基于决策树算法的体育课程分析与管理系统设计
2019-02-19武善锋陆霞
武善锋 陆霞
关键词: 决策树; 数据挖掘; 体育课程; ASP.NET; 管理系统; 课程分析
中图分类号: TN911.1?34 文献标识码: A 文章编号: 1004?373X(2019)03?0131?03
Abstract: With the continuous advancement of the information technology construction in colleges and universities, a large amount of teaching information resources are produced by teaching management of physical education curriculum. In order to improve the quality of physical education, the application scheme of decision tree algorithm in the analysis and management of physical education curriculum is proposed. The C4.5 decision tree algorithm of data mining method is analyzed. The framework and database design of the curriculum analysis and management system are given. The ASP.NET development language is used to realize the system. The SQL Server 2008 is taken as the database. Visual Studio 2010 is taken as the development environment. The test results show that the proposed physical education curriculum analysis and management system has high performance in running time and accuracy, and provides the powerful data support for improving the efficiency and quality of physical education curriculum management.
Keywords: decision tree; data mining; physical education curriculum; ASP.NET; management system; curriculum analysis
0 引 言
隨着计算机技术的不断进步和教学信息化的不断发展,全国范围内的高校开始逐渐普及各种现代化的教学设备及相关管理系统,如蓝墨云班课、慕课(MOOC)、智慧教室互动等[1]。信息化教学的开展和实施也产生了大量的各种教学管理数据,针对这些大量的数据,如果不去利用势必造成巨大的资源浪费,但是如果采用人工手段去分析处理会产生较大的时间和人工成本,因此需要利用计算机将教师从大量的复杂和重复劳动中解放出来[2?3]。根据不同课程的属性和要求,提取这些数据中的必然联系和潜在的关系已经成为各种课程教学管理系统的研究方向和热点。
数据挖掘作为近期世界范围内快速兴起的一门交叉学科,汇集了来自机器学习、模式识别、数据库、统计学、人工智能等各领域的研究成果[4?6]。计算机的大规模普及产生了海量的数据,数据挖掘通过综合以上学科领域的技术成果,对海量数据进行处理和分析。目前,数据挖掘在教学管理系统中的应用正处于初始阶段,相关领域的研究不多,因此应用于体育课程教学工作的案例更少,例如文献[7]提出基于ID3决策树的商务英语实践教学成效评价方案,也就是说,现有的体育课程成绩管理系统没有成绩分析功能,无法对提升体育教学工作的效率和质量提供有力的技术支持。
3.1 C4.5算法在体育课程分析系统的应用
以某学校20个班级的学生的体育课程成绩为例进行数据挖掘分析,并将C4.5算法在体育课程分析系统中进行具体应用。20个班级共735个学生的训练集数据如表1所示。
通过表1所示的训练集数据,运用C4.5算法生成决策树,程序实现的部分代码如下:
print(′Start training...′)
tree = train(train_features, train_labels, list(range(feature_len)))
time_3 = time.time()
print(′training cost %f seconds′ % (time_3 ? time_2))
print(′Start predicting...′)
test_predict = predict(test_features,tree) time_4 = time.time()
print(′predicting cost %f seconds′ % (time_4 ? time_3))
3.2 系统测试结果
对设计的体育课程分析与管理系统进行功能测试和性能测试。首先,在功能测试中系统运行状态良好,操作流畅,人机交互效果良好,系统中学生基本信息维护界面如图4所示。其次,在性能测试中,相比基于ID3算法的课程成绩分析系统[7],本文系统处理数据所需时间减少了12%左右,同时分析数据集的准确率提升了约8%。
4 结 论
本文提出一种基于决策树算法的体育课程分析与管理系统。首先对成绩分析的需求进行研究,并给出课程分析与管理系统的框架及其数据库设计。然后采用优化后的C4.5决策树算法实现具体数据挖掘。采用ASP.NET开发语言,数据库为SQL Server 2008,开发环境为Visual Studio 2010。该系统利用决策树算法提取体育课程工作中的数据特征和关系,并结合成绩分析形成可参考的学生个性化信息,为体育课程的教学管理提供了有价值的数据支持和理论参考,该系统可有效提高体育课程教学和管理的质量和效率。
参考文献
[1] 张怡婷,付雄,陈蕾.算法课程面向应用的教学模式研究[J].计算机教育,2012(24):82?86.
ZHANG Yiting, FU Xiong, CHEN Lei. Research on application?oriented teaching model of algorithm course [J]. Computer education, 2012(24): 82?86.
[2] 茹峰,彭晓宏,侯立刚,等.基于人脸识别的学生课程出勤管理系统设计[J].现代电子技术,2016,39(1):81?84.
RU Feng, PENG Xiaohong, HOU Ligang, et al. Design of student course attendance management system based on face re?cognition [J]. Modern electronics technique, 2016, 39(1): 81?84.
[3] 邓莉琼,肖秋根,李中宁,等.基于大数据分析的计算机网络课程自适应学习系统构建[J].计算机工程与科学,2016,38(z1):276?280.
DENG Liqiong, XIAO Qiugen, LI Zhongning, et al. Construction of adaptive learning system for computer network course based on big data analysis [J]. Computer engineering and science, 2016, 38(S1): 276?280.
[4] JOSEPH S R, HLOMANI H, LETSHOLO K. Data mining algorithms: an overview [J]. Neuroscience, 2016, 12(3): 719?743.
[5] NGAI E W T, XIU L, CHAU D C K. Application of data mi?ning techniques in customer relationship management: a literature review and classification [J]. Expert systems with applications, 2012, 36(2): 2592?2602.
[6] HARPAZ R, DUMOUCHEL W, SHAH N H, et al. Novel data mining methodologies for adverse drug event discovery and analysis [J]. Clinical pharmacology & therapeutics, 2012, 91(6): 1010?1021.
[7] 余洪英.基于决策树的商务英语实践教学成效评价[J].科技通报,2016,32(2):229?232.
YU Hongying. Evaluation of the effectiveness of business English practice teaching based on decision tree [J]. Bulletin of science and technology, 2016, 32(2): 229?232.
[8] SAFAVIAN S R, LANDGREBE D. A survey of decision tree classifier methodology [J]. IEEE transactions on systems, man & cybernetics, 2002, 21(3): 660?674.
[9] GLIGOROV V V, WILLIAMS M. Efficient, reliable and fast high?level triggering using a bonsai boosted decision tree [J]. Journal of instrumentation, 2012, 8(2):6.
[10] BARROS R C, FREITAS A A. A survey of evolutionary algorithms for decision?tree induction [J]. IEEE transactions on systems, man & cybernetics Part C, 2012, 42(3): 291?312.