小儿哮喘患者呼出气冷凝液代谢组学研究
2018-11-01姜茗宸汪受传徐珊徐秋月单进军谢彤彭琳秀戴启刚
姜茗宸 汪受传 徐珊 徐秋月 单进军 谢彤 彭琳秀 戴启刚
摘 要 利用气相色谱-质谱联用法(GC-MS/MS)对小儿哮喘患者(Childhood asthma)和健康儿童(Healthy control)的呼出气冷凝液(Exhaled breath condensate,EBC)进行分析,寻找小儿哮喘患者EBC中的潜在标记物,为其发病机制及早期筛查提供科学依据。收集了21例小儿哮喘患者(年龄(8.2±1.6)岁)及17例健康儿童(年龄(8.1±1.3)岁)的EBC样本,采用GC-MS/MS获得化学成分的全扫描数据,通过主成分分析法对两组代谢物进行聚类分析,使用Metaboanalyst 3.0归属涉及的代谢通路。结果表明,小儿哮喘组和正常组EBC代谢图谱能很好地区分,鉴定了8个差异表达物可作为潜在的内源性生物标记物,提示淀粉和蔗糖代谢、赖氨酸降解、氨基糖核苷酸糖代谢、苯丙氨酸代谢可能在小儿哮喘发生发展过程中发挥重要作用。
关键词 小儿哮喘; 气相色谱-质谱联用; 呼出气冷凝液; 代谢组学
1 引 言
哮喘(Asthma)是呼吸道的慢性炎症性疾病[1]。因环境污染及工业发展,哮喘已经成为一个主要的社会健康问题,尤其是儿童发病率呈逐年上升趋势[2]。这种既有环境又有遗传影响的复杂疾病,誘发的决定性因素尚未完全明了[3]。随着代谢组学技术的不断成熟,越来越多的研究采用代谢组学方法揭示复杂疾病的致病因素[4],在以往的研究中,哮喘患者的尿液[5]、血浆和血清中测得的代谢物和代谢组学谱均对于哮喘和哮喘表型具有高判别能力,所报道的生物标志物具有较高的一致性[6]。呼出气冷凝液(Exhaled breath condensate,EBC)收集及分析技术的出现,为哮喘疾病的研究和监测提供了新的思路和方法。呼吸道中的气道内皮衬液、小分子量蛋白质以及可挥发的成分,可随呼出气一同呼出,通过收集器时冷凝为不挥发性物质[7]。目前,利用呼出气冷凝液结合液相色谱-质谱(LC-MS)、核磁共振波谱(NMR)等技术进行代谢组学研究发现, 小儿哮喘差异性代谢物多为挥发性有机物,如2,4-二甲基-1-庚烯[8,9]、1,4-二氯苯[8,10]; 同时发现哮喘儿童体内脂类代谢[9]、谷氨酸-谷氨酰胺循环[11]、氧化应激中的炎性信号通路[12,13]均有改变。
本研究采用气相-质谱联用(GC-MS/MS) 检测小儿哮喘患者呼出气冷凝液中的代谢物,通过主成分分析方法寻找潜在生物标记物,进一步了解哮喘患儿的能量代谢、氧化应激等变化,为早期筛查和临床治疗提供依据。
4 结 论
哮喘作为小儿多发呼吸系统疾病,早期无痛苦筛查和诊断尤为重要。本研究选择小儿哮喘患者21名与健康儿童17名,观察其EBC的代谢组学变化。经多元统计分析,健康对照组与小儿哮喘组得到很好的区分。发现并鉴定了8种潜在生物标记物,这些物质的改变一定程度反映了在小儿哮喘的体内变化,对于临床上早期诊断、预防及治疗小儿哮喘有参考意义。
References
1 Lemanske R F, Busse W W. Allergy Clin. Immunol., 2003, 111(2): 502-519
2 Global Initiative for Asthma (GINA). Global Strategy for Asthma Managementand Prevention. Bethesda, MD: National Institutes of Health, 2006, Publication No. NIH-NHLI 02-3659. Available from: http: //www.ginasthma.org
3 Ober C, Yao T C. Immunol Rev., 2011, 242(1): 10-30
4 PANG Bo, WANG Bin, SHU Zhen-Bo, YAO Xiao-Xiao, ZHANG Guo-Dong, HU Cong, WU Sui-Sheng. Chinese J. Anal. Chem., 2017, 45(8): 1165-1171
庞 博, 王 斌, 舒振波, 姚小晓, 张国栋, 扈 聪, 吴绥生. 分析化学, 2017, 45(8): 1165-1171
5 LI Jing, LIU Xiao-Lei, ZHAO Xu, LI Wei, DAI Yu-Lin, YUE Hao. Chinese J. Anal. Chem., 2016, 44(3): 451-455
李 静, 刘晓蕾, 赵 旭, 李 巍, 戴雨霖, 越 皓. 分析化学, 2016, 44(3): 451-455
6 Kelly R S, Dahlin A, McGeachie M J, Qiu W L, Sordillo J, Wan E S, Wu A C, Lasky-Su J. Chest, 2017, 151(2): 262-277
7 Horváth I, Hunt J, Barnes P J, Alving K, Antczak A, Baraldi E, Becher G, van Beurden W J, Corradi M, Dekhuijzen R, Dweik R A, Dwyer T, Effros R, Erzurum S, Gaston B, Gessner C, Greening A, Ho L P, Hohlfeld J, Jbsis Q, Laskowski D, Loukides S, Marlin D, Montuschi P, Olin A C, Redington A E, Reinhold P, van Rensen E L, Rubinstein I, Silkoff P, Toren K, Vass G, Vogelberg C, Wirtz H. Eur. Respir. J., 2005, 26(3): 523-548
8 van de Kant K D, van Berkel J J, Jbsis Q, Lima Passos V, Klaassen E M, van der Sande L, van Schayck O C, de Jongste J C, van Schooten F J, Derks E, Dompeling E, Dallinga J W. Eur. Respir. J, 2013, 41(1): 183-188
9 Smolinska A, Klaassen E M, Dallinga J W, van de Kant K D, Jobsis Q, Moonen E J, van Schayck O C, Dompeling E, van Schooten F J. PLoS One, 2014, 9(4): e95668
10 Gahleitner F, Guallar-Hoyas C, Beardsmore C S, Pandya H C, Thomas C P. Bioanalysis, 2013, 5(18): 2239-2247
11 Sinha A, Krishnan V, Sethi T, Roy S, Ghosh B, Lodha R, Kabra S, Agrawal A. Eur. Respir. J., 2012, 39(2): 500-502
12 Montuschi P. J. Chromatogr. B, 2009, 877(13): 1272-1280
13 Caldeira M, Perestrelo R, Barros A S, Bilelo M J, Morête A, Cmara J S, Rocha S M. J. Chromatogr. A, 2012, 1254: 87-97
14 GlobalInitiatie for Asthma. Global Stategy for Asthma Management and Prevention [EB/OL]. Revised, 2014, (Assessed May 2014, at www.ginasthma.org)
15 Major H J, Williams R, Wilson A J, Wilson I D. Rapid Commun. Mass Spectrom., 2006, 20(22): 3295-3302
16 Gall W E, Beebe K, Lawton K A, Adam K P, Mitchell M W, Nakhle P J, Ryals J A, Milburn M V, Nannipieri M, Camastra S, Natali A, Ferrannini E, RISC Study Group. PLos One, 2010, 5(5): e10883
17 Jung J, Kim S H, Lee H S, Choi G S, Jung Y S, Ryu D H, Park H S, Hwang G S. Clin. Exp. Allergy, 2013, 43(4): 425-433
18 Callery P S, Geelhaar L A. J. Neurochem., 1985, 45(3): 946-948
19 Xiang Y Y, Wang S, Liu M, Hirota J A, Li J, Ju W, Fan Y, Kelly M M, Ye B, Orser B, O'Byrne P M, Inman M D, Yang X, Lu W Y. Nat. Med., 2007, 13(7): 862-867
20 Lu W Y, Inman M D. Clin. Exp. Allergy, 2009, 39(7): 956-961
21 Dinh Q T, Groneberg D A, Peiser C, Springer J, Joachim R A, Arck P C, Klapp B F, Fischer A. Clin. Exp. Allergy, 2004, 34(9): 1474-1479
22 RENXu-Bin, LIU Chun-Tao, ZHU Tao. Journal of Sichuan University (Medical Science Edition), 2010, 41(4): 626-629
任旭斌, 劉春涛, 朱 涛. 四川大学学报(医学版), 2010, 41(4): 626-629
23 XU Chuan-Qin, ZHENG Yu-Long, CHENG Wei. China Journal of Modern Medicine, 2009, 19(23): 3541-3545
徐传芹, 郑玉龙, 程 伟. 中国现代医学杂志, 2009, 19(23): 3541-3545
24 SUN Xia-Ye. International Journal of Pediatric, 2014, 41(3): 233-236
孙夏烨. 国际儿科学杂志, 2014, 41(3): 233-236
25 Bjrkstén B, Naaber P, Sepp E, Mikelsaar M. Clin. Exp. Allergy, 1999, 29(3): 342-346
Abstract Exhaled breath condensate (EBC) was analyzed by gas chromatography-mass spectrometry (GC-MS/MS) in childhood asthma and healthy control, aiming to find the potential markers of EBC in children with asthma, and provide a scientific reference for its pathogenesis and early screening. EBC samples were collected from 21 asthmatic children (age (8.2±1.6) years) and 17 healthy children (age (8.1±1.3) years). GC-MS/MS was used to obtain the full scan data of chemical components. Cluster analysis was performed on the two groups of metabolites by principal component analysis (PCA), and potential biomarkers were found using Metaboanalyst 3.0 attributable metabolic pathways. The results showed that the EBC metabolic maps of asthmatic group and normal group were very different, and eight endogenous potential biomarkers were identified, suggesting that starch and sucrose metabolism, lysine degradation, aminoglycan nucleoside metabolism, phenylalanine metabolism may play important roles in the development of asthma in children.
Keywords Childhood asthma; Gas chromatography-mass spectrometry; Exhaled breath condensate; Metabolomics
(Received 25 August 2017; accepted 19 March 2018)