode. 2) After 4 years of gully reclamation, the soil bulk increased, the soil acidity improved, the content of total potassium was the same as CK, but the total nitrogen, total phosphorus and organic matter content were lower than CK. And then the comprehensive fertility of soil was less than CK, which is 66.71%-80.81% of CK, and the average level only reach to 72.75%. But it was slightly higher than that of the second accumulated temperature zone in Heilongjiang Province. 3) The content of Pb was basically the same as CK and background value of local control soil; however, as for Cr and Cu, they were higher than CK and background value of local control soil in the reclaimed soil of monitoring gully. But the content of Cr, Pb, Cu are not higher than the second level standard value of national environmental quality of China. . There are slight pollution and slight enrichment of heavy metals Cr, Pb and Cu in monitored gully reclamation soil, so coal gangue can be used as a material for filling erosion gully for reclamation. However, in the long term, attention should be paid to the problem of soil heavy metal enrichment during reclamation.

erosion; reclamation; heavy metal; coal gangue; drainage; soil fertility

王忠波,张金博,王 斌,李殿兴,张兴义. 煤矸石填充对沟道导排水性能和土壤肥力及重金属污染的影响[J]. 农业工程学报,2019,35(24):289-297. doi:10.11975/j.issn.1002-6819.2019.24.034 http://www.tcsae.org

Wang Zhongbo, Zhang Jinbo, Wang Bin, Li Dianxing, Zhang Xingyi. Effects of coal gangue filling on drainage performance, soil fertility and heavy metal pollution in erosion gully[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(24): 289-297. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.24.034 http://www.tcsae.org

2019-06-13

2019-11-27

国家重点研发计划项目(2017YFC0504200)

王忠波,副教授,主要从事灌溉排水、水土保持方面理论与技术研究。Email:wangzhongbo71@163.com

10.11975/j.issn.1002-6819.2019.24.034

S281;S276

A

1002-6819(2019)-24-0289-09

猜你喜欢

肥力煤矸石土壤肥力
浅谈煤矸石在固废混凝土中的应用
我国香蕉园土壤肥力现状的整合分析
基于煤矸石填料的路基结构体受力性能分析
煤矸石混合料在路基中的路用性能分析
锌改性煤矸石的制备及其对废水中磷酸盐的吸附去除
行间生草对深州蜜桃园土壤肥力、pH和盐度影响
不同土壤肥力麦田小麦干物质生产和产量的差异
秸秆还田对连作花生土壤综合肥力和作物产量的影响
中药渣有机肥耦合高效水溶肥改良不同肥力设施番茄土壤效果
中国三大薯区土壤养分状况及土壤肥力质量评价