APP下载

挤压法制备富钙强化重组大米的工艺优化及其结构表征

2018-11-23于殿宇唐洪琳江连洲韩富江

农业工程学报 2018年22期
关键词:质构粳米螺杆

于殿宇,王 彤,唐洪琳,陈 俊,江连洲,韩富江,吴 非



挤压法制备富钙强化重组大米的工艺优化及其结构表征

于殿宇1,王 彤1,唐洪琳1,陈 俊1,江连洲1,韩富江2,吴 非1※

(1.东北农业大学食品学院,哈尔滨 150030;2. 黑龙江省寒香玉米业有限公司,哈尔滨 150030)

为提高碎粳米的利用率并制备出富含钙元素的重组强化大米,该文以粳米碎米为原料,添加乙酸钙作为强化剂,通过使用挤压法制备富含钙元素的重组强化大米。试验以钙强化大米质构特性为指标,对挤压工艺参数进行响应面优化,得到最佳工艺参数为:机筒温度100 ℃,螺杆转速85 r/min,质量含水率20.0%。在最佳工艺条件下得到的钙强化大米硬度为13.38 N,弹性为0.67 mm,黏着性为0.64 mJ,咀嚼性为851.51 mJ,接近普通粳米的质构特性,其钙质量分数为108.2 mg/(100 g)。经X射线衍射表明强化米的结晶度明显减少,通过扫描电镜表征发现其外表面粗糙呈现不规则形状,并产生聚集现象,糊化温度降低。将其按1:12的比例添加到粳米中,钙质量分数为18.02 mg/(100 g),可提高人体对钙的摄入。

挤压法;质构;钙化合物;特性;大米;强化米;质构特性;乙酸钙

0 引 言

大米作为人们日常生活中最重要的主食[1-3],含有丰富的营养物质[4-5],能为人体提供日常所需的能量[6]。但稻米中蛋白质含量较低、氨基酸构成比例不合理,且随着大米加工水平的提高,大米加工精度等级越来越高,在碾白和抛光等过程中,许多有价值的营养物质的损失也越来越严重[7],因此需要对其进行强化。

钙是一种对人体健康、儿童生长发育极为重要的元素,需要从体外摄入[8]。钙具有强化软组织弹性和韧性、降低神经细胞兴奋性、促进体内多种酶的活动、维持酸碱平衡、参与血液凝固等功能,缺钙会导致佝偻病、骨质疏松等许多疾病。于平等[9]人对补钙剂的现状及营养成分进行了研究,表明目前中国人民对钙的摄入还远远不够。乙酸钙作为一种新的补钙强化剂,溶于水立即解离为Ca2+及CH3COO-,易被人体吸收,降低血液黏稠度,有利于新陈代谢,预防心血管疾病[10-11];与其他钙强化剂相比,乙酸钙对胃无刺激作用,安全无污染。

目前,主要的大米营养物质强化方法有浸吸法、表面涂膜法以及挤压法等强化工艺[12-13]。李天真[14]以葡萄糖酸锌作为锌强化剂,采用浸吸法得到锌强化营养大米。Kyritsi等[15]采用浸泡和喷淋米粒的方法制备富含维生素B的强化大米,得到较好的维生素保留率。但是该方法存在营养素损失大、不能完全被浸渍、成本高等问题,目前很少应用于大米营养物质的强化生产。而挤压法是一种高温短时的处理工艺,为集混合、搅拌、破碎、加热、杀菌及成型等为一体的高新技术[16-17],被广泛应用于食品行业[18-21]。由于挤压过程中的高温、高压、高剪切力作用,大米中的淀粉、蛋白质等大分子物质被切断成小分子物质[22-23]。

本文以碎粳米为原料,粉碎后加入乙酸钙再进行挤压处理,制备重组富钙强化大米。挤压过程中以钙强化大米的硬度、弹性、黏着性和咀嚼性为指标,对挤压过程的主要参数进行优化。通过-射线衍射分析法、扫描电镜法对钙强化大米的晶体结构和外表特征进行表征,并对大米的糊化特性进行分析,以期制得质构特性与粳米相近,达到人们的口感需求的富钙强化重组大米,并按一定比列添加到粳米中,以满足人体日常对钙的需求。

1 材料与方法

1.1 材料及设备

粳米、碎粳米(黑龙江省寒香玉米业有限公司);乙酸钙(纯度99%,常州苏杭精细化工有限公司);Sigma-A0512 直链淀粉及Sigma-10120 支链淀粉标准品(北京普天同创生物科技有限公司)。

DP-70型双螺杆挤压机(济南大鹏机械设备有限公司);TPA质构仪(英国Stable Micro System公司);S-3400N型扫描电子显微镜(日本Hitachi公司);密封型手提式高速粉碎机(广州市旭朗机械设备有限公司);101-2A电热恒温鼓风干燥箱(上海五久自动化设备有限公司);RVA 快速黏度分析仪(瑞联科技有限公司);岛津X射线衍射仪XRD-6000(深圳瑞盛科技有限公司)。

1.2 试验方法

富钙强化大米制备的工艺流程如下:

碎米→粉碎→过筛→混合→调质→挤压→老化→干燥→冷却→包装

将粳米碎米进行粉碎、过100目筛,与钙强化剂混合,再通过蒸汽和水的作用,按照一定质量含水率进行调质后进入挤压机重新制粒。研究挤压过程中含水率、机筒温度及螺杆转速对钙强化大米的硬度、弹性、黏着性和咀嚼性的影响,以期得到较好口感的钙强化大米。然后将产品强化米在35 ℃,相对湿度70%的条件下老化3 h左右。老化后的强化米送入热风干燥箱中,45 ℃下干燥40 min,冷却包装[24]。

1.3 试验设计

在预试验的基础上,确定乙酸钙的添加质量分数为2.0%,本试验采用 Box-Benhnken 中心组合设计[25],以机筒温度()、螺杆转速()、质量含水率()为自变量,分别以硬度(1)、弹性(2)、黏着性(3)、咀嚼性(4)为响应值设计3因素3水平响应面试验,因素水平编码见表1。

表1 因素水平编码表

1.4 主要指标的测定

1.4.1 质构特性的测定

选取40 g钙强化大米,置于铁罐中按照质量比1∶1加入40 mL蒸馏水,电饭煲蒸煮15 min后保温18 min。以市售粳米质构作为对照,使用TPA质构分析仪,TA36探头,测前行进速度:2 mm/s;力:0.196 N,测后行进速度:1 mm/s;测试速度:1 mm/s;停留时间:2 s;压缩程度:70%。从样品中随机选取3粒大小基本一致的完整强化米,以中心对称的形式摆放在载物台中心,保持表面平整,平行测定10次,剔除差异很大的曲线,取平均值[26],测试指标为硬度(Y)、弹性(Y)、黏着性(Y)、咀嚼性(Y)。

1.4.2 扫描电镜观测

通过扫描电子显微镜对大米形态结构的变化进行检测。分别称取5 mg大米于1 mL 50% 乙醇溶液中,超声匀化成悬浊液,从中分别取少量样品直接铺在载玻片的表面,在红外灯下烘干液体后镀金90 s。处理后的大米装入S-3400N扫描电镜观察室,在加速电压为5.00 kV,放大倍数为500的条件下进行检测观察。

1.4.3 钙质量分数的测定

钙强化大米和对照组市售粳米电饭煲蒸煮后冻干,粉碎后测定钙质量分数。测定方法参考GB 5009.92-2016《食品安全国家标准食品中钙的测定》。

1.4.4 晶体结构的测定

通过X-射线衍射仪器获得大米的衍射图谱,扫描的衍射区域衍射角2角度变化范围为5°~40°,目标电压为40 kV,电流为30 mA,扫描速度为8°/min。通过衍射图谱观察结晶区与非结晶区的变化。

1.4.5 大米糊化特性的测定

根据李玥[27]的方法,准确称取2.4 g大米,加入25 mL蒸馏水,混合后使用快速黏度测定仪(RVA)进行测定。测定条件:50 ℃下保持1 min,以12 ℃/min的速度上升到95 ℃(耗时3.75 min),95 ℃下保持2.5 min,以12 ℃/min下降到50 ℃(耗时3.75 min),50 ℃下保持1 min,过程中搅拌器速度为160 r/min。

1.5 数据统计分析方法

所有指标的测定都重复3次,试验结果取平均值和标准误差值,数据采用Origin 8.5与Design Expert 8.0.6进行分析和绘制。

2 结果与分析

2.1 响应面数据分析

试验设计方案及结果见表2。

将试验数据进行多元回归拟合,得到硬度(1)、弹性(2)、黏着性(3)以及咀嚼性(4)对机筒温度()、螺杆转速()、质量含水率()的回归方程如表3所示。

表2 响应面设计方案及试验结果

表3 根据编码值确定的回归方程

利用 Design Expert 8.0.6 软件对试验结果进行方差分析,结果见表4。由表4可知,回归方程的因变量与自变量之间存在的线性关系明显,4组模型回归均极显著,<0.000 1,表明通过回归方程可以看出,因变量与所有自变量之间具有显著的线性关系,即这种试验方法是可靠的。失拟项均不显著,表明该模型选择正确,且各组模型中的相关系数2、调整系数2Adj均在0.9以上,说明该模型与试验拟合良好。可以用此模型来分析和预测大米的质构特性。

表4 方差分析结果

注:*差异显著(<0.05);**差异极显著(<0.01)。

Note: * significant difference (<0.05); ** extremely significant difference (<0.01).

通过Design Expert 8.0.6软件对响应值进行分析计算,选择Optimization下的Numerical选项,将影响强化米质构特性的4个主要指标全部选中,再将其范围分别选择为硬度7.595~13.504 N、弹性0.44~0.79 mm、黏着性0.40~0.74 mJ、咀嚼性658~860 mJ,通过软件将响应值综合计算分析得到富钙强化大米挤压过程的最佳工艺参数为机筒温度100.00 ℃、螺杆转速84.44 r/min、质量含水率20.12%,该条件下质构特性的预测值为硬度13.38N、弹性0.6697mm、黏着性0.6423mJ、咀嚼性851.507mJ。根据实际情况将工艺参数进行整理,得出整理值为机筒温度100 ℃、螺杆转速85 r/min、质量含水率20%。

为检验在响应面优化出的条件下所得结果的可靠性,进行平行试验验证得到的硬度为13.24 N,弹性为0.65 mm,黏着性为0.63 mJ,咀嚼性为855.21 mJ,且响应面优化的预测值与试验值之间的拟合性良好,从而也就证实了模型的有效性。通过对市售粳米进行质构测定,得到硬度为11.90 N,弹性为0.78 mm,黏着性为0.72 mJ,咀嚼性为798.50 mJ,与粳米的质构特性相接近。

2.1.1 机筒温度、螺杆转速和质量含水率对钙强化大米硬度的影响

如图1所示,机筒温度和含水率对钙强化大米的硬度的影响极为显著,螺杆转速和含水率对钙强化大米的硬度的影响较为显著。当螺杆转速一定时,钙强化大米的硬度随着机筒温度的升高呈先上升后逐渐下降的趋势,硬度随着含水率的增加呈先上升后下降的趋势。这主要是因为温度较低时,物料受到的挤压作用不充分,而温度过高时,大米中水分蒸发程度高,大米膨胀率较高,因而硬度较低;当机筒温度一定时,钙强化大米的硬度随着螺杆转速和含水率的增加呈先上升后下降的趋势,螺杆转速较低时,物料在机筒内停留时间较长,受热时间较长,因此硬度较低,当螺杆转速过大时,物料停留时间较短,挤压作用不充分,导致硬度降低。

注:考察2个因素对指标的影响时,第3个因素固定在0水平,下同。

2.1.2 机筒温度、螺杆转速和质量含水率对钙强化大米弹性的影响

如图2所示,螺杆转速和含水率、机筒温度和螺杆转速对钙强化大米的弹性的影响均极为显著,当机筒温度一定时,钙强化大米的弹性随着螺杆转速的升高而略微升高,随着含水率的增加而逐渐上升。这是因为含水率的升高,增加了大米的膨胀率,使其弹性增大;当含水率一定时,随着机筒温度和螺杆转速的升高,物料受到高温高剪切力的作用,糊化程度较高,弹性增大,其变化趋势与刘云飞等[24]研究得出的趋势相似。

图2 机筒温度、螺杆转速和质量含水率对弹性的影响

2.1.3 机筒温度、螺杆转速和质量含水率对钙强化大米黏着性的影响

如图3所示,机筒温度和螺杆转速对钙强化大米的黏着性的影响极为显著,机筒温度和含水率、螺杆转速和含水率对钙强化大米的黏着性的影响均较为为显著。当含水率一定时,钙强化大米的黏着性随着螺杆转速的升高而降低。这主要是因为当螺杆转速较高时,物料在挤压机内停留时间较短,机筒内温度较高,使大米处于熔融状态,因而黏着性降低[28];当螺杆转速一定时,较高的机筒温度使大米的糊化程度升高,黏着性降低;而当机筒温度一定时,水分含量较低时,机筒内物料较干,不利于螺杆向前输送,大米在机筒内滞留时间较长糊化程度较高;而螺杆转速升高时,大米受到较强的剪切力,使得黏着性降低。

图3 机筒温度、螺杆转速和质量含水率对黏着性的影响

2.1.4 机筒温度、螺杆转速和质量含水率对钙强化大米咀嚼性的影响

如图4所示,机筒温度和含水率对钙强化大米的咀嚼性的影响极为显著,机筒温度和螺杆转速对钙强化大米的咀嚼性的影响较为显著。当螺杆转速一定时,钙强化大米的咀嚼性随着含水率的升高呈先上升后下降的趋势,随着机筒温度的增加呈先上升后逐渐下降的趋势。这是因为当机筒温度和含水率较低时,物料较干,模口处压力较高,不易通过[29],因此大米在机筒内停留时间较长,淀粉结构被破坏,咀嚼性较低;当机筒温度和含水率较大时,物料处于流体状态,模口处压力较小,能顺利通过,咀嚼性提高;而当温度继续升高时,大米处于熔融状态,咀嚼性降低;当含水率一定时,机筒温度和螺杆转速较低,大米糊化程度较低,结构松散,咀嚼性较低,当机筒温度和螺杆转速过高时,大米受到高温高剪切作用,出现轻微膨化现象,结构开始松散,因此咀嚼性降低。

2.2 强化大米扫描电镜观察

试验采用S-3400N型扫描电子显微镜观察碎粳米和在最优挤压工艺条件下制备的钙强化米外观放大500倍下的变化,如图5所示,可以看出挤压处理对大米的表面结构的影响较为明显。

图4 机筒温度、螺杆转速和质量含水率对咀嚼性的影响

由图5可见,图5 a为碎粳米,具有规则的外表,表面较为平滑,且分布较为松散;图5 b为最优挤压工艺条件下制备的钙强化米,其表面较为粗糙呈不规则形状,且颗粒不完整[30]。这可能是由于在挤压过程高温高剪切力的作用下,大米中淀粉糊化,大分子的支链淀粉降解成为直链淀粉和麦芽糊精等小分子物质,而直链淀粉具有良好的成型性、成模性及凝胶性,直链淀粉含量的增多,使得样品的质构更加紧密,呈现较不规则形状。

图5 电子显微镜扫描图(×500)

2.3 挤压处理对大米晶体结构影响

通过-衍射分析法测定大米的晶体结构变化如图6所示,可以看出挤压处理对大米的晶体结构影响较为明显。

由图6 a可见,原粳米分别在衍射角2为15°、17°、18°、23°附近有较强的衍射峰,说明粳米淀粉是典型的A-型晶体结构[31];由图6可见,经过挤压处理后,大米的特征峰被明显破坏,且结晶度较原碎米有所下降,说明经过挤压处理后,结晶区受到了严重的破坏,这主要是因为在淀粉颗粒内部,支链淀粉是形成结晶的主要结构,而挤压过程中有较高的剪切力的作用,使淀粉颗粒破坏,支链淀粉降解,含量下降。此外,图谱中强化米在衍射角2为29°附近有较强的衍射峰,表明强化米中钙质量分数有所提高[32]。

图6 大米的X-射线衍射图谱

2.4 挤压处理对大米糊化性质的影响

通过RVA快速黏度分析仪得出挤压处理前后大米的糊化特性曲线如图7所示。

图7 挤压前后大米糊化特性曲线

由图7可知,原粳米的糊化特征曲线总体呈上升趋势,其峰值黏度为1.504 91±0.024 23 Pa·s,最低黏度为1.113 06 Pa·s,终值黏度为2.214 08 Pa·s。而挤压处理后的曲线基本为一条直线,这说明挤压工艺对大米糊化特性影响较为显著。挤压后大米黏度随时间变化不显著,表明其淀粉稳定性较好[33]。这主要是因为淀粉中晶质与非晶质态的淀粉分子间的氢键断开,微晶束分离,使淀粉颗粒中原有的微晶结构被破坏[34-35],挤压后淀粉结晶区减少,使得糊化过程温度降低,有利于酶解作用,且较低的黏度可以使酶与淀粉的接触更加充分,有利于消化吸收。

2.5 粳米与钙强化大米钙质量分数测定

原粳米与钙强化大米中钙质量分数如表5所示,可以看出通过挤压处理得到的钙强化大米,其钙质量分数明显高于原粳米。

表5 原粳米与钙强化大米钙质量分数

由表5可知,通过挤压法制得的钙强化大米其钙质量分数为108.2 mg/(100 g),而普通粳米的钙质量分数仅为10.5 mg/(100 g)。通过对比可以得出挤压法可以较好的增加大米中钙质量分数。通过上述对质构特性的分析,得到强化米质构特性和粳米相接近,结合居民膳食营养素参考摄入量(DRI)给出的钙推荐摄入量,人体平均摄入钙含量在800~1 200 mg[36],但目前人体每日均衡膳食摄入的钙量大约只为标准摄入量的一半左右,另一半应从强化钙的食品中获得,但考虑到不同阶段人群对钙的需求不同,摄入的强化米钙含量不宜过高,因此将强化米与粳米按照1:12的比例进行复配,复配后钙质量分数为18.02 mg/(100 g)。

3 讨 论

本文以碎粳米为原料,通过挤压法加入钙强化剂,将大米进行重组,制得钙强化大米。试验以钙强化米的质构特性为指标,通过响应面法对挤压参数进行优化,最终得到强化米的最佳工艺条件。

严松等[37]对碎米在食品工业中的综合利用进行了阐述,表明通过碎米与强化剂混合制备人造米,具有较好的发展前景。刘丽等[38]研究了挤压处理对碎米结构及特性的影响,得到经过挤压处理后的大米淀粉颗粒结晶度降低,对-淀粉酶的敏感性提高,更加有利于酶解作用。刘云飞等[24]向碎米中加入铁营养强化剂,并对其质构特性进行了研究,结果表明通过挤压法生产的营养强化大米增加了铁含量而质构特性与原大米相似,具有较好的口感。但目前关于挤压法制得的营养强化米的结构及特性的研究还较为少见。

本文在前人研究基础上向碎米中加入乙酸钙强化剂,制备重组富钙强化大米,不仅对重组强化大米的质构特性进行了分析,还对强化大米的表观结构,晶体结构及大米糊化度等特性进行了研究。结果表明通过挤压处理得到的强化大米其质构特性与原粳米接近,结晶度减少,糊化温度降低,稳定性较好。

4 结 论

本文以碎粳米为原料,乙酸钙为强化剂,通过挤压法将大米进行重组。试验采用响应面法研究挤压工艺参数对钙强化大米质构的影响,得到最佳工艺参数为:机筒温度100 ℃,螺杆转速85 r/min,质量含水率20.0%。在最佳工艺条件下得到的钙强化大米硬度为13.38 N,弹性为0.67 mm,黏着性为0.64 mJ,咀嚼性为851.51 mJ,其质构特性和粳米相接近,钙含量为108.2 mg/(100 g)。挤压处理后强化米结晶度明显减少,呈现出不规则形状。大米的糊化温度和黏度降低,稳定性较好。将其按一定比例添加到粳米中,既使碎米得到了充分的利用,又可增加人体对钙的摄入。

[1] 刘敏,谭书明,张洪礼,等. 不同品种大米口感品质分析[J]. 食品科学,2018,39(15):88-92.

Liu Min, Tan Shuming, Zhang Hongli, et al. Taste quality of different rice varieties[J]. Food Science, 2018, 39(15): 88-92. (in Chinese with English abstract)

[2] 董惠忠,赵黎明,蒋丽华,等. 酶法提取功能性大米蛋白的工艺研究[J]. 中国食品学报,2013,13(4):87-93.

Dong Huizhong, Zhao Liming, Jiang Lihua, et al. Study on extraction of functional rice protein by enzymatic method[J]. Journal of Chinese Institute of Food Science and Technology, 2013, 13(4): 87-93.(in Chinese with English abstract)

[3] 钱丽丽,宋雪健,张东杰,等. 近红外光谱技术快速鉴别查哈阳大米[J]. 食品科学,2017,38(16):222-227.

Qian Lili, Song Xuejian, Zhang Dongjie, et al. Rapid identification of Chahayang rice using near infrared spectroscopy[J]. Food Science, 2017, 38(16): 222-227. (in Chinese with English abstract)

[4] 袁江兰,常静,李传雯,等. 大米谷蛋白的碱致变性和结构表征[J]. 食品科学,2017,38(21):43-48.

Yuan Jianglan, Chang Jing, Li Chuanwen, et al. Alkalidenaturation and structural characterizations of rice glutelin[J]. Food Science, 2017, 38(21): 43-48. (in Chinese with English abstract)

[5] 张慧娟,夏雪芬,王静,等. 大米蛋白及其酶解产物的功能性质[J]. 中国食品学报,2015,15(8):63-70.

Zhang Huijuan, Xia Xuefen, Wang Jing, et al. Functional properties of rice protein and its enzymatic hydrolysates[J]. Journal of Chinese Institute Of Food Science and Technology, 2015, 15(8): 63-70. (in Chinese with English abstract)

[6] 罗舜菁,李燕,杨榕,等. 氨基酸对大米淀粉糊化和流变性质的影响[J]. 食品科学,2017,38(15):178-182.Luo Shunjing, Li Yan, Yang Rong, et al. Effects of amino acids on pasting and rheological properties of rice starch[J]. Food Science, 2017, 38(15): 178-182. (in Chinese with English abstract)

[7] 王凡,胡秋辉,方勇,等. 纳米包装延缓淮稻5号大米高温高湿环境下的品质劣变[J]. 食品科学,2017,38(5):267-273.

Wang Fan, Hu Qiuhui, Fang Yong, et al. Nanocomposite packaging delays quality deterioration of the rice cultivar Huaidao 5 at high temperature and humidity[J]. Food Science, 2017, 38(5): 267-273. (in Chinese with English abstract)

[8] 黄广民,姚伯元. 高钙强化剂中痕量汞的测定[J]. 食品科学,2003,24(8):112-114.

[9] 于平,励建荣. 补钙剂的现状及营养评价方法[J]. 中国食品学报,2002,2(1):57-61.

Yu Ping, Li Jianrong. Present situation and nutritional evaluation methods of calcium-supplemental agents[J]. Journal of Chinese Institute of Food Science and Technology, 2002, 2(1): 57-61. (in Chinese with English abstract)

[10] Matias P J, Jorge C, Azevedo A, et al. Calcium acetate/magnesium carbonate and cardiovascular risk factors in chronic hemodialysis patients[J]. Nephron, 2016, 132(4): 317-326.

[11] Yusuf A A, Weinhandl E D, Peter W L S. Comparative effectiveness of calcium acetate and sevelamer on clinical outcomes in elderly hemodialysis patients enrolled in medicare part D[J]. American Journal of Kidney Diseases the Official Journal of the National Kidney Foundation, 2014, 64(1): 95-103.

[12] 马文,李喜宏,刘霞,等. 支链淀粉与直链淀粉比例对重组营养强化米品质的影响[J]. 中国食品学报,2014,14(11):42-48.

Ma Wen, Li Xihong, Liu Xia, et al. Effects of amylopectin/amylose ratio on quality of reformed nutrition rice[J]. Journal of Chinese Institute of Food Science and Technology, 2014, 14(11): 42-48. (in Chinese with English abstract)

[13] Liu C, Zhang Y, Liu W, et al. Preparation, physicochemical and texture properties of texturized rice produce by improved extrusion cooking technology[J]. Journal of Cereal Science, 2011, 54(3): 473-480.

[14] 李天真. 强化工艺条件对锌强化营养米蒸煮食味品质的影响[J]. 农业工程学报,2007,23(7):222-225.

Li Tianzhen. Effects of technological parameters of Zn enrichment on eating-and-cooking quality of rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(7): 222-225. (in Chinese with English abstract)

[15] Kyritsi A, Tzia C, Karathanos V T. Vitamin fortified rice grain using spraying and soaking methods[J]. LWT - Food Science and Technology, 2011, 44(1): 312-320.

[16] 高福成. 现代食品工程高新技术[M]. 北京:中国轻工业出版社,2000:35-36.

[17] 冉新炎,董海洲,刘传富,等. 玉米挤压工艺条件的优化及其理化特性的研究[J]. 中国食品学报,2011,11(7):140-147.

Ran Xinyan, Dong Haizhou, Liu Chuanfu, et al. Research on the extrusion technology conditions and physical and chemical properties of corn[J]. Journal of Chinese Institute of Food Science and Technology, 2011, 11(7): 140-147. (in Chinese with English abstract)

[18] Wolf B. Polysaccharide functionality through extrusion processing[J]. Current Opinion in Colloid & Interface Science, 2010, 15(1): 50-54.

[19] 关正军,申德超. 挤压膨化工艺参数对玉米淀粉出酒率的影响[J]. 农业工程学报,2009(增刊1):118-121.

Guan Zhengjun, Shen Dechao. Effect of parameters for extrusion and expansion process on the alcohol yield of maize starch[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009(Supp.1): 118-121. (in Chinese with English abstract)

[20] 张勋,张丽霞,芦鑫,等. 混料试验与模糊评价结合优化挤压膨化芝麻制品工艺[J]. 食品科学,2018(4):248-253.

Zhang Xun, Zhang Lixia, Lu Xin, et al. Formulation optimization of extruded sesame-based food products using mixture design and fuzzy evaluation[J]. Food Science, 2018(4): 248-253. (in Chinese with English abstract)

[21] Philipp C, Buckow R, Silcock P, et al. Instrumental and sensory properties of pea protein-fortified extruded rice snacks[J]. Food Research International, 2017, 102: 658-665.

[22] Ding Q B, Paul A, Gregory T, et al. The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks[J]. Journal of Food Engineering, 2005, 66(3): 283-289.

[23] Rafiq A, Sharma S, Singh B. Invitro, starch digestibility, degree of gelatinization and functional properties of twin screw prepared cereal-legume pasta[J]. Journal of Cereal Science, 2017, 74: 279-287.

[24] 刘云飞,刘成梅,罗舜菁,等. 改良挤压法制备铁营养强化大米的研究[J]. 食品工业科技,2012,33(23):244-248.

Liu Yunfei, Liu Chengmei, Luo Shunjing, et al. Preparation of nutritional rice fortified with Na Fe EDTA by improved extrusion cooking technology[J]. Science and Technology of Food Industry, 2012, 33(23): 244-248. (in Chinese with English abstract)

[25] 吴有炜. 试验设计与数据处理[M]. 苏州:苏州大学出版社,2002.

[26] Rewthong O, Soponronnarit S, Taechapairoj C, et al. Effects of cooking, drying and pretreatment methods on texture and starch digestibility of instant rice[J]. Journal of Food Engineering, 2011, 103(3): 258-264.

[27] 李玥. 大米淀粉的制备方法及物理化学特性研究[D]. 无锡:江南大学,2008.

Li Yue. Studies on Isolation Process and Physicochemical Properties of Rice Starch[D]. Wuxi: Jiangnan University, 2008. (in Chinese with English abstract)

[28] 张彦军,刘成梅,刘伟,等. 热压凝胶法制备营养质构米及其营养性质研究[J]. 农业工程学报,2012,28(5):282-287.

Zhang Yanjun, Liu Chengmei, Liu Wei, et al. Preparation and nutrient properties of texturized rice by hotpressing gelatinization technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(5): 282-287. (in Chinese with English abstract)

[29] 于殿宇,王彤,王旭,等. 挤压膨化预处理工艺优化提高大豆蛋白粉品质[J]. 农业工程学报,2018,34(4):285-292.

Yu Dianyu, Wang Tong, Wang Xu, et al. Optimal extrusion pretreatment process improving quality of soybean protein powder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 285-292. (in Chinese with English abstract)

[30] Zavareze E D R, Storck C R, Castro L A S D, et al. Effect of heat-moisture treatment on rice starch of varying amylose content[J]. Food Chemistry, 2010, 121(2): 358-365.

[31] Hung P V, Morita N. Physicochemical properties of hydroxypropylated and cross-linked starches from A-type and B-type wheat starch granules[J]. Carbohydrate Polymers, 2005, 59(2): 239-246.

[32] 王向丽. 红外光谱法和X射线衍射技术在中药配方颗粒定性鉴别方面的应用[D]. 石家庄:河北师范大学,2015.

Wang Xiangli. Application of Infrared Spectroscopy and X-ray Diffraction Technique in Qualitative Identification of Traditional Chinese Medicine Formula Particles[D]. Shijiazhuang: Hebei Normal University, 2015. (in Chinese with English abstract)

[33] 李娜,张英华. 用RVA仪分析玉米淀粉的糊化特性[J]. 中国粮油学报,2011,26(6):20-24.

Li Na, Zhang Yinghua. Analysis on pasting properties of maize starch by RVA[J]. Journal of the Chinese Cereals and Oils Association, 2011, 26(6): 20-24. (in Chinese with English abstract)

[34] Varavinit S, Shobsngob S, Varanyanond W, et al. Effect of amylose content on gelatinization, retrogradation and pasting properties of flours from different cultivars of Thai rice[J]. Starch-Stärke, 2003, 55(9): 410-415. (in Chinese with English abstract)

[35] 杨晓蓉,李歆,凌家煜. 不同类别大米糊化特性和直链淀粉含量的差异研究[J]. 中国粮油学报,2001,16(6):37-42.

Yang Xiaorong, Li Xin, Ling Jiayu. Differences among rice categories in pasting characteristics and amylose content[J]. Journal of the Chinese Cereals and Oils Association, 2001, 16(6): 37-42. (in Chinese with English abstract)

[36] Yates A A, Schlicker S A, Suitor C W. Dietary reference intakes: the new basis for recommendations for calcium and related nutrients, B vitamins, and choline[J]. Journal of the American Dietetic Association, 1998, 98(6): 699-706.

[37] 严松,任传英,孟庆虹,等. 碎米及米糠在食品工业中的综合利用[J]. 食品科学,2011(增刊1):132-134.

[38] 刘丽,程建军,杨文鑫,等. 挤压处理对碎米结构及特性的影响[J]. 食品工业科技,2013,34(1):92-96.

Liu Li, Cheng Jianjun, Yang Wenxin, et al. Effect of the extrusion on the structure and properties of broken rice starch[J]. Journal of the Chinese Cereals and Oils Association, 2013, 34(1): 92-96. (in Chinese with English abstract)

Process optimization and structure characterization of calcium-fortified recombinant rice prepared by extrusion

Yu Dianyu1, Wang Tong1, Tang Honglin1, Chen Jun1, Jiang Lianzhou1, Han Fujiang2, Wu Fei1※

(1.,,150030,;2.150030,)

Calcium is the most abundant element in the human bodyʼs inorganic elements. It is an important component of human bones and teeth that has important physiological functions. Calcium has the functions of strengthening the soft tissue springness and toughness, reducing the excitability of nerve cells, promoting the activities of various enzymes in the body, maintaining the acid-base balance, and participating in blood coagulation. The calcium deficiency can cause rickets, osteoporosis and many other diseases. However, at present, our people’s intake of calcium is still far from enough. Rice is the most important staple food in people's daily life. It is rich in nutrients and can provide the body with the daily energy needed. However, the protein content in rice is low, and the proportion of amino acids is unreasonable. With the improvement of rice processing, many valuable nutrients are lost during the grinding and polishing process. At present, the main methods of rice nutrition enhancement include soaking, surface coating and extrusion. Due to large losses of nutrients, incomplete impregnation, and high cost, soaking and surface coating methods are rarely used for nutrition enhanced rice production. Extrusion is a high-temperature, short-term treatment process that combines mixing, stirring, crushing, heating, sterilizing, extrusion, and forming as a whole. It is widely used in the food industry. Due to the high temperature, high pressure, and high shear forces during the extrusion process, macromolecular substances such as starch and proteins in rice are cut into small molecules. The broken glutinous rice was used as raw material, calcium acetate was added as a nutritional enhancer, and the extrusion method was used to prepare a recombinant nutrient-fortified rice rich in calcium. In the experiment, the texture of calcium fortified rice was used as an index to optimize the process parameters of the extrusion process. The optimum process parameters were as follows: barrel temperature 100 ℃, screw speed 85 r/min, and water content 20.0%. Under the optimum process conditions, the calcium-fortified rice had a hardness of 13.38 N, an springness of 0.67 mm, an adhesiveness of 0.64 mJ, and a chewiness of 851.51 mJ, which was close to the texture characteristics of ordinary glutinous rice. In order to test the reliability of the results obtained under the optimized conditions of the response surface, the hardness obtained by parallel test was 13.24 N, the springness was 0.65 mm, the adhesiveness was 0.63 mJ, the chewiness was 855.21 mJ. the fit between the predicted value of the response surface and the experimental value was good, which confirmed the validity of the model. By measuring the texture of commercially available glutinous rice, the hardness was 11.90 N, the springness was 0.78 mm, the adhesiveness was 0.72 mJ, and the chewiness was 798.50 mJ. The texture characteristics of calcium-fortified recombinant rice were close to that of glutinous rice. The calcium content of the fortified rice was 108.2 mg/(100 g), which is much higher than 10.5 mg/(100 g) of common glutinous rice. Studies have shown that the calcium content of calcium fortified rice prepared by the extrusion method was much more than that of normal glutinous rice, and its hardness, springness, chewiness and adhesiveness were superior to those of normal rice. The X-ray diffraction showed that the crystallinity of the fortified rice was significantly reduced and the fortified rice had a strong diffraction peak near the diffraction angle 2of 29°, indicating that the calcium content in the fortified rice was improved. It was found by scanning electron microscopy that the outer surface of the fortified rice was rough and irregular, the aggregation phenomenon occurred, and the gelatinization temperature decreased. The extrusion process had a significant effect on the gelatinization characteristics of rice and the viscosity of rice after extrusion was not significantly changed with time, indicating that its starch stability was better. Adding it to glutinous rice with a ratio of 1:12, the rice had a good appearance with a calcium content of 18.02 mg/100g, which was favorable for industrial production and solving the problem of insufficient calcium intake.

extrusion; textures; calcium compounds; characterization; rice; fortified rice; texture characteristics; calcium acetate

于殿宇,王 彤,唐洪琳,陈 俊,江连洲,韩富江,吴 非. 挤压法制备富钙强化重组大米的工艺优化及其结构表征[J]. 农业工程学报,2018,34(22):291-298. doi:10.11975/j.issn.1002-6819.2018.22.036 http://www.tcsae.org

Yu Dianyu, Wang Tong, Tang Honglin, Chen Jun, Jiang Lianzhou, Han Fujiang, Wu Fei. Process optimization and structure characterization of calcium-fortified recombinant rice prepared by extrusion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 291-298. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.22.036 http://www.tcsae.org

10.11975/j.issn.1002-6819.2018.22.036

TS213.3

A

1002-6819(2018)-22-0291-08

2018-05-10

2018-10-25

“十三五”国家重点研发计划重点专项:米糠高值化稳态加工技 术及智能装备研发与示范(2018YFD0401101);国家自然科学基金面上项目 (31571880)

于殿宇,博士,教授,主要从事粮油精深加工技术研究。 Email:dyyu2000@126.com

吴非,博士,教授,主要从事农产品精深加工研究。 Email:wfneau@163.com

猜你喜欢

质构粳米螺杆
基于ANSYS Workbench三螺杆轴头泵泵体设计与试验
多吃粳米益气养阴
多吃粳米益气养阴
钻机配套螺杆压缩机控制系统分析及优化设计
马铃薯泥肉丸的加工及其质构特性研究
三款粥预防孕期便秘
螺杆压缩机用三相异步电动机电磁性能计算与分析
槟榔生长期果实形态、质构及果皮成分动态变化规律研究
治脾胃虚寒
煤矿井下用螺杆空压机优化设计之探讨