APP下载

一类反应扩散方程的行波解

2018-09-10周小燕胡萍梁青青

关键词:平衡点

周小燕 胡萍 梁青青

摘 要:  用试探函数法求得一类反应扩散方程的反应扩散方程通解,验证当参数 m =1时解的正确性,得到连接不同平衡点的异宿轨道.可以把该解法推广到高维反应扩散方程中.

关键词: 反应扩散方程; 行波解;平衡点;异宿轨道

[中图分类号]O415   [文献标志码]A

Travelling Wave Solutions to a Kind of Reaction-diffusion Equations

ZHOU Xiao-yan,   HU-Ping   LIANG  Qing-qing

(Lan Zhou University of arts and science   ,Lanzhou 730070,China)

Abstract: By using the trial  function method, we obtained the general solutions of reaction diffusion equations, And obtained the heteroclinic orbit of connecting  to a different equilibrium point.The results show that it is righted when the parameter m=1, It is shown that the method  can also be used to solve high-dimensional nonlinear reaction diffusion equations.

Key words: Reaction-diffusion  equations; travelling  wave  solutions ; equilibrium point;heteroclinic orbit

非線性科学是目前科学研究的热点问题之一,求解非线性偏微分方程,也是数学和物理学家研究的重要内容.研究人员提出了很多方法,构造非线性方程精确解,如齐次平衡法[1]、反散射法、双曲正切函数展开法[2-5]、Darboux变换法、试探函数法[6]、Hirota双线性法、Sine-Gonsine法[7]、齐次平衡法、辅叠加法[8]、辅助常微分方程法[9]和双函数法[10-11],但由于问题的复杂性,至今尚无统一的方法,能够得到精确解的方程也是凤毛麟角.因此,本文用试探函数法,解出一类反应扩散方程的行波解的通解,分析不同情况下解的形式并验证.

1 反应扩散方程及行波变换

反应扩散方程(1)中,ν,k分别为扩散系数和反应系数且ν>0,k>0.

(13)式恰好是方程(10)当m=1的情况,说明方程(10)的正确性.即方程(10)就是连接鞍点(u*,P*)=(1,0)和结点(u*,P*)=(0,0)的异宿轨道,且 m 为任意值时都成立.至此,利用试探函数法解出了方程(1)的行波解的通解,并验证了当 m =1时结论的正确性.从而可知方程(10)就是方程(1)的通解.解对这类方程有一定的指导意义.

参考文献

[1]  Wang ML  Solitar  wave solution for Boussinesq  equation[J].Physics Letters A,1995,199:162-172.

[2]  Parkes E J.Duffy  B R.Traveling solitary  wave solution to a compound Kdv-Burgers equation[J] .Physics  Letters A,1997,229:217-220.

[3]  Zhang G X,Li Z B,Duan Y S .Exact solitary waves solutions of nonlinear wave equations[J].Sci Sin A,2000,44(3):369-401.

[4]  张鹏飞,房维维,李利.  一类P(x)-laplace 方程非平衡解的存在性[J]. 牡丹江师范学院学报:自然科学版,2011(4):1-2.

[5]  刘希强.非线性发展方程显式解的研究[D].北京:中国工程物理研究院,2002.

[6]  Fan E C,Zhang H Q. A note on homogeneous balance methed[J].Phys Lett A,1998,246:403-406.

[7]  Kudryasow N A. Exact  solutions of the generalized kuramoto Sivashinsky equations [J].Physics Letters A,1990,147:287-292.

[8]  Yan C T.A simple transformation  for nonlinear  waves[J].Physics  Letters A,1996,224:77-84.

[9]  徐淮娟 .二次曲线简化方程的定理[J].牡丹江师范学院学报:自然科学版,2003(3):2-3.

[10]  Xie Y X.Tang J S. A unified approach in seeking the solitary wave solutions to sine-Gordon type equtions[J].Chinese Physics,2005,14(7):1303-1306.

[11]  关伟,张鸿庆.求解非线性方程的双函数法[J].高校应用数学学报:A辑,2001,16(2):163-168.

[12]  刘式适,刘式达.物理学中的非线性方程[M].北京:北京大学出版社,2000.195-200.

猜你喜欢

平衡点
Lotka—Volterra竞争扩散系统连接边界平衡点和正平衡点行波解的存在性
差分方程应用于市场经济中蛛网模型
两种群相互竞争的SEIQV传染病模型稳定性分析
找准三个平衡点,提升计算教学实效性
环境保护投资与经济发展的关系
建筑业营改增下适用税率的选择
一类两种群相互依存的生态模型稳定性分析
知识产权保护与文化创意产业发展平衡点探究
媒体宣传对传染病控制的影响分析
论隐性采访在舆论监督中的作用