APP下载

煤矸石改良膨胀土特性及其最佳掺量条件下的孔隙结构表征

2018-11-23殷潇潇

农业工程学报 2018年22期
关键词:膨胀率黏聚力煤矸石

张 雁,殷潇潇,刘 通



煤矸石改良膨胀土特性及其最佳掺量条件下的孔隙结构表征

张 雁,殷潇潇,刘 通

(内蒙古农业大学能源与交通工程学院,呼和浩特 010018)

为减小膨胀土对土木工程设施及农业生态环境的危害,进行掺加煤矸石粉改良膨胀土的试验研究。该文以内蒙古兴和县高庙子乡的膨胀土和煤矸石为研究对象,通过无荷膨胀试验、有荷膨胀试验和收缩试验确定煤矸石粉的最佳掺量,对最佳煤矸石粉掺量的膨胀土进行干湿循环试验,利用直剪试验测定每次干湿循环后试件的抗剪强度指标;通过压汞试验测得孔隙特征值,从微观角度揭示强度变化机理。试验结果表明:煤矸石粉掺量为6%时抑制膨胀土的胀缩性效果最佳;干湿循环作用使素膨胀土黏聚力和内摩擦角均有所衰减,掺入煤矸石粉后强度衰减得到控制;随干湿循环次数的增加孔径逐渐向大孔范围聚集,团粒结构增多,使素膨胀土的抗剪强度指标降低;经过5次干湿循环,掺加煤矸石粉土样的大孔孔隙密度比素膨胀土降低约35%,煤矸石有效阻止膨胀土的强度劣化。

抗剪强度;孔隙度;煤矸石;膨胀土;干湿循环;压汞法

0 引 言

膨胀土是一种高塑性、高敏感性黏土,主要矿物成分为蒙脱石和伊利石,具有极强的“吸水膨胀,失水收缩”的特性。由于膨胀土的这种特性,其强度易受干湿循环作用的影响。国内外学者大量研究发现膨胀土在干湿循环条件下往往呈现出一定的软化特性,抗变形能力以及强度会逐渐下降,易导致边坡失稳、路基沉陷、农田水利设施损坏,水土流失加重,影响农业生态环境,从而引发严重的安全事故和巨大的经济损失[1-2],因而对膨胀土强度特性的研究对防治膨胀土造成的灾害有重大意义。目前在干湿循环条件下膨胀土强度方面的研究有:张大琦[3]研究了干湿循环下石灰处治膨胀土的强度特性,结果表明黏聚力不断降低,内摩擦角变化不明显;沈泰宇等[4]利用化学复合改良剂提高膨胀土强度和降低膨胀率;膨胀土在反复干湿的过程中,土体饱和度不断变化,反复膨胀收缩,其强度也在不断变化[5];杨和平等[6]研究南宁外环膨胀土在干湿循环下的抗剪强度,结果表明黏聚力随干湿循环衰减较大,内摩擦角衰减较小;吕海波等[7]探究了膨胀土抗剪强度与含水率、干湿循环次数的关系,发现膨胀土抗剪强度随干湿循环次数的增加而衰减,最终趋于稳定。有的研究表明膨胀土的强度、胀缩衰减等工程特征在一定程度上取决于其微观特征[8];徐丹等[9]研究了干湿循环对非饱和膨胀土抗剪强度的影响,结果发现膨胀土的抗剪强度的变化与微观结构有关;曾召田等[10]研究了膨胀土干湿循环过程中的孔隙结构,指出随着干湿循环次数的增加,试样的孔隙率,总孔体积等均有所增加;其他研究者[11-14]通过压汞试验研究了膨胀土孔隙微观结构在脱湿、冻融等条件下的变化。膨胀土利用方面的研究主要有,在煤矸石中掺加或覆盖煤矸石堆可控制煤矸石中重金属的溶出量[15-20];孙树林等[21-23]在膨胀土中掺入碱渣等固体废弃物改性膨胀土,降低其胀缩能力;牛晨亮等[24]研究利用工业废渣固化土;贺建清等[25]研究得到在煤矸石中,掺入一定量黏土,可弥补煤矸石的黏聚力,增加其稳定性。从上述分析可知,微观特征是影响膨胀土强度的因素之一,煤矸石改性膨胀土可起到增强的作用,但是在煤矸石一定掺量条件下,煤矸石改性膨胀土的强度机理有待于进一步探索。

本文从改良膨胀土的宏观和微观方面进行研究,通过膨胀试验和收缩试验确定煤矸石粉的最佳掺量,利用剪切试验和压汞试验测定改良膨胀土的强度特性和孔径分布变化,从微观角度解释干湿循环作用下煤矸石粉对膨胀土抗剪强度的影响机理,对掺入煤矸石解决膨胀土的工程问题和合理利用煤矸石减少环境污染具有指导意义。

1 试验材料及方法

1.1 试验材料基本性质

试验用膨胀土取自内蒙古兴和县高庙子乡(40°47′55.87″N,114°0′55.05″E),气候属大陆性季风气候,年降水量350~400 mm,年平均蒸发量为2 036.8 mm。取样深度为地表以下50 cm范围,颜色为灰白色,粉粒状结构,有滑感。膨胀土过0.5 mm筛,测得膨胀土基本指标:液限为57.2%,塑限为28.7%,塑性指数为28.5,天然含水率为4.25%,自由膨胀率为46%,根据膨胀土的膨胀率和塑限判断土样为弱膨胀土,液限大于50%为高塑性土。膨胀土的颗粒分析试验结果如图1所示。

图1 土的颗粒分析试验结果

从图1可知,土粒粒径10=0.01mm,30=0.02mm,60=0.06mm,膨胀土不均匀系数C=60/10>5,曲率系数C=302/(6010)=0.7≠1~3,故土颗粒级配不良。煤矸石取自乌海市神五煤矿公乌素煤矿4号采区,较坚硬,呈固体片状,表面油脂光泽,属于炭质页岩。基本化学指标[26]见表1所示。

表1 煤矸石的化学成分

由表1可知,煤矸石中SiO2、Al2O3含量占主要部分,其他成分含量较小。SiO2、Al2O3、Fe2O3的总含量为91.2%。经测定得到煤矸石的物理指标:吸水率为0.5%,烧失率为14.4%,压碎值为20.6%,不均匀系数为3.3,曲率系数为2。因此煤矸石的吸水率较小,其压碎值均小于30%,烧失量小于20%,满足路基设计规范要求[27]。由各煤矸石掺量的混合料的击实试验可得混合料的最佳含水率和最大干密度(如表2),随着煤矸石粉掺量的增大,最佳含水率增大而最大干密度随之减小。

表2 混合料的最佳含水率

1.2 试验设计

借鉴涂义亮等[28]研究干湿循环对黏土的影响,设计干湿最大含水率为饱和含水率,最小含水率为干燥过程中质量不再变化时的含水率;吴珺华等[29]研究干湿循环下膨胀土的基质吸力,设计增湿过程是在试样表面喷水至其质量不再发生变化为止,并结合当前极端气候对全球的影响,各地的极端暴雨、干旱、高温等气候现象频发,且通过试验测得膨胀土样增湿至质量不再变化时的含水率为80%,设计本试验研究的增湿含水率为80%和完全干燥的含水率为0%。根据文献[30]设计本次试验的干湿循环为5次,每次干湿循环结束后取2组试件,每组试件12个样。环刀试件用于直接剪切试验,盛土盒试件用于压汞试验。将试件放置在保湿罐,用滴管每隔30 min对土样表面加水直至土样达到预设含水率后停止加湿,将土样在保湿罐中养护24 h使水分均匀分布。采用自然风干方式干燥土样,每隔1 h称质量,当土样达到预设含水率后即认为试样完全干燥,如此为1次干湿循环。

将煤矸石磨细,并过0.5 mm筛[31]。参照规范[27]中石灰改良膨胀土的掺量在3%~10%,故设计煤矸石掺量分别为3%、6%、9%、12%。按照混合料的最佳含水率拌合土样,闷料24 h。按照轻型击实标准,击实土样,选用直径为61.8 mm、高为20 mm的钢环刀,切出土样试件。使用WZ-2型膨胀仪和WG型单杠杆固结仪,对不同煤矸石掺量下的试样按照《公路土工试验规程》[32],进行无荷膨胀率试验,压力50kPa有荷膨胀率试验和收缩试验,从试样的胀缩性能方面选取煤矸石粉的最佳掺量。对干湿循环后的环刀土样使用南京土壤仪器厂生产的ZJ型应变控制式直剪仪,按照JTG E40-2007法[32]进行快剪试验测定干湿循环作用下土样的黏聚力和内摩擦角。压汞试验采用美国麦克公司生产的Auto Pore IV 9500全自动压汞仪,粒径测量范围为0.005~360m。从土样中间部位切出5 mm×5 mm×15 mm的长方体压汞试样,经过冷冻干燥处理以保证土中孔隙不因脱水发生膨胀和收缩。通过压汞试验得到试样的孔隙特征值,孔隙率、孔隙体积、孔隙密度,从微观角度分析干湿循环作用下试样的孔隙变化特征及煤矸石粉掺量对试样强度的影响机理。

2 结果与分析

2.1 膨胀率和收缩试验

由无荷膨胀率试验和50 kPa压力作用下的有荷膨胀率试验得到不同膨胀时间下的土样膨胀率以及收缩系数与煤矸石掺量间的关系如图2所示。

由图2a可知,在0~500 min,煤矸石粉掺量越多土样无荷膨胀率越大,当膨胀时间在500~950 min之间时,素膨胀土样膨胀率急剧增大,950min后,素膨胀土的膨胀率开始趋于稳定,且超过所有煤矸石掺量的膨胀土样曲线,2 200 min后,各掺量下的膨胀土膨胀率趋于稳定。0%煤矸石掺量下的膨胀土的膨胀率达到约11%,当煤矸石粉掺入6%时比素膨胀土的膨胀率降低7.7%。因此,煤矸石粉的掺入对膨胀土的无荷膨胀率具有一定的改良效果。图2b看出,在膨胀时间0~15 h内,掺入煤矸石粉的土样比素膨胀土的有荷膨胀率更高;当膨胀时间达到15~20 h时,掺入煤矸石粉的土样的膨胀率逐渐趋于稳定,素膨胀土则继续膨胀;当大于24 h后,掺煤矸石的膨胀土样膨胀率低于素膨胀土并逐渐趋于稳定。由稳定后各土样的有荷膨胀率可见,0%煤矸石掺量下的膨胀土的膨胀率仅为2.8%,比无荷膨胀率减小了75%,掺量为6%时有荷膨胀率最小,比未掺煤矸石的膨胀土样膨胀率降低36%。由无荷膨胀率试验和有荷膨胀率试验的结果得到煤矸石粉掺量为6%时对膨胀土膨胀率的抑制作用最佳,且荷载的增加会显著抑制膨胀变形[33-35]。粗颗粒材料的掺入,使混合料的最佳含水率增加,最大干密度减小,膨胀率受到抑制[36]。由图2c可知,曲线在煤矸石粉掺量为6%时有一个明显的转折点,即煤矸石粉掺量小于6%时,收缩系数比未掺煤矸石膨胀土试样的收缩系数减小了约40%,掺量大于6%,收缩系数减小量逐渐减缓。以上结果说明煤矸石粉对膨胀土收缩性能的改善效果较为明显。

图2 无荷膨胀率、有荷膨胀率和收缩系数与煤矸石掺量的关系

由上述膨胀试验和收缩试验结果分析,煤矸石粉掺量为6%对膨胀土的胀缩性能的改良效果是最佳的。

2.2 剪切试验

选取素膨胀土和6%煤矸石掺量的土样进行干湿循环试验,干湿循环5次后,通过直接剪切试验测定每次干湿循环后土样的黏聚力和内摩擦角,可得到不同干湿循环次数下土样的黏聚力和内摩擦角如图3所示。

图3 黏聚力、内摩擦角与干湿循环次数的关系

从图3a得出,掺入6%的煤矸石粉后膨胀土的黏聚力提高近1.2倍。1次干湿循环后,掺入煤矸石的土样黏聚力减小8.20%,而素膨胀土则降低19.66%。表明干湿循环作用对土样的黏聚力具有明显的破坏作用,而掺入煤矸石粉的土样黏聚力衰减较小,说明煤矸石粉的掺入能够抵抗干湿循环对土样的破坏。随着干湿循环次数的增加,土样的黏聚力继续减小,但减小幅度不断降低,干湿循环3次后土样黏聚力逐渐趋于稳定,掺煤矸石粉土样的黏聚力减小17.43%,素膨胀土样减少26.37%。由此可知干湿循环1次时土样衰减幅度最大,掺入煤矸石和未掺煤矸石的土样1次干湿循环后的衰减量占总衰减量分别为47.05%和74.10%。不同次数干湿循环后,掺煤矸石粉土样黏聚力的降低幅度均小于素膨胀土样,煤矸石粉的掺入提高土样的黏聚力,增强了土样抵抗干湿循环对黏聚力的弱化作用。从图3b可以看出,土样的内摩擦角随着干湿循环次数增加而降低。干湿循环1次后,土样的内摩擦角有微小增加,掺煤矸石粉的土样增大幅度为0.17%,素膨胀土的增大幅度为0.33%,即素膨胀土对干湿循环作用更加敏感。干湿循环2~4次后,土样的内摩擦角逐渐减小;4~5次后平缓,最终掺煤矸石粉6%的土样内摩擦角衰减幅度为3.13%,素膨胀土的衰减幅度为3.92%。

综上所述,干湿循环作用使土样的黏聚力减小,掺煤矸石的土样黏聚力增大,衰减幅度较小。而土样的内摩擦角随干湿循环次数先少量增大后逐渐减小,素膨胀土内摩擦角随干湿循环次数增加而降低的幅度较大,表现出较大的敏感性。以50 kPa压力作用下对干湿循环5次后的试样进行直剪试验,计算得到0%和6%煤矸石掺量的抗剪强度值分别为50和105 kPa,因此掺加煤矸石,膨胀土样经历了反复干湿循环抗剪强度提高一倍。6%掺量煤矸石粉能够较好的抵抗干湿循环对土样的劣化作用。

3 胀缩变形及强度影响分析

3.1 孔隙率

土样的孔隙率及孔隙体积随干湿循环次数的变化如图4。在图4a中,随着干湿循环次数的增多,2种土样的孔隙率均逐渐增大。第1次干湿循环后,土样的孔隙率增大幅度最大,素膨胀土增大11.6%,改良土样增大6.19%。干湿循环在1~3次,素膨胀土的孔隙率增大1.28%,而改良土样的变化幅度较大,达到5.43%。当干湿循环达到4次后,改良土的孔隙率逐渐趋于稳定,而素膨胀土的孔隙率则继续增大。最终,素膨胀土的孔隙率增加23.06%,改良土则增大12.84%,因此改良土可抑制孔隙率的增加。由图4b可以看出,干湿循环次数越多,土样的总孔隙体积越大,循环5次后,素膨胀土总孔隙体积增加0.070 cm3/g,改良土样增大0.082 cm3/g。每次干湿循环后,改良土样的总孔隙体积均小于素膨胀土的总孔隙体积,干湿循环初始,二者差值为0.012 cm3/g,当干湿循环5次后,二者差距仅为0.003 cm3/g。

图4 孔隙率及孔隙体积随干湿循环次数的变化

总之,干湿循环作用使土样的总孔隙体积和孔隙率均有所增加,而掺入煤矸石粉的土样,在每次干湿循环作用后,总孔隙体积和孔隙率均小于素膨胀土样。

3.2 累积孔隙体积

根据Shear等[37]的孔径划分理论,可将膨胀土的微观结构孔径划分为如表3所示的5类。膨胀土样的累积孔隙体积曲线如图5所示。由图5a可知,在干湿循环过程中,由于其孔隙结构的变化,随着干湿循环次数的增加,累积孔隙体积曲线向上移动,在微孔和小孔范围内移动距离最大,在超微孔范围内移动范围较小;干湿循环0到3次的曲线变化可分为2个阶段:在小于0.1m时曲线较陡,大于0.1m后曲线趋于平缓。干湿循环次数增加后,曲线变化情况分为3个阶段,在<0.1m和>20m范围内,曲线斜率较大,而在0.1m<<20m范围内干湿循环次数多的曲线较平缓。这表明干湿循环作用对孔径的变化主要集中在超微孔和大孔范围内。

表3 孔隙类型划分

图5 累积孔隙体积-孔径曲线

从图5b可以看出,干湿循环0和1次的曲线变化可分为两部分,小于0.1m时曲线陡,大于0.1m后曲线趋于平缓;干湿循环3次后,曲线开始向上移动,至4次后曲线在>20m范围内斜率增大。

比较累积孔隙体积与孔径曲线,可以看出掺入煤矸石粉的土样曲线随干湿循环次数的增加较为平缓,有明显的过渡阶段,说明煤矸石粉可抵抗干湿循环的破坏作用。

3.3 累积孔隙密度

对图5中累积孔隙体积求导即可得孔隙分布密度曲线如图6所示。

图6 孔隙密度-孔径曲线

由图6a可看出,在干湿循环开始阶段素膨胀土样呈现出单峰值,当干湿循环次数达到3次后,曲线开始呈现双峰值特征,第一个峰值出现在超微孔范围内,第二个峰值出现在大孔范围内。在0.1~20m范围内不同干湿循环次数下的土样曲线基本相同,在大于20m范围第3、4、5次干湿循环后的土样曲线出现峰值,且干湿次数越多峰值越大,越沿横坐标往右移动,这表明随着干湿循环次数的增加大孔逐渐增多且孔径也越来越大,孔隙类型逐渐从颗粒间孔径和颗粒内孔径向团粒间孔隙转移。

对于掺煤矸石粉的土样,图6b中各曲线均在小于0.1m的范围内出现峰值,干湿循环0次和1次的土样曲线仅有一个峰值,当干湿循环进行到2次时曲线出现第二个峰值。在0.1~2m范围内,随着干湿循环的深入,第二个峰值开始右移,第3、4、5次干湿循环的曲线第二峰值均出现在大于20m范围内,且干湿循环次数越多,第二峰值越靠右。

比较图6a和图6b中的曲线,5次干湿循环后,掺入煤矸石土样的第二峰值小于素膨胀土的第二峰值,减小约35%。这表明煤矸石粉的掺入减少了大孔比例,素膨胀土在3次干湿循环后第二峰值就集中在大孔范围内,而改良膨胀土的第二峰值是逐渐向右移动的,即干湿循环作用对素膨胀土的影响较为明显,煤矸石粉的掺入可有效的改善膨胀土对干湿循环作用的敏感性,抵抗干湿循环对土的破坏。

关于膨胀土的胀缩机理,有学者认为在水的作用下黏土矿物颗粒表面的亲水性与水分子的极性结构特征,水分子在电场力作用下会吸附在矿物颗粒表面,形成一层水膜,膨胀土吸水而膨胀,本质上是水膜形成并且逐渐加厚,使颗粒间距增加,孔隙变大的过程,受到孔隙溶液成分、环境温度、外部荷载和微观结构等因素的影响[33,38]。土体因干燥而失水,土颗粒周围的水膜变薄,孔径减小,在毛细水压力和表面张力的共同作用下,土颗粒会随蒸发而逐渐靠拢,宏观表现为收缩变形[39]。试样的初始干密度越大,初始含水率越小,膨胀率越大[34]。

煤矸石粉的掺入使膨胀土样中的粗颗粒含量增大,改变了膨胀土的颗粒组成,最佳含水率增大而最大干密度减小,因而通过物理改良膨胀土的膨胀率得到抑制。土中的孔隙分布与膨胀性的强弱有着直接关系[40]。鲍硕超等[41]通过试验发现对土的膨胀性产生影响主要是土中较小的孔隙,并确定对膨胀土性质起决定性作用的“小-超微”孔隙的影响界限。从以上试验测得的微观指标孔隙率、孔隙体积、孔隙密度的变化情况看,经过干湿循环后,孔隙率和孔径逐渐增大,这一结论与其他学者的研究结果一致[42-43]。大孔隙含量增加,土体的团粒结构间距增大,因而煤矸石粉对膨胀土的物理改良过程中,混合料的密度和孔隙结构发生变化,促使膨胀土的胀缩性也因此发生改变。

从以上分析得出,孔隙分布密度的情况与直接剪切试验结果相吻合,因为土样中大孔隙的增多表明团粒结构间隙增多,团粒结构所占的比例增加,土颗粒的比表面积减小,颗粒间接触面减小,导致内摩擦角减小。而孔径增大,使团粒间的距离增大,团粒之间的连接更为松散,黏聚力逐渐减小。掺加煤矸石后,限制大孔密度,团粒间孔隙增多,黏聚力增加,内摩擦角降低,因而阻止强度的衰减。

4 结 论

以煤矸石改良膨胀土为研究对象,通过膨胀率试验、收缩试验、直剪试验、压汞试验等研究干湿循环作用对煤矸石改良膨胀土强度及孔径分布的影响,得到以下主要结论:

1)煤矸石粉改良膨胀土的最佳掺量为6%,改良土样比未掺煤矸石土样的无荷膨胀率降低7.7%,有荷膨胀率降低36%,收缩率降低约40%。

2)干湿循环作用降低土样的黏聚力和内摩擦角,且随着干湿循环次数增加而逐渐减小。掺入煤矸石粉土样黏聚力和内摩擦角的衰减幅度均小于素膨胀土,在最佳煤矸石粉掺量下,最终循环作用后抗剪强度增加一倍。

3)孔隙分布随干湿循环次数的增加,孔隙率、总孔隙体积增大,大孔逐渐增多。掺煤矸石粉的土样限制大孔生成,抑制干湿循环对膨胀土孔隙的破坏作用,因而减少对土样的强度影响。

[1] 王兵,张光辉,刘国彬,等. 黄土高原丘陵区水土流失综合治理生态环境效应评价[J]. 农业工程学报,2012,28(20):150-161.

Wang Bing, Zhang Guanghui, Liu Guobin, et al. Ecological and environmental evaluation for water and soil loss comprehensive harness in Loess hilly region [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(20): 150-161. (in Chinese with English abstract)

[2] 高奇,师学义,张琛,等. 县域农业生态环境质量动态评价与预测[J]. 农业工程学报,2014,30(5):228-237.

Gao Qi, Shi Xueyi, Zhang Chen, et al. Dynamic assessment and prediction on quality of agricultural eco-environment in county area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 228-237. (in Chinese with English abstract)

[3] 张大琦. 干湿循环作用下石灰处治土强度特性试验研究[J]. 上海交通大学学报,2011,45(S1):128-132.

Zhang Daqi. Experimental study of strength characteristics of lime stabilized soil in drying and wetting cycles[J]. Journal of Shanghai Jiaotong University, 2011, 45(S1): 128-132. (in Chinese with English abstract)

[4] 沈泰宇,邢书香,汪时机,等. 降低强膨胀土膨胀率提高抗剪强度的复合改良剂筛选[J]. 农业工程学报,2017,33(2):109-115.

Shen Taiyu, Xing Shuxiang, Wang Shiji, et al. Complex ameliorants screening for reducing swelling ratio and improving shear strength of strong expansive soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 109-115. (in Chinese with English abstract)

[5] 孔令伟,陈正汉. 特殊土与边坡技术发展综述[J]. 土木工程学报,2012,45(5):141-161.

Kong Lingwei, Chen Zhenghan. Advancement in the techniques for special soils and slopes[J]. China Civil Engineering Journal, 2012, 45(5): 141-161. (in Chinese with English abstract)

[6] 杨和平,王兴正,肖杰. 干湿循环效应对南宁外环膨胀土抗剪强度的影响[J]. 岩土工程学报,2014,36(5):949-954.

Yang Heping, Wang Xingzheng, Xiao Jie. Influence of wetting-drying cycles on strength characteristics of nanning expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 949-954. (in Chinese with English abstract)

[7] 吕海波,曾召田,赵艳林,等. 膨胀土强度干湿循环试验研究[J]. 岩土力学,2009,30(12):3797-3802.

Lǚ Haibo, Zeng Zhaotian, Zhao Yanlin, et al. Experimental studies of strength of expansive soil in drying and wetting cycle[J]. Rock and Soil Mechanics, 2009, 30(12): 3797-3802. (in Chinese with English abstract)

[8] 戴张俊,陈善雄,罗红明,等. 南水北调中线膨胀土/岩微观特征及其性质研究[J]. 岩土工程学报,2013,35(5):948-954.

Dai Zhangjun, Chen Shanxiong, Luo Hongming, et al. Microstructure and characteristics of expansive soil and rock of middle route of South-to-North Water Diversion Project[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 948-954. (in Chinese with English abstract)

[9] 徐丹,唐朝生,冷挺,等. 干湿循环对非饱和膨胀土抗剪强度影响的试验研究[J]. 地学前缘,2018,25(1):286-296.

Xu Dan, Tang Chaosheng, Leng Ting, et al. Shear strength of unsaturated expansive soil during wetting-drying cycles[J]. Earth Science Frontiers, 2018, 25(1): 286-296. (in Chinese with English abstract)

[10] 曾召田,吕海波,赵艳林,等. 膨胀土干湿循环过程孔径分布试验研究及其应用[J]. 岩土力学,2013,34(2):322-328.

Zeng Zhaotian, Lǚ Haibo, Zhao Yanlin, et al. Study of pore size distribution of expansive soil during wetting-drying cycle and its application[J]. Rock and Soil Mechanics, 2013, 34(2): 322-328. (in Chinese with English abstract)

[11] 汪为巍,王荣,臧濛,等. 膨胀土裂隙三维空间分布特征试验研究[J]. 科学技术与工程,2017,17(6):245-251.

Wang Weiwei, Wang Rong, Zang Meng, et al. Experimental research on three-dimensional space distribution characteristics of the expansive soil cracks[J]. Science Technology and Engineering, 2017, 17(6): 245-251. (in Chinese with English abstract)

[12] Ye W M, Wan M, Chen B, et al. An unsaturated hydraulic conductivity model for compacted GMZ01 bentonite with consideration of temperature[J]. Environmental Earth Sciences, 2014(71): 1937-1944.

[13] Kong Lingwei, Wang Min, Guo Aiguo, et al. Effect of drying environment on engineering properties of an expansive soil and its microstructure[J]. Journal of Mountain Science, 2017, 14(6): 1194-1201.

[14] 马晓宁,王选仓,孙进玲,等. 陇南地区膨胀土微观结构与膨胀性[J]. 南水北调与水利科技,2016,14(3):111-114.

Ma Xiaoning, Wang Xuancang, Sun Jinling, et al. Microstructure and expansion properties of expansive soil in longnan district[J]. South-to-North Water Transfers and Water Science & Technology, 2016, 14(3): 111-114. (in Chinese with English abstract)

[15] Liu H B, Liu Z L. Recycling utilization patterns of coal mining waste in China.[J]. Resources Conservation & Recycling, 2010, 54(12):1331-1340.

[16] Querol X, Zhuang X, Font O, et al. Influence of soil cover on reducing the environmental impact of spontaneous coal combustion in coal waste gobs: A review and new experimental data[J]. International Journal of Coal Geology, 2011, 85(1):2-22.

[17] Liu B, Tang Z, Dong S, et al. Vegetation recovery and groundwater pollution control of coal gangue field in a semi-arid area for a field application[J]. International Biodeterioration & Biodegradation, 2017.DOI: 10.1016/j.ibiod.2017.01.032.

[18] Yao Y, Li Y, Liu X, et al. Characterization on a cementitious material composed of red mud and coal industry byproducts[J]. Construction & Building Materials, 2013, 47(5):496-501.

[19] Zhang N, Li H, Liu X. Hydration mechanism and leaching behavior of bauxite-calcination-method red mud-coal gangue based cementitious materials[J]. Journal of Hazardous Materials, 2016, 314:172-180.

[20] Geng J, Zhou M, Zhang T, et al. Preparation of blended geopolymer from red mud and coal gangue with mechanical co-grinding preactivation[J]. Materials & Structures, 2017, 50(2):109.

[21] 孙树林,郑青海,唐俊,等. 碱渣改良膨胀土室内试验研究[J]. 岩土力学,2012,33(6):1608-1612.

Sun Shulin, Zheng Qinghai, Tang Jun, et al. Experimental research on expansive soil improved by soda residue[J]. Rock and Soil Mechanics, 2012, 33(6): 1608-1612. (in Chinese with English abstract)

[22] 孙树林,唐俊,郑青海,等. 掺高炉水渣膨胀土的室内改良试验研究[J]. 岩土力学,2012,33(7):1940-1944.

Sun Shulin, Tang Jun, Zheng Qinghai, et al. Experimental study of expansive soil improved with granulated blast furnace slag (GBFS) [J].Rock and Soil Mechanics, 2012, 33(7): 1940-1944. (in Chinese with English abstract)

[23] 张德恒,孙树林,徐奋强,等. 秸秆灰渣一大理石石灰改良膨胀土试验[J]. 辽宁工程技术大学学报:自然科学版,2014,33(2):193-197.

Zhang Deheng, Sun Shulin, Xu Fenqiang, et al. Experiment improvement of expansive soil with straw ash-marble dust[J]. Journal of Liaoning Technical University(Natural Science), 2014, 33(2): 193-197. (in Chinese with English abstract)

[24] 牛晨亮,黄新,李战国,等. 利用工业废渣固化软土的试验研究[J]. 环境工程学报,2009,3(10):1871-1874.

Niu Chenliang, Huang Xin, Li Zhanguo, et al. Experimental research on utilization of industrial wastes t stabilize soft soil[J]. Chinese Journal of Environmental Engineering, 2009, 3(10): 1871-1874. (in Chinese with English abstract)

[25] 贺建清,靳明,阳军生. 掺土煤矸石路用工程力学特性及其填筑技术研究[J]. 土木工程学报,2008,41(5):87-93.

He Jianqing, Jin Ming, Yang Junsheng. A study on the road engineering mechanical properties of coal gangue mixed with clay and the filling techniques[J]. China Civil Engineering Journal, 2008, 41(5): 87-93. (in Chinese with English abstract)

[26] 张雁,张宇,郭利勇,等. 非饱和压实膨胀土掺煤矸石的特性研究[J]. 环境工程学报,2016,10(9):5115-5120.

Zhang Yan, Zhang Yu, Guo Liyong, et al. Research on properties of unsaturated compacted expansive soil added with coal gangue[J]. Chinese Journal of Environmental Engineering, 2016, 10(9): 5115-5120. (in Chinese with English abstract)

[27] 公路路基设计规范(JTG D30-2015)[S].

[28] 涂义亮,刘新荣,钟祖良,等. 干湿循环下粉质黏土强度及变形特性试验研究[J]. 岩土力学,2017,38(12):3581-3589.

Tu Yiliang, Liu Xinrong, Zhong Zuliang,et al. Experimental study on strength and deformation characteristics of silty clay during wetting-drying cycles[J]. Rock and Soil Mechanics, 2017, 38(12): 3581-3589. (in Chinese with English abstract)

[29] 吴珺华,杨松. 干湿循环下膨胀土基质吸力测定及其对抗剪强度影响试验研究[J]. 岩土力学,2017,38(3):678-684.

Wu Junhua, Yang Song. Experimental study of matric suction measurement and its impact on shear strength under drying-wetting cycles for expansive soils[J]. Rock and Soil Mechanics, 2017, 38(3): 678-684. (in Chinese with English abstract)

[30] Daniel Rosenbalm, Claudia E Zapata. Effect of wetting and drying cycles on the behavior of compacted expansive soils[J]. Journal of Materials in Civil Engineering, 2017, 29(1): DOI:10.1061/(ASCE) MT.1943-5533.0001689.

[31] Zhang C, Yang X, Li Y. Mechanism and structural analysis of the thermal activation of coal-gangue[J]. Advanced Materials Research, 2011(356-360): 1807-1812.

[32] 公路土工试验规程(JTG E40-2007)[S].

[33] 陈亮,卢亮. 土体干湿循环过程中的体积变形特性研究[J].地下科学与工程学报,2013,9(2):229-235.

Chen Liang, Lu Liang. Investigation on the characteristics of volumetric change during the wet-dry cycle of the soil[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(2): 229-235. (in Chinese with English abstract)

[34] 吴珺华,袁俊平,杨松,等. 干湿循环下膨胀土胀缩性能试验[J]. 水利水电科技进展,2013,33(1):62-65.

Wu Junhua, Yuan Junping, Yang Song, et al. Experimental study on swell-shrinking performance of expansive soil under wetting-drying cycles[J]. Advances in Science and Technology of Water Resources, 2013, 33(1): 62-65. (in Chinese with English abstract)

[35] 杨和平,张锐,郑健龙. 有荷条件下膨胀土的干湿循环胀缩变形及强度变化规律[J]. 岩土工程学,2006,28(11):1936-1941.

Yang Heping, Zhang Rui, Zheng Jianlong. Variation of deformation and strength of expansive soil during cyclic wetting and drying under loading condition[J]. Chinese Journal of Geotechnical Engineering,2006,28(11): 1936-1941. (in Chinese with English abstract)

[36] Guney Y, Sari D, Cetin, et al. Impact of cyclic wetting-drying on swelling behavior of lime-stabilized soil[J]. Building and Environment, 2007, 42: 681-688.

[37] Shear D L, Olsen H W, Nelson K R. Effects of desiccation on the hydraulic conductivity versus void ratio relationship for a natural clay[R]. Washington D C: Transportation research record, NRC National academy press. 1993: 1365-1370.

[38] 冷挺,唐朝生,徐丹,等. 膨胀土工程地质特性研究进展[J]. 工程地质学报,2018,26(1):112-128.

Leng Ting, Tang Chaosheng, Xu Dan, et al. Advance on the engineering geological characteristics of expansive soil[J]. Journal of Engineering Geology, 2018, 26(1): 112-128. (in Chinese with English abstract)

[39] 唐朝生,崔玉军,Anh-Minh Tang,等. 土体干燥过程中的体积收缩变形特征[J]. 岩土工程学报,2011,33(8):1271-1279. Tang Chaosheng, Cui Yujun, Anh-Minh Tang, et al. Volumetric shrinkage characteristics of soil during drying[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1271-1279. (in Chinese with English abstract)

[40] Lin B T, Cerato A B. Prediction of expansive soil swelling based on four micro-scale properties[J]. Bulletin of Engineering Geology and the Environment, 2012, 71(1): 71-78.

[41] 鲍硕超,王清,陈剑平,等. 吉林省延边地区路基边坡膨胀土孔隙分布特性[J]. 东北大学学报(自然科学版),2017,38(1):132-137.

Bao Shuochao, Wang Qing, Chen Jianping, et al. Pore size distribution of expansive soil of the subgrade slope in Yanbian Region, Jilin Province[J]. Journal of Northeastern University (Natural Science), 2017, 38(1): 132-137. (in Chinese with English abstract)

[42] Zemenu G, Martine A, Roger C. Analysis of the behavior of a natural expansive soil under cyclic drying and wetting[J]. Bull Eng Geol Environ, 2009, 68: 421-436.

[43] 唐朝生,施斌. 干湿循环过程中膨胀土的胀缩变形特征[J]. 岩土工程学报,2011,33(9):1376-1384.

Tang Chaosheng, Shi Bin. Swelling and shrinkage behavior of expansive soil during wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1376-1384. (in Chinese with English abstract)

Strength properties of solidified expansive soil with coal gangue and its pore structure characterization under condition of optimum dosage

Zhang Yan, Yin Xiaoxiao, Liu Tong

(,010018)

Expansive soil is a kind of clay with high plasticity and sensitivity. It has strong characteristics of water-absorbing expansion and water-losing contraction, so its strength is easily affected by dry and wet circulation. Under the condition of dry-wet cycle, expansive soil tends to show certain softening characteristics, and its deformation resistance and strength will gradually decline, which will easily lead to the instability of slope, subsidence of roadbed, damage of irrigation and water conservancy facilities, aggravation of soil erosion, and impact on the agricultural ecological environment. In order to weaken damages to civil engineering facilities and ecological environment induced by expansive soils, the experimental study on the expansive soil mixed with coal gangue powder was carried out. The purpose of this paper was to study strength properties of solidified expansive soil with coal gangue powder and microscopic pore characteristics. Expansive soil and coal gangue used for testing were collected fromGao miaozi township, Xinghe county, Inner Mongolia, China. The combination of different ratios of coal gangue was used to treat expansive soil. The optimum dosage of coal gangue powder was determined according to the no-load swelling test, the loaded swelling test, and the contraction test. And then, we conducted the drying and wetting cycle test on expansive soil with the optimum dosage of coal gangue. In addition, the index of shear strength, including cohesion and internal friction angle, obtained from the shear strength test, and pore characteristic values, consisting of porosity, total pore volume, cumulative pore volume and pore density, achieved from the mercury intrusion test. We revealed the strength change mechanism in the view of microcosmic level. The test results showed that the expansion and contraction decreased after mixing coal gangue powder. The optimal dosage of coal gangue powder was 6%. Compared with unmixed soil sample, the no-load expansion rate, loaded expansion rate and shrinkage rate of improved soil sample were reduced by 7.7%, 36% and 40%, respectively. The dry-wet cycle reduced the cohesion and the angle of internal friction of expansive soil and decreases with the increase of dry-wet cycles. The cohesive force and the attenuation of internal friction angle of coal gangue powder soil were all smaller than that of plain expansive soil. While shear strength attenuation restrained by adding coal gangue powder. The pore density-aperture curves were bimodal distribution. With the increase of dry-wet cycle, pore diameters gathered to big pore of diameter, and granular structure emerged, which depressed the strength indexes. The pore density of big pore in samples with coal gangue powder decreased by about 35% compared with expansive soil without coal gangue, after the fifth dry-wet cycle. As the number of dry-wet cycle increased, the porosity and total pore volume increased, and the big pores also gradually increased. The expansive soil sample mixed with coal gangue powder restricts the formation of large pores, inhibits the damage of dry-wet cycle to the pore of expansive soil, and thus reduces the effect on the strength of expansive soil sample. In conclusion, coal gangue powder can prevent strength of expansive soil from reducing via restraining pores in samples.

shear strength; porosity; coal gangue; expansive soil; dry-wet cycle; mercury intrusion method

张 雁,殷潇潇,刘 通. 煤矸石改良膨胀土特性及其最佳掺量条件下孔隙结构表征[J]. 农业工程学报,2018,34(22):267-274. doi:10.11975/j.issn.1002-6819.2018.22.033 http://www.tcsae.org

Zhang Yan, Yin Xiaoxiao, Liu Tong. Strength properties of solidified expansive soil with coal gangue and its pore structure characterization under condition of optimum dosage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 267-274. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.22.033 http://www.tcsae.org

2018-05-12

2018-10-20

国家自然科学基金项目(No.51669025)

张雁,教授,博士,主要从事路基材料性能方面的研究。Email:zhangyanli@imau.edu.cn

10.11975/j.issn.1002-6819.2018.22.033

TU 411

A

1002-6819(2018)-22-0267-08

猜你喜欢

膨胀率黏聚力煤矸石
不同品种的掺合料对骨料碱活性的抑制作用
浅谈煤矸石在固废混凝土中的应用
煤矸石在高等级公路路基工程中的应用研究
化学改良红黏土作用模型研究
锌改性煤矸石的制备及其对废水中磷酸盐的吸附去除
十八胺改性下膨胀土斥水与变形特性试验研究
陇东地区煤矸石细骨料混凝土的工程性能研究
土体参数对改良黄土边坡变形的影响
宇宙在膨胀,时间将终结?
黏聚力强度对滑面作用的差异分析