己糖激酶对肿瘤作用的研究进展
2018-08-29邓晓霖厉周
邓晓霖 厉周
[摘要] 肿瘤细胞的特征性代谢性方式是有氧性糖酵解,即Warburg效应。己糖激酶作为糖酵解的关键酶,在肿瘤细胞中广泛高表达,被认为与肿瘤代谢、凋亡和自噬紧密相关。本文通过对己糖激酶及其上下游的研究,可以找到潜在的能适用于多种肿瘤的基因靶向治疗方法。
[关键词] 己糖激酶;Warburg效应;糖酵解;凋亡;自噬肿瘤
[中图分类号] R73-36 [文献标识码] A [文章编号] 1673-9701(2018)13-0164-05
Research progress of the effects of hexokinase on tumor
DENG Xiaolin LI Zhou
Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
[Abstract] Objective The characteristic metabolic way of tumor cells is aerobic glycolysis, the Warburg effect. Hexokinase is the key enzyme of glycolysis and highly and widely expressed in tumor cells. It is considered to be related with metabolism, apoptosis and autophagy of tumor. By conducting researches on hexokinase and its upstream and downstream, it would be possible to find out the potential gene targeting therapy which could be effective to several kinds of tumors.
[Key words] Hexokinase; Warburg Effect; Glycolysis; Apoptosis; Autophagy; Tumor
腫瘤细胞具有快速增殖和抵抗死亡的特点,为了满足自身需求,需要大量持续快速产生的能量,因此在含氧量充足的情况下仍优先进行能够快速产能的糖酵解,大量消耗葡萄糖产生乳酸,这一现象称为Warburg效应。Warburg效应已经成为肿瘤代谢的重要特征之一。己糖激酶是糖代谢过程的关键酶,催化糖酵解的第一个步骤葡萄糖磷酸化成6-磷酸-葡萄糖。研究证实,己糖激酶在多种类型的肿瘤当中高表达,既与Warburg效应有紧密联系,又具有抑制细胞凋亡的作用,所以具有潜在的肿瘤发生发展、治疗的研究前景。
1 己糖激酶(Hexokinase,HK)的分类及作用
哺乳动物中发现有5种己糖激酶同工酶,HKⅠ、HKⅡ、HKⅢ、HKⅣ和HKDC1(Hexokinase domain containing 1)。HKⅠ主要分布在脑;HKⅡ主要分布在心肌、脂肪和骨骼;HKⅢ主要分布在骨髓、肺和脾;HKⅣ又称葡萄糖激酶,在胰内调控胰岛素分泌而在肝内则起调控葡萄糖摄取与糖原合成分解作用[1]。HKⅠ和HKⅡ均具有一段N端疏水的15个氨基酸序列,从而有与两性á-螺旋兼容的特质并且能够与线粒体外膜结合。HKⅢ和HKⅣ则没有这段序列,无法自行与线粒体外膜结合[2]。HKDC1是在第10号染色体上发现与HKⅠ基因相邻的人类己糖激酶样基因,HKⅠ和HKDC1基因首尾排列,表明它们是串联基因复制事件的产物。NCBI EST数据库的搜索结果表明HKDC1因其序列预测完整的917个氨基酸的开放阅读框而被表达,被认为具有己糖激酶的功能。HKDC1同样具有疏水序列,能够与线粒体外膜结合[3]。
目前研究普遍认为HKⅡ在肿瘤细胞中具有双重作用:一种是诱导糖酵解,细胞糖酵解水平与HKⅡ表达量及活性呈正相关;另一种是与电压依赖性阴离子通道(Volt-dependent anion channel,VDAC)在线粒体外膜结合抑制凋亡[4]。
HKⅡ除了代谢作用以外,随着近年的研究进展还被认为是一种保护性分子,心肌细胞在葡萄糖供应不足的情况下HKⅡ结合并抑制雷帕霉素激酶机制作用目标(Mechanistic target of rapamycinkinase,mTORC)触发细胞自噬自我保护[5]。
2 己糖激酶的表达与活性调控
2.1肿瘤相关通路调控表达
磷脂酰肌醇-4,5-二磷酸3-激酶催化亚基á/丝氨酸/苏氨酸激酶1/雷帕霉素激酶机制作用目标(Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit á/Serine/thereonine kinase 1/mechanistic target of rapamycin kinase,PI3K/Akt/mTORC)通路是重要的枢纽性通路,能大范围激活下游多种类型的通路,因此能调节多种生物学行为包括糖代谢、细胞增殖、细胞凋亡等[1]。因此该通路对肿瘤的发生发展息息相关。过度活跃的mTORC1足以增加HKⅡ表达而且一篇全面无偏倚的分析报告也支持mTORC1介导HKⅡ表达上调的观点[6]。已经有大量研究证实,HKⅡ表达与此通路的活性紧密相关,HKⅡ能被PI3K/Akt通路激活,而抑制PI3K/Akt通路也可以抑制有氧性糖酵解而且能被外源性HKⅡ逆转。例如,TRAF4通过抑制由Akt途径介导的GLUT1和HKⅡ的表达而削弱肺癌细胞葡萄糖代谢[7]。黄岑黄素在缺氧下提升胃癌AGS细胞对5-FU的敏感性。另外,黄岑黄素通过促进磷酸酶和张力蛋白同系物(Phosphatase and tensin homologue,PTEN)堆积抑制低氧诱导的Akt磷酸化,从而削减缺氧诱导型因子(Hypoxia inducible factor-1, HIF-1)的表达[8]。还有一种分离自真菌Albatrellusconfluens的理想小分子化合物Neoalbaconol(NA),能够作用于3-磷酸肌醇依赖型蛋白激酶1(3-phosphoinositide-dependent protein kinase 1,PDK1),抑制其下游的PI3K/Akt-HKⅡ通路。通过作用于PDK1,NA减少了葡萄糖消耗和ATP生成,经由各自独立的通路激活了自噬和凋亡[9]。由此可见PI3K/Akt/mTORC通路与HKII的紧密调控关系,因此能成为肿瘤代谢的研究重点之一。
2.2 转录因子调控表达
HIF-1是一种转录因子,它的á亚单位在缺氧条件下变得稳定,进而激活转录程序以使细胞适应缺氧的条件。HKⅡ启动子与HIF-1的主要结构一致且HKⅡ的表达能被缺氧加强,在缺氧时对细胞提供保护,这也是肿瘤细胞糖酵解水平高的机制之一。有关胰腺癌的研究发现沉默高流动性B组2型(High mobility group B2,HMGB2)基因降低了HIF-1蛋白水平,抑制了HIF-1á介导的糖酵解进程[10]。棘皮动物微管相关蛋白样4-间变性淋巴瘤激酶(Echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase,EML4-ALK)在其mRNA转录活性和PI3K-AKT通路的联合作用下诱导非缺氧依赖但葡萄糖依赖的HIF-1á蛋白质的合成堆积[11]。
c-Myc和转录信号转导和激活因子3(Signal transducer and activator of transcription 3,STAT3)的组合也能调控HKⅡ的表达。c-Myc编码的蛋白质与相关的转录因子MAX形成异源二聚体,该复合物结合E盒DNA共有序列并调节特定靶基因的转录。STAT3在对细胞因子和生长因子的响应中,STAT家族成员被受体相关的激酶磷酸化,然后形成易位到细胞核的同源或异源二聚体,在那里它们起转录激活剂的作用。已有研究发现转录因子c-Myc和STAT3参与白细胞介素22诱导的HKⅡ的表达上调[12],人参皂苷20(S)Rg3通过下调STAT3调节HKⅡ[13],新型喹诺酮-吲哚酮偶联物QIC1[9-氟-3,7-二氢-3-甲基-10-(4-甲基-1-哌嗪基)-6-(2-氧代-1,2 -二氢-吲哚-3-亚基甲基)-7-氧代-2H-(1,4)恶嗪并(2,3,4-ij)喹啉] 通过下游STAT3介导的HKⅡ信号通路减弱了表皮生长因子受体(Epithelial growth factor receptor,EGFR)的活性,因此抑制增殖并诱导细胞凋亡与磷酸-EGFR-磷酸化STAT3-HK2的表达降低有关[14]。
2.3 miRNA调控表达和活性
microRNAs(miRNA)是一类非编码小分子调控RNA,能够作用于靶基因的信使RNA(mRNA)使其降解来干扰靶基因转录或翻译,从而实现对肿瘤细胞糖酵解的调控。研究发现miR-4458在结肠癌细胞中下调,HKⅡ上调,同时miR-4458过表达能抑制有氧和缺氧条件下的增殖、糖酵解和乳酸产生。萤光素酶活性测定显示HKⅡ是miR-4458的直接靶标[15]。miR-181b通过直接作用于HKⅡ的3'非翻译区抑制其表达水平,负性调节胃癌的糖酵解水平[16]。前列腺癌中miR-143的作用目标是HKⅡ,抑制了细胞增殖[17,18],miR-199a-5p对肝癌细胞的代谢过程进行重新编程[19]。
3己糖激酶对肿瘤细胞线粒体的作用
3.1促进糖酵解
HKⅡ能够与镶嵌在线粒体外膜上的VDAC结合,以促进ATP对HKⅡ的糖酵解的优先进入,维持恒定的肿瘤细胞增殖能量来源。分子动力学模拟结果显示HKⅡ的结合限制了VDAC1 N-末端螺旋的移动。因此,VDAC1大部分时间保持在开放状态,且可能保障了对HKⅡ的糖酵解恒定的ATP供应[20]。
3.2抑制凋亡
根据大量的研究结果,已知HKⅠ和HKⅡ均能与VDAC直接结合,并抑制细胞色素c释放从而抑制线粒体介导的细胞凋亡,但分子机制尚不明确。一个模型提出,VDAC1是由促凋亡刺激激活的渗透转换孔(Permeability transition pores,PTP)的組成部分[21]。另一个模型提出Bax与VDAC1相互作用,导致细胞色素c通过线粒体外膜渗透[22]。第三个模型提出,关闭VDAC1通道可阻止细胞质和线粒体基质之间的ATP和ADP的有效交换,然后线粒体外膜肿胀破裂。参照这个模型,Azouley-Zohar[23]证实HKⅠ和HKⅡ能有效结合VDAC,对线粒体外膜进行重构而改变其通透性使通道保持关闭状态。最新的模型提出VDAC1寡聚化作为介导促凋亡蛋白的释放[24]。
4 肿瘤的治疗
4.1 促进线粒体结合的HK(mitochondrial-HK,m-HK)解离
由于肿瘤细胞中HK-VDAC结合普遍升高而抑制了细胞凋亡,因此使用化合物促使HK从VDAC解离能起到促进凋亡从而治疗肿瘤的效果。类黄酮FV-429触发细胞凋亡,同时抑制乳腺癌MDA-MB-231细胞的糖酵解。FV-429显著降低了HK II活性及其在线粒体中的数量,并且减弱了HKⅡ与VDAC之间的相互作用,刺激了HKⅡ从线粒体中分离,导致线粒体PTP开放促凋亡[25]。应用白杨素治疗后,线粒体上的HKⅡ与VDAC1结合体明显减少,造成Bax从胞浆转移至线粒体并引发细胞凋亡[26]。在HeLa细胞中,pHK-PAS使线粒体膜电位去极化,抑制线粒体呼吸和糖酵解,并削减了胞内ATP水平。这些效应与内源性全片段HKⅡ从线粒体脱离和细胞色素c释放有关[27]。神经母细胞瘤细胞中的下游调控元件拮抗调节剂(Downstream regulatory element antagonist modulator,DREAM)过表达减少了HKⅠ在分离的线粒体上的定位。DREAM与HKⅠ的相互作用可能在调节神经元凋亡中起重要作用[28]。综合以上证据,促进m-HK与线粒体解离是通过HK治疗肿瘤的重要手段。
4.2 抑制糖酵解
根据已有的研究结果,抑制HK的表达和活性可以达到抑制糖酵解的目的。2-DG竞争性抑制HKⅡ来抑制肿瘤相关巨噬细胞的糖酵解,足以阻挡其转移前表型的形成,从而逆转胰腺胆管癌肿瘤相关巨噬细胞支持的血管形成、溢出增加和EMT(Epithelial-to-mesenchymal transition)[29]。三阴乳腺癌细胞中4-羟基他莫昔芬(4-OHT)促进SLUG基因表达,被姜黄素阻断,进一步的研究显示SLUG通过结合HKⅡ启动子激活HKⅡ的转录[21]。ErbB2通过增加HKⅡ与线粒体外膜的结合来上调HKⅡ的活性,葡萄糖代谢失调诱导了ErbB2高表达的乳腺癌细胞对葡萄糖饥饿和糖酵解抑制的易感性[30]。此外,为了研究作用于由BRCA1缺失诱导的代谢表型的治疗方法,有人采用了旧药新用的方法,并认定阿司匹林为抵消HKⅡ增加和由BRCA1损伤诱导的糖酵解增加的药剂[31]。还有研究发现,姜黄素一方面对HCT116和HT29细胞中HKⅡ的表达和活性具有浓度依赖性的下调,但对其他关键糖酵解酶(PFK,PGM,LDH)影响不大;另一方面,姜黄素诱导HKⅡ从线粒体解离,引起线粒体介导的细胞凋亡。姜黄素还通过Akt磷酸化线粒体HKⅡ负责诱导的HKⅡ解离[32]。除此以外,上述调控HK的转录因子和miRNA也成为肿瘤治疗的研究热点。
4.3 調控细胞自噬
自噬是一种天然且具有破坏性的机制,细胞通过这种机制降解并回收不必要或功能失调的成分。在应激或营养被剥夺的条件下,自噬往往被激活以维持代谢稳态和细胞存活。自噬被认为在肿瘤发生中起承上启下的双重作用:能通过阻止致癌转化来抑制肿瘤的发生;相反在已发生的肿瘤中,自噬在不利于肿瘤的微环境中可被用于延长癌细胞的存活期[33]。研究发现肝癌中自噬与糖酵解水平呈负相关,证实HKⅡ作为选择性自噬的底物,被TRAF6和SQSTM1介导的泛素化系统识别并诱导自噬调节糖酵解[34]。药理研究证实HKⅡ的抑制剂2-DG(2-deoxy-D-glucose)通过诱导细胞凋亡和自噬来抑制人和小鼠肺癌细胞的生长,HKⅡ是Kras被激活且p53功能损失的非小细胞肺癌的潜在治疗靶点[35]。自噬也被认为在癌细胞对放射和化学疗法的耐药性中起关键作用。在乳腺癌MDA-MB-435和MDA-MB-231细胞中,HKⅡ的抑制剂3-羟基丙酮酸(3-Bromopyruvic,3-BrPA)引发自噬,氯喹通过刺激ROS形成增强3-BrPA诱导的细胞死亡,增加用3-BrPA处理的细胞抗癌效用。因此,抑制自噬可能是乳腺癌辅助化疗的创新策略[36]。以上证据显示,HK在细胞自噬的作用成为了肿瘤治疗的新方向。
4.4 放射治疗
三种细胞系乳腺癌MCF-7、结肠癌HCT116和胶质细胞瘤U87在单次5 Gy放疗后表现出mTOR快速重定位于线粒体,伴随着乳酸产生降低、线粒体ATP合成升高和耗氧量升高。应用雷帕霉素抑制mTOR能阻断上述放射诱导的mTOR重定位及其效应,降低存活率。在被放射后的细胞里,mTOR与HKⅡ形成复合体,降低了HKⅡ的酶活性,此可逆的细胞能量代谢应可被用于增加肿瘤细胞对抗癌治疗的敏感度[37]。
5 总结与展望
己糖激酶与肿瘤发生发展联系紧密,涵盖广泛的肿瘤类型,其对肿瘤影响的研究已经有了初步的成果。研究结果表明,可以针对肿瘤的不同基因型定制不同的治疗靶点,使用包括miRNA和化学物质来直接抑制己糖激酶或抑制其相关的信号通路,从而达到抑制肿瘤生长、增殖,调控肿瘤自噬凋亡的目的,提供了解决肿瘤尤其是耐药肿瘤的靶向治疗思路,但是己糖激酶作用的具体分子机制尚未清楚阐明,大多只是在基因表达和活性水平层面上调控己糖激酶,所以未来己糖激酶的研究可以继续向分子机制方面深入。
[参考文献]
[1] Roberts DJ,Miyamoto S. Hexokinase II integrates energy metabolism and cellular protection:Akting on mitochondria and TORCing to autophagy[J]. Cell Death Differ,2015,22(2):248-257.
[2] Mathupala SP,Ko YH,Pedersen PL. Hexokinase II:cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria[J]. Oncogene,2006,25(34):4777-4786.
[3] Irwin DM,Tan H. Molecular evolution of the vertebrate hexokinase gene family:Identification of a conserved fifth vertebrate hexokinase gene[J]. Comp Biochem Physiol Part D Genomics Proteomics,2008,3(1):96-107.
[4] Shoshan-Barmatz V,Mizrachi D. VDAC1:from structure to cancer therapy[J]. Front Oncol,2012,2:164.
[5] Tan VP,Miyamoto S. HK2/hexokinase-II integrates glycolysis and autophagy to confer cellular protection[J]. Autophagy,2015,11(6):963-964.
[6] Robey,R. B. and N. Hay. Is Akt the "Warburg kinase"?-Akt-energy metabolism interactions and oncogenesis[J]. Semin Cancer Biol,2009,19(1):25-31.
[7] Li W,Peng C,Lee MH,et al. TRAF4 is a critical molecule for Akt activation in lung cancer[J]. Cancer Res,2013,73(23):6938-6950.
[8] Chen F,Zhuang M,Zhong C,et al. Baicalein reverses hypoxia-induced 5-FU resistance in gastric cancer AGS cells through suppression of glycolysis and the PTEN/Akt/HIF-1alpha signaling pathway[J]. Oncol Rep,2015,33(1):457-463.
[9] Deng Q,Yu X,Xiao L,et al. Neoalbaconol induces energy depletion and multiple cell death in cancer cells by targeting PDK1-PI3-K/Akt signaling pathway[J]. Cell Death Dis,2013,4:e804.
[10] Cai X,Ding H,Liu Y,et al. Expression of HMGB2 indicates worse survival of patients and is required for the maintenance of Warburg effect in pancreatic cancer[J]. Acta Biochim Biophys Sin(Shanghai),2017,49(2):119-127.
[11] Ma Y,Yu C,Mohamed EM,et al. A causal link from ALK to hexokinase II overexpression and hyperactive glycolysis in EML4-ALK-positive lung cancer[J]. Oncogene,2016,35(47):6132-6142.
[12] Liu Y,Xiang F,Huang Y,et al. Interleukin-22 promotes aerobic glycolysis associated with tumor progression via targeting hexokinase-2 in human colon cancer cells[J]. Oncotarget,2017,8(15):25372-25383.
[13] Li J,Liu T,Zhao L,et al. Ginsenoside 20(S)Rg3 inhibits the Warburg effect through STAT3 pathways in ovarian cancer cells[J]. Int J Oncol,2015,46(2):775-781.
[14] Liu YH,Wei XL,Hu GQ,et al. Quinolone-indolone conjugate induces apoptosis by inhibiting the EGFR-STAT3-HK2 pathway in human cancer cells[J]. Mol Med Rep,2015,12(2):2749-2756.
[15] Li LQ,Yang Y,Chen H,et al. MicroRNA-181b inhibits glycolysis in gastric cancer cells via targeting hexokinase 2 gene[J].Cancer Biomark,2016,17(1):75-81.
[16] Qin,Cheng YC,Lu H,et al. miR-4458 suppresses glycolysis and lactate production by directly targeting hexokinase2 in colon cancer cells[J]. Biochem Biophys Res Commun,2016,469(1):37-43.
[17] Zhou P,Chen WG ,Li XW. MicroRNA-143 acts as a tumor suppressor by targeting hexokinase 2 in human prostate cancer[J]. Am J Cancer Res,2015,5(6):2056-2063.
[18] Peschiaroli A,Giacobbe A,Formosa A,et al. miR-143 regulates hexokinase 2 expression in cancer cells[J]. Oncogene,2013,32(6):797-802.
[19] Guo W,Qiu Z,Wang Z,et al. MiR-199a-5p is negatively associated with malignancies and regulates glycolysis and lactate production by targeting hexokinase 2 in liver cancer[J]. Hepatology,2015,62(4):1132-1144.
[20] Zhang D,Yip YM,Li L. In silico construction of HK2-VDAC1 complex and investigating the HK2 binding-induced molecular gating mechanism of VDAC1[J]. Mitochondrion,2016,30:222-228.
[21] Geng CJ,Li F,Ding,et al. Curcumin suppresses 4-hydroxytamoxifen resistance in breast cancer cells by targeting SLUG/Hexokinase 2 pathway[J]. Biochem Biophys Res Commun,2016,473(1):147-153.
[22] Tsujimoto Y,Shimizu S. Role of the mitochondrial membrane permeability transition in cell death[J]. Apoptosis,2007,12(5):835-840.
[23] Azoulay-Zohar H,Israelson A,Abu-Hamad S,et al. In self-defence:hexokinase promotes voltage-dependent anion channel closure and prevents mitochondria-mediated apoptotic cell death[J]. Biochem J,2004,377(Pt 2):347-355.
[24] Shimizu S,Konishi A,Kodama T,et al. BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death[J]. Proc Natl Acad Sci USA,2000,97(7):3100-3105.
[25] Zhou Y,Lu N,Qiao C,et al. FV-429 induces apoptosis and inhibits glycolysis by inhibiting Akt-mediated phosphorylation of hexokinase II in MDA-MB-231 cells[J]. Mol Carcinog, 2016, 55(9):1317-1328.
[26] Xu D,Jin J,Yu H,et al. Chrysin inhibited tumor glycolysis and induced apoptosis in hepatocellular carcinoma by targeting hexokinase-2[J]. J Exp Clin Cancer Res,2017, 36(1):44.
[27] Woldetsadik AD,Vogel MC,Rabeh WM,et al. Hexokinase II-derived cell-penetrating peptide targets mitochondria and triggers apoptosis in cancer cells[J]. FASEB J,2017,31(5):2168-2184.
[28] Craig TA,Ramachandran PL,Bergen HR,et al. The regulation of apoptosis by the downstream regulatory element antagonist modulator/potassium channel interacting protein 3(DREAM/KChIP3) through interactions with hexokinase I[J]. Biochem Biophys Res Commun,2013,433(4):508-512.
[29] Penny HL,Sieow JL,Adriani G,et al. Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma[J]. Oncoimmunology,2016,5(8):e1191731.
[30] Gao S,Chen X,Jin H,et al. Overexpression of ErbB2 renders breast cancer cells susceptible to 3-BrPA through the increased dissociation of hexokinase II from mitochondrial outer membrane[J]. Oncol Lett,2016,11(2):1567-1573.
[31] Chiyoda T, Hart PC,Eckert MA,et al. Loss of BRCA1 in the cells of origin of ovarian cancer induces glycolysis:A window of opportunity for ovarian cancer chemoprevention[J]. Cancer Prev Res (Phila),2017,10(4):255-266.
[32] Wang K,Fan H,Chen Q,et al. Curcumin inhibits aerobic glycolysis and induces mitochondrial-mediated apoptosis through hexokinase Ⅱ in human colorectal cancer cells in vitro[J]. Anticancer Drugs,2015,26(1):15-24.
[33] Mizushima N,Komatsu M. Autophagy:Renovation of cells and tissues[J]. Cell,2011,147(4):728-741.
[34] Jiao L,Zhang HL,Li DD,et al. Regulation of Glycolytic Metabolism by Autophagy in Liver Cancer Involves Selective Autophagic Degradation of HK2(hexokinase 2)[J].Autophagy,2018,14:28.
[35] Wang H,Wang L,Zhang Y,et al. Inhibition of glycolytic enzyme hexokinase II(HK2) suppresses lung tumor growth[J]. Cancer Cell Int,2016,16(38):9.
[36] Zhang Q,Zhang Y,Zhang P,et al. Hexokinase II inhibitor,3-BrPA induced autophagy by stimulating ROS formation in human breast cancer cells[J]. Genes Cancer,2014,5(3-4):100-112.
[37] Lu,CL,Qin L,Liu HC,et al. Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase Ⅱ inhibition-a Warburg-reversing effect[J]. PLo S One,2015,10(3):e0121046.
(收稿日期:2018-01-28)