APP下载

共焦点的椭圆与双曲线的两个优美结论

2018-07-20湖北聂文喜

教学考试(高考数学) 2018年1期
关键词:元法双曲线最值

湖北 聂文喜

在近年高考及全国各地模拟考试中,频繁出现以共焦点的椭圆与双曲线为背景的两离心率之积与两离心率倒数之和的最值与范围问题,学生面对此类问题往往束手无策,本文介绍与此类问题有关的两个优美结论,通过具体例子说明结论的应用,供同学们复习时参考.

设P为椭圆与双曲线在第一象限内的公共点,F1,F2分别为左、右焦点,

则|PF1|+|PF2|=2a1,|PF1|-|PF2|=2a2,

∴|PF1|=a1+a2,|PF2|=a1-a2,

在△PF1F2中,由余弦定理得

|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cosθ,

∴4c2=(a1+a2)2+(a1-a2)2-2(a1+a2)(a1-a2)cosθ,

在解决以共焦点的椭圆与双曲线为背景的两离心率之积与两离心率倒数之和的最值与范围问题,利用结论1与结论2可以迅速找到解题思路,优化解题过程,起到事半功倍的效果.

( )

A.m>n且e1e2>1 B.m>n且e1e2<1

C.m1 D.m

【解】设P为椭圆与双曲线在第一象限内的公共点,

F1,F2为它们的左、右公共焦点,

则|PF1|+|PF2|=2m,|PF1|-|PF2|=2n,∴m>n,

方法1(利用均值不等式)

方法2(利用三角换元)

方法3(利用消元法)

f(t)在(1,2)上单调递减,f(1)=1,f(2)=0,

【点评】如果已知b1与b2或b1与b2的倍数关系,则可由结论1得到e1与e2的等量关系式,于是问题转化为二元条件最值或范围问题,利用求二元条件最值的基本方法(如均值不等式、三角换元、消元法)使问题获解.

( )

( )

故选B.

【点评】一般情况下,若b1≥b2,则用例1的三种方法均可求出e1e2的取值范围,若b1

( )

方法1(利用柯西不等式)由柯西不等式得

( )

猜你喜欢

元法双曲线最值
换元法在不等式中的应用
单调任意恒成立,论参离参定最值
聚焦圆锥曲线中的最值问题
巧用不等式求最值
换元法在解题中的运用
数列中的最值题型例讲
基于离散元法的矿石对溜槽冲击力的模拟研究
双曲线的一个性质与应用
双曲线的一个美妙性质及应用
换元法在解题中的应用