APP下载

河道淤泥和堆肥蛭石混合发酵制备基质及其育苗效果

2018-11-23陈立华姚宇阗潘德峰常义军许有文

农业工程学报 2018年22期
关键词:瓜苗淤泥河道

陈立华,姚宇阗,尚 辉,刘 娟,潘德峰,常义军,许有文



河道淤泥和堆肥蛭石混合发酵制备基质及其育苗效果

陈立华1,2,姚宇阗2,尚 辉3,刘 娟4,潘德峰4,常义军5,许有文4

(1. 南方地区高效灌排与农业水土环境教育部重点实验室(河海大学),南京 210098; 2.江苏省沿海开发集团有限公司,南京 210013;3. 江苏沿海开发(东台)有限公司,东台 224200; 4.江苏省沿海水利科学研究所,东台 224200; 5. 南京军辉生物科技有限公司,南京 211155)

农村河道清淤产生的淤泥,体量大、有机物浓度高,处置不当会造成二次污染。现代农业的工厂化育苗需求大量的营养土,就地取土导致耕地退化。该研究利用功能微生物发酵淤泥制备育苗基质,研究不同菌株发酵基质的物理和生物学性状,基质培育西瓜苗的生长、生理参数和抗逆性能。结果表明:微生物处理均能够提升淤泥基质物理和生物学性能,同时能够提升育苗质量。其中T83(T83)、IAE(BIAE)菌株发酵基质性能最好。相较于对照处理基质的最大持水量、总孔隙度、毛管孔隙度、通气孔隙度,T83处理分别增加了64.25%、52.65%、45.05%、56.11%;BIAE处理分别增加了101.17%、45.43%、61.43%、38.14%。相较于对照处理西瓜苗的株高、鲜质量、干质量、叶绿素含量、根系活力、根际真菌、细菌数量,T83处理分别增加了66.85%、52.07%、72.16%、43.13%、54.93%、110.62倍、1.63倍;BIAE处理分别增加了80.40%、57.34%、82.37%、54.88%、46.40%、67.26%、2.60倍、2.94倍。T83和BIAE处理西瓜苗叶片过氧化氢酶和超氧化物歧化酶酶活显著增加,根系丙二醛含量显著降低。真菌菌株T83和细菌菌株IAE发酵淤泥,能够显著提升其农用品质,为淤泥高附加值化农用提供一条可行的途径。

淤泥处理;基质;堆肥;发酵;木霉;芽孢杆菌

0 引 言

国家加强农村河道的治理力度,在提高河道防洪、排涝和灌溉能力的同时减少河道内源污染,为河道水质改善提供保障。河道清淤过程产生大量的淤泥堆置于地表,其受到外界物理、生物、化学等因素影响,会释放大量污染物,再次流入环境水体会造成严重污染。高效资源化利用农村河道清淤淤泥,可以有效减少淤泥造成的二次污染。现阶段有报道增加外源添加剂固化淤泥,形成的固形物可用于堤防工程、道路工程、填方工程和绿化工程[1-3];脱水后的淤泥用于烧砖、烧制陶粒、水泥原料等[1-3]。但是部分农村清淤产生的淤泥,不具备以上资源化途径,开发新的淤泥资源化利用途径十分重要。

随着现代农业发展,工厂化育秧育苗已成为主流农作方式,由于育秧育苗需要大量的营养土,其就地取用大量农田耕层土壤,会导致特定区域农田土壤严重退化,运用外源的育秧育苗基质可以有效避免这种情况发生。现阶段外源的营养土主要是生产企业利用腐熟的食用菌渣、木薯渣、牛粪等固体废弃物和购置的农田土壤复配制成,生产过程仍然需要大量的耕作层土壤。有效地开发新的土壤资源,有利于耕地的保护。

农村河道淤泥主要是粒径较小的粉砂和沉积的有机物组成,含有大量的植物营养物质,但是透水性、通气性较差,脱水之后板结,不适用作植物生长的基质。土壤微生物分解有机物过程产热产气,可以提升土壤的通透性[4-5],同时微生物代谢物促进土壤团聚体形成,增加土壤孔隙率,促进土壤发育;同时微生物生命活动过程能够活化土壤或者基质中N、P、K、Ca、Mg、Fe等植物营养元素,增加土壤或者基质植物营养元素可利用性[4-7],同时微生物是土壤植物激素的主要来源[6],能够促进植物生长功能[7-9]。本文设想利用具有促进植物生长功能的PGPR(plant growth promoting rhizobacteria)微生物菌株,发酵处理农村河道清淤淤泥制备农用育秧育苗基质,同时利用微生物功能提升育秧育苗基质质量,实现农沟清淤淤泥资源化利用,为农村河道清淤淤泥利用新途径提供理论和实践基础。

1 材料与方法

1.1 淤泥性质及其制备的农用基质

河道淤泥来源于江苏东台三仓镇河道(32°45′N,120°45′E)清淤,污泥的理化性质如表1所示。污泥中砷(As)、汞(Hg)、铬(Cr)、镉(Cd)、铅(Pr)等重金属含量均低于农业应用标准限值[10]。

采用金针菇菇渣、牛粪、稻壳按照质量比5:1:0.5为原料发酵,形成完全腐熟堆肥,3种原料理化性质如表2所示。按照1%(w:w)的比例向腐熟堆肥中接种6株PGPR菌株(表3),彻底混匀,接种菌剂微生物数量和发酵7d后堆肥微生物数量如表3所示,未添加微生物处理设置为对照处理(CK)。

表1 淤泥的理化性质

注:*为干基;**为湿基。

Note:*dry substrate;**wet substrate.

表2 3种堆肥原料理化性质

注:*为干基;**为湿基。Note:*dry substrate;**wet substrate.

表3 不同菌剂的微生物种类、数量及其发酵后堆肥的微生物数量

按照生产中基料总体含水量70%~80%,易于通气的原则,将河道淤泥、接种不同菌株发酵后的堆肥、甜叶菊渣堆肥、蛭石以质量比5:3:2:1的比例彻底混匀,形成基料含水量70.82%。在高5.5 m的阳光钢结构大棚发酵,棚内温度23~35 ℃,基料采用条垛式发酵工艺,条垛堆宽250 cm,高度120 cm,长度75 m,采用YLFP280型号翻抛机每6 d翻抛1次。翻抛结束后在条垛侧面50 cm高度处、每隔10 m水平插入温度计1根,总计插3根温度计,每日8:00时记录温度计数值。发酵形成的淤泥基质容重、持水能力、总孔隙度、毛管孔隙度、通气孔隙度测定采用环刀法[11],同时测定基质木霉菌数量[8]、细菌数量[8]、肠道菌群数量[8]、蛔虫卵死亡率[10]、重金属含量等指标[10]。

1.2 指标农作物选用及其生理生化指标的测定

西瓜采用“早佳8424”品种,种子用0.3%次氯酸钠消毒20 min,无菌水冲洗3遍,用35 ℃的无菌水浸种3 h,用无菌湿纱布包裹,28 ℃催芽72 h。根据使用淤泥基质的不同,试验设置7个处理,分别为:1)CK处理,使用CK处理基质育苗;2)T83处理,使用T83菌株发酵的基质育苗;3)T12处理,使用T12菌株发酵的基质育苗;4)BIAE处理,使用BIAE菌株发酵的基质育苗;5)B1582处理,使用B1582菌株发酵的基质育苗;6)BA11处理,使用BA11菌株发酵的基质育苗;7)BD9处理,使用BD9菌株发酵的基质育苗。育苗盘穴添加80%体积淤泥基质,选取发芽一致西瓜种子放置育苗盘穴内,每穴一粒,苗盘覆盖育苗基质,确保盘穴充满淤泥基质,用自来水彻底浇湿苗盘,每处理5个重复,放置于温室培养,温室温度18~30 ℃。西瓜苗生长40 d后,每个处理取生长一致苗20株,测定干苗和鲜苗的质量、株高、茎基部直径、叶片叶绿素含量、根系活力、酶活力、根系微生物数量。将苗放置于8~10 ℃的环境中12 h,测定叶片过氧化氢酶、超氧化物气化酶活力,测定根系丙二醛含量[7-8]。叶绿素含量(SPAD)采用SPAD-502 手持式叶绿素仪测定,根系活力采用氯化三苯基四氮唑(TTC)法测定[7-8],微生物数量采用稀释涂布法[8]。

1.3 数据分析

试验数据用SPSS 18.0(Chicago,USA)统计软件进行方差分析,差异显著性比较采用Duncan’s 测验,绘图使用Excel 软件。

2 结果与分析

2.1 淤泥基质发酵过程温度和含水量变化

淤泥基质发酵过程中温度变化如图1所示,CK处理升温缓慢,接种的6株菌株均能够加速基料升温。这与添加外源微生物加速有机物的分解转化,其发酵过程产生热有关。发酵过程中,最高温度低于60 ℃,而且维持50 ℃以上时间较短,表明淤泥中有机物得到充分分解利用,基本处于稳定状态。发酵后期基质温度接近室温30 ℃,表明基质已经完全腐熟。发酵21d后测定的基质含水量结果如图2所示,相较于CK处理,增加外源微生物进行发酵均显著降低基质的含水量(<0.05),表明添加的6株外源微生物产热均能够加速水分蒸发。添加外源微生物的处理间基质含水量没有表现出显著差异(0.05),试验使用菌株的发酵效率差别不显著。

图1 不同处理基质发酵过程温度变化

注:图中不同小写字母表示处理间差异显著(P<0.05)。

2.2 淤泥基质的物理性质和微生物数量

微生物发酵对淤泥基质的物理性质影响如表4所示。BA11处理淤泥基质容重没有显著变化(>0.05),其他微生物处理容重降低了15.57%~25.52%;微生物处理最大持水量均显著增加(<0.05),其中BIAE处理最大持水量最高,相较于CK处理增加了101.17%;微生物处理总孔隙度显著增加,增幅为22.65%~52.65%,其中T83处理的增幅最大,增加了52.65%,BIAE为45.43%;微生物处理毛管孔隙度增幅为17.03%~61.43%,其中BIAE处理的毛管孔隙度值最大(61.43%);T12处理的通气孔隙度无显著变化,其他处理均显著增加,增幅为40.47%~56.11%。T83和BIAE的通气孔隙度相较于CK处理分别增加了56.11%、38.16%。微生物处理显著改变淤泥基质的物理性质。

表4 不同处理淤泥基质的物理性质

注:同列不同小写字母表示差异显著(<0.05),下同。

Note: Different lowercase letters in the same column represented significant difference (<0.05), same as follow.

发酵后淤泥基质微生物数量如表5所示。微生物发酵的淤泥基质,其细菌数量显著高于CK处理(<0.05);接种真菌型微生物菌剂显著提高基质真菌和木霉菌数量(<0.05),接种细菌型微生物对基质中真菌和木霉菌数量影响不显著(>0.05);接种微生物菌剂处理,其镰刀菌和肠道菌群数量显著降低(<0.05)。

表5 不同处理淤泥基质的微生物数量

2.3 淤泥基质对瓜苗生物学性状影响

不同处理瓜苗生物学性状如表6所示。相较于CK处理,除了BA11处理外,其他处理株高均显著增加(<0.05);各处理鲜苗质量均显著增加(<0.05);除T12处理外,其他处理苗烘干地上部质量显著增加(<0.05);BD9处理地下部烘干质量和CK处理没有显著差异(>0.05),其他处理地下部烘干质量均显著高于CK处理(<0.05);BA11和T12处理茎粗与CK处理没有显著差异(>0.05),其他处理茎粗均显著高于CK处理(<0.05)。不同处理均表现出促生效果,微生物处理株高比CK处理增加了17.78%~80.51%。不同处理促生效果差别较大,不同基质对于瓜苗生长发育的影响部位不同。在瓜苗生物学性状总体表现上,BIAE和T83处理表现最好(<0.05),相较于对照处理西瓜苗的株高、鲜质量、干质量,T83处理分别增加了66.85%、52.07%、70.77%;BIAE处理分别增加了80.40%、40.84%、80.00%。

表6 不同处理西瓜苗的生物学性状

2.4 淤泥基质对瓜苗生理生化性状的影响

淤泥基质对瓜苗生理生化性状的影响如表7所示。相较于CK处理,T12、T83、BIAE和B1582处理超氧化物歧化酶酶活显著增加(<0.05),T12、T83、BIAE和BD9处理过氧化氢酶酶活显著增加(<0.05)。除了B1582和BA11处理外,相较于CK处理,其他处理根系丙二醛量均显著降低(<0.05),其中T83、T12、BIAE、BD9处理相较于对照处理分别降低了70.62%、50.00%、61.86%和38.66%。T12和BA11处理的根系活力和叶绿素含量和CK处理之间没有显著差异(>0.05),但是T83、BIAE、B1582和DB9处理根系活力分别比CK处理高54.93%、67.26%、35.07%和35.01%(<0.05),叶绿素含量分别比CK处理高43.13%、46.40%、31.71%、32.62%(<0.05)。T83、T12和BIAE基质显著增加西瓜苗抗逆性。

表7 不同处理西瓜苗生理生化性状

2.5 淤泥基质对瓜苗根表微生物数量影响

表8为不同处理西瓜苗根表微生物数量,不同处理对瓜苗根表微生物数量影响显著(<0.05)。相较于CK处理,T83、T12和BIAE处理真菌数量显著增加,分别增加111.62、119.01和1.59倍,其他处理真菌数量增加了1.30~2.00倍(<0.05)。相较于CK处理,T83和BIAE处理细菌数量分别增加1.63、2.94倍。T12和BD9处理放线菌数量和CK处理没有显著差异(>0.05),而T83、BIAE、B1582和BA11处理放线菌数量分别增加了4.38、5.66、5.15和2.22倍。根际微生物具有促生作用,能够提升作物抗逆性,淤泥基质显著增加瓜苗根表微生物数量,有利于提升淤泥基质产品的附加值。

表8 不同处理西瓜苗根表微生物数量

3 讨 论

农村河道清淤产生的淤泥含有大量的有机物、粘结性大、通透性差,很难有效农业利用。微生物可分解有机固体废弃物中纤维素、蛋白质等大分子物质[12-16],活化有机固体废弃物氮、磷、钾等大量元素以及硼、钼、铁等微量元素[13,16],同时钝化具生物毒性的铅、镉、汞等重金属元素[13],改变淤泥的理化性质,使其适于作物生长。同时微生物分泌植物激素、合成植物所需的营养物质、抑制土壤病原菌侵染,提高植物抗逆境能力[5,7-9],提升淤泥基质促生功能。

农沟淤泥长时间处于土著微生物的厌氧发酵过程,淤泥基本处于稳定状态,只要其病原微生物、有害化学物质、重金属等因子不超标,可以满足农业应用[7,10,16];不会存在畜禽粪便、秸秆等物质没有充分腐熟导致其在土壤中分解,耗氧、产热导致植物烂根现象。与常规堆肥过程中70 ℃以上维持20 d现象不同,试验中添加腐熟的堆肥和外源微生物,整体基料温度仍然没有超过60 ℃,而且只维持6~9 d时长,表明淤泥中有机物基本处于稳定态;没有外源能源的情况下,堆置的清淤淤泥不会剧烈产热和产气,短时间内很难改变其结构。试验所用的菌株为本单位专利菌株,具有高效利用固体废弃物功能和促进植物生长的功能。.T83菌株能够促进滩涂盐碱土壤中碱蓬的生长[8],.T12菌株能够通过抑制水稻土传病害立枯丝核菌促进水稻的生长[17],.IAE菌株能够通过增加土壤的保水和保肥的能力,提升盐土植物的成活率和促进植物的生长,D9菌株抑制土壤病原真菌的生长促进植物生长[18]。本文所用的菌株均提升了淤泥基质性能,有效缓解了其作为农用育苗育秧基质过程中,由于透气透水性较差导致缺氧和涝渍损伤秧苗的根系的情况。其容重减小,孔隙度增加,这与菌株能够快速利用小分子有机物产酸产气,增加基质孔隙性有一定相关性。其中T83和BIAE菌株表现最好,可能与T83菌株生物量较大,菌丝桥联粉砂质颗粒形成大团聚体有关;BIAE能够产生高聚物-多聚谷氨酸,有利于团聚体形成;具体原理将开展进一步研究。

试验中所有处理蛔虫卵死亡率均高于95%,达到安全标准,可能源于发酵产生高温对蛔虫卵杀灭作用,也有可能源于发酵过程微生物代谢几丁质酶等胞外酶对蛔虫卵的裂解作用,具体原因需要进一步研究。镰刀菌是重要植物病原菌,淤泥是其重要传染源[19-22],淤泥基质镰刀菌数量涉及到农用安全性,试验中微生物处理,镰刀菌数量均显著降低。微生物分泌的胞外纤维素分解酶、几丁质分解酶、聚糖分解酶能够分解真菌细胞壁,导致真菌失活[20-21],试验中使用木霉属真菌和芽孢杆菌均属高产胞外酶类型的微生物[9,15,21],发酵过程该类功能微生物的活动对病原微生物杀灭具有重要的作用。肠道菌群数量是涉及到食品安全的重要指标[20-25],微生物处理肠道菌群数量显著降低,远低于农用肥料行业标准限值[10],发酵过程高温对肠道菌群灭活作用[26-27],同时与功能微生物能够产生大量的抗生类物质[9,22-23],对肠道菌群也有杀灭作用也具有相关性。接种T83、T12、BIAE菌株显著提升基质细菌数量,可能源于T83、T12菌株分解有机物促进土著细菌增长。

各微生物处理均表现显著的促生效果,是微生物改变基质物理性质以及微生物菌株自身的促生效果叠加效应[27-28],其中T83和BIAE处理表现最好,可以依托该菌株进一步优化淤泥基质的生产工艺。基质通气性和持水能力不满足农用标准,会导致作物根系产生胁迫效应[30-31],导致根系受损,植株活力下降。丙二醛是细胞膜受损分解产物[8],相较于对照处理,微生物处理丙二醛含量均较低,表明微生物处理西瓜苗根系受损程度低于对照处理,微生物处理降低了瓜苗根系胁迫性。微生物处理酶活、根系活力、叶绿素含量均高于对照,表明植株活力、光合能力、吸收能力显著高于对照。微生物技术能够提升淤泥基质培育西瓜苗质量。有益微生物在植物根表定植,能够提升植株吸收营养元素能力[28-29]、抑制土壤病原菌侵染根系[25, 29-31]、分泌植物所需物质[29-31],有利于提升植物抗逆性和抗病性。本试验的菌株均能够在西瓜苗根表定植,有利于提升淤泥育苗基质附加值,对扩大淤泥农用量具有重要的意义。

4 结 论

1)功能微生物发酵以农村河道清淤淤泥为主要原料的基质,能够显著改变基质的物理性质,提高其持水能力、透气和透水性。

2)不同功能微生物菌株发酵的基质对育苗生长指标、生理生化性状的影响差异较大,试验中T83和IAE菌株发酵的基质培育的西瓜苗质量最好。

3)微生物发酵处理淤泥基质,有利于有益微生物在所培育作物的根表定植,提升所育苗的抗逆性和抗病性,有利于提升淤泥资源化利用产品的附加值。

[1] Dohnálková B, Drochytka R, Hodul J. New possibilities of neutralisation sludge solidification technology [J]. Journal of Cleaner Production, 2018, 204: 1097-1107.

[2] Świerczek L, Cieślik B, Konieczka P. The potential of raw sewage sludge in construction industry:A review[J]. Journal of Cleaner Production, 2018, 200: 342-356.

[3] Liu M, Liu X, Wang W, et al. Effect of SiO2and Al2O3on characteristics of lightweight aggregate made from sewage sludge and river sediment[J]. Ceramics International, 2018, 44: 4313-4319.

[4] Yang X, Geng B, Zhu C, et al. Fermentation performance optimization in an ectopic fermentation system[J]. Bioresource Technology, 2018, 260: 329-337.

[5] Wei Y, Zhao Y, Fan Y, et al. Impact of phosphate-solubilizing bacteria inoculation methods on phosphorus transformation and long-term utilization in composting[J]. Bioresource Technology, 2017, 241: 134-141.

[6] Etesami H, Maheshwari D K. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects[J]. Ecotoxicology and Environmental Safety, 2018, 156: 225-246.

[7] Chen L, Huang X, Zhang F, et al. Application ofSQR-T037 bio-organic fertiliser significantly controls Fusarium wilt and affects the microbial communities of continuously cropped soil of cucumber [J]. Journal of the Science of Food and Agriculture, 2012, 92: 2465-2470.

[8] Chen L, Zheng J, Shao X, et al. Effects ofT83 onL. in coastal saline soil[J]. Ecological Engineering, 2016, 91: 58-64.

[9] Harman G E, Howell C R, Viterbo A et al.species-opportunistic, avirulent plant symbionts[J]. Nature Reviews Microbiology, 2004, 2: 43-56.

[10] NY525-2012,有机肥料[S].

[11] 杨丹,熊东红,刘守江,等. 土壤理化及力学性质对干热河谷台地边坡沟蚀发育的影响[J]. 农业工程学报,2018,34(4):170-176.

Yang Dan, Xiong Donghong, Liu Shoujiang, et al. Impacts of soil physical-chemical and mechanical properties on gully erosion development on terrace slopes in dry-hot valley region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 170-176. (in Chinese with English abstract)

[12] 赵晨浩,张民,刘之广,等. 控释复合肥配施保水剂的盆栽月季节水保肥效果[J]. 农业工程学报,2017,33(13):175-182.

Zhao Chenhao, Zhang Min, Liu Zhiguang, et al. Effects of saving water and fertilizer conservation for potted Chinese rose using controlled-release compound fertilizers combined with water retention agent[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(13): 175-182. (in Chinese with English abstract)

[13] Liu S, Zeng G, Niu Q, et al. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review[J]. Bioresource Technology, 2017, 224: 25-33.

[14] 范富,张庆国,马玉露,等. 苏打盐碱地围堤养鱼改良土壤的生物性状[J]. 农业工程学报,2018,34:142-146.

Fan Fu, Zhang Qingguo, Ma Yulu, et al. Improving biological traits by soda alkali-saline land diking for fish[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 142—146. (in Chinese with English abstract)

[15] 赵肖玲,郑泽慧,蔡亚凡,等. 哈茨木霉和黑曲霉粗酶液预处理改善秸秆产甲烷性能[J]. 农业工程学报,2018,34(3):219-226.

Zhao Xiaoling, Zheng Zehui, Cai Yafan, et al. Pretreatment by crude enzymatic liquid fromandsp improving methane production performance during anaerobic digestion of straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(3): 219—226. (in Chinese with English abstract)

[16] Bünemann E K, Bongiorno G, Bai Z, et al. Soil quality-A critical review[J]. Soil Biology and Biochemistry, 2018, 120: 105-125.

[17] Chen L, Zhang J, Shao X, et al. Development and evaluation ofpreparation for control of sheath blight of rice (L.)[J]. Biocontrol Science and Technology, 2015, 25: 316-328.

[18] Chen L, Han R, Zhang H, et al. Irrigating-continuous cropping withD9 fortified waste water could control the Fusarium wilt of[J]. Applied Soil Ecology, 2017, 113: 127-134.

[19] Huang X, Liu L, Wen T, et al. Illumina MiSeq investigations on the changes of microbial community in thef. sp.infected soil during and after reductive soil disinfestation[J]. Microbiological Research, 2015, 181: 33-42.

[20] Wen T, Huang X, Zhang J, et al. Effects of water regime, crop residues, and application rates on control off. sp.e[J]. Journal of Environmental Sciences, 2015, 31: 30-37.

[21] Yang X, Chen L, Yong X, et al. Formulations can affect rhizosphere colonization and biocontrol efficiency ofSQR-T037 against Fusarium wilt of cucumbers[J]. Biology and fertility of soils, 2011, 47(3): 239-248.

[22] Slimene I B, Tabbene O, Gharbi D, et al. Isolation of a ChitinolyticS213 Strain Exerting a Biological Control AgainstInfection [J]. Applied Biochemistry and Biotechnology, 2015, 175(7): 3494-3506.

[23] Rishad KS, Rebello S, Shabanamol P S, et al. Biocontrol potential of Halotolerant bacterial chitinase from high yielding novelMCB-7 autochthonous to mangrove ecosystem[J]. Pesticide Biochemistry and Physiology, 2017, 137: 36-41.

[24] Lynch S V, Pedersen O. The human intestinal microbiome in health and disease[J]. New England Journal of Medicine, 2016, 375(24): 2369-2379.

[25] Albenberg L G, Wu G D. Diet and the intestinal microbiome: associations, functions, and implications for health and disease[J]. Gastroenterology, 2014, 146(6): 1564-1572.

[26] Chen L, Yang X, Raza W, et al. Solid-state fermentation of agro-industrial wastes to produce bioorganic fertilizer for the biocontrol of Fusarium wilt of cucumber in continuously cropped soil[J]. Bioresource technology, 2011, 102(4): 3900-3910.

[27] Bernal M P, Sommer S G, Chadwick D, et al. Chapter three- current approaches and future trends in compost quality criteria for agronomic, environmental, and human health benefits[J]. Advances in Agronomy, 2017,144: 143-233.

[28] Tabassum B, Khan A, Tariq M, et al. Bottlenecks in commercialisation and future prospects of PGPR[J]. Applied Soil Ecology, 2017, 121: 102-117.

[29] Etesami H. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects[J]. Ecotoxicology and Environmental Safety, 2018(147): 175-191.

[30] Huang X F, Chaparro J M, Reardon K F, et al. Rhizosphere interactions: root exudates, microbes, and microbial communities[J]. Botany, 2014, 92(4): 267-275.

[31] 曲萍,赵永富,宋婧,等. 改性脲醛树脂粘合基质块性能及其对黄瓜幼苗生长的影响[J]. 农业工程学报,2017,33(15):253-259.

Qu Ping, Zhao Yongfu, Song Jing, et al. Performance of substrate blocks glued by modified urea formaldehyde resins and its effecton cucumber seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 253-259. (in Chinese with English abstract)

Producing substrate by fermentation of rural river sludge mixed with compost and roseite and its seedling effect

Chen Lihua1,2, Yao Yutian2, Shang Hui3, Liu Juan4, Pan Defeng4, Chang Yijun5, Xu Youwen4

(1.-(),210098,; 2.210013,; 3.()224200,; 4.224200,; 5.211155,)

The sludge produced by rural rivers desilting is large in volume and high in organic matter content, which causes significant pollution if not well disposed. Industrialized agricultural seedling raising requires a large amount of nutritional soil, which leads to the degradation of cultivated land if those soil are from the farmland. In this study, the microorganisms were used for fermenting sludge to produce the seedling raising substrate, instead of using nutritional farm soil. By changing temperature and water content in the fermentation process of the sludge, physical and biological features of the substrate produced by fermentation, and the biological characters, physiological feature and resistance of the watermelon seedlings raised by the substrate were assayed for determine best microbial strains for fermenting substrate. The results showed that, compared to control treatment, the microbial treatments increased the fermentation temperature and decreased water content of the substrate (<0.05), but no statistical difference was found between microbial treatments. The highest temperatures assayed in the piles in fermentation process all were lower than 60℃, and the duration when temperature higher than 50℃ all were shorter than 9 days. The substrates were well fermented while the piles temperature decreased to room temperature. Assaying the physical features of the substrates demonstrated that the microbial fermentation improved the physical and biological properties of the substrate. Among the microorganisms, Trichoderma harzianum T83 (T83) and Bacillus amyloliquefaciens IAE (BIAE) showed the best performance. Compared to the control treatment, bulk density, maximum water holding capacity, total porosity, capillary porosity and aeration porosity of the T83 treatment decreased by 25.52% and increased by 95.50%, 52.65%, 45.05% and 56.11%, respectively, while in BIAE treatment decreased by 27.78% and increased by 101.17%, 45.43%, 61.43% and 38.14%, respectively (<0.05). Populations of total bacteria and fungi were found 1.94 times and 4.55 times respectively higher than control treatment in T83 treatment (<0.05), and populations of total bacteria was 2.33 times higher than control treatment in BIAE treatment (<0.05). Populations of Fusarium spp. and intestinal flora, compared to control treatment, were decreased by 70.97% and 82.31%, respectively in T83 treatment, and decreased by 81.29% and 77.70% in BIAE treatment (<0.05). Compared to the control treatment, the height, ground fresh weight, root fresh weight, ground dry weight, root dry weight, stem diameter, chlorophyll content, root activity, population of the rhizospheric fungi, bacteria and actinomycetes of watermelon seedlings of the T83 treatment increased by 66.85%, 38.12%, 65.38%, 69.64%, 77.78%, 34.23%, 43.13%, 54.93%, 110.62 times, 1.63 times and 4.38 times, respectively and for BIAE treatment, the increases were by 80.40%, 38.49%, 64.74%, 76.19%, 100.00%, 54.88%, 46.40%, 67.26%, 67.26%, 1.59 times, 2.94 times and 5.66 times, respectively (<0.05). Contents of malondialdehyde in roots were significantly decreased (<0.05), and decreased of 70.62% and 61.86% were respectively found in T83 and BIAE treatments as compared to control treatment. The activities of catalase and superoxide dismutase in watermelon seedlings leaves were significantly increased (<0.05) as compared to control treatment. The sludge could be fermented with the fungus T. harzianum T83 and bacteria B. amyloliquefaciens IAE to produce watermelon seedling raising substrate. The two microbial strains can significantly increase properties and the quality of sludge substrate, improve physiological features and resistance of raised seedling, and promote growth of watermelon seedlings, which provide a high added value way for the sludge agricultural utilization.

sludge disposal; substrate; composting; fermentation;spp.;spp.

陈立华,姚宇阗,尚 辉,刘 娟,潘德峰,常义军,许有文.河道淤泥和堆肥蛭石混合发酵制备基质及其育苗效果[J]. 农业工程学报,2018,34(22):228-234. doi:10.11975/j.issn.1002-6819.2018.22.029 http://www.tcsae.org

Chen Lihua, Yao Yutian, Shang Hui, Liu Juan, Pan Defeng, Chang Yijun, Xu Youwen. Producing substrate by fermentation of rural river sludge mixed with compost and roseite and its seedling effect[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 228-234. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.22.029 http://www.tcsae.org

2018-05-29

2018-09-22

江苏省重点研发计划项目(BE2018736);国家自然科学基金项目(51309079);江苏省水利科技项目(2013053);江宁农业与农村科技发展计划(2017Cc01)

陈立华,博士,副教授,主要研究方向为应用环境微生物技术、海涂盐土生态改良技术。Email:chenlihua@hhu.edu.cn.

10.11975/j.issn.1002-6819.2018.22.029

S15

A

1002-6819(2018)-22-0228-07

猜你喜欢

瓜苗淤泥河道
莲为何出淤泥而不染
温暖的记忆
春苗“出货”
白瓜苗
河道里的垃圾
山溪性河道植物选择与应用
治理城市黑臭河道的方法
南京市鼓楼区黑臭河道的治理
缔造和平
WK-G1固化淤泥填筑路基性能研究