国内外主要粮食作物对施用锌肥响应的研究进展
2018-06-19王子腾耿元波
王子腾,耿元波
(1 中国科学院地理科学与资源研究所,北京 100101;2 中国科学院大学,北京 100049)
锌 (Zn) 是人体必需的微量营养元素,对人体健康至关重要,是仅次于铁的第二大微量元素[1]。研究表明,缺Zn严重危害人体健康,会影响人体正常发育[2–3];使人体更易受到致病菌的入侵,更易患病[4];降低人体耐受氧化胁迫的能力[5]。例如在中东地区,由于缺Zn而导致的侏儒症患者都于25岁之前死于并发的感染[6]。研究发现,成年人每天需要通过饮食摄入15~25 mg的Zn,儿童需要5~7 mg,粮食作物可食部分的Zn含量要达到40~50 mg/kg才能满足人体正常生命活动的需求[7–8]。据此,世界上约一半人口饮食中Zn的摄入不足[9]。在发展中国家,粮食作物是主要的食物来源,但是粮食作物的可食部分Zn含量普遍比较低,尤其是种植在缺Zn土壤中[10]。据统计,全球至少60%的耕地土壤Zn等微量元素含量不足,50%的人口健康受到影响[11]。目前,农业生产上主要通过施用Zn肥的方式来提高粮食作物可食部分的Zn含量,但是施用的Zn肥其表观利用率都不高,尤其是施加到土壤中的无机Zn肥受到土壤理化性质 (如pH、有机质含量等) 的影响,有效性普遍比较低[12–13]。此外,施Zn肥增加了农户的成本,如果没有产量优势或者不能降低成本将很难大面积推广[14]。本文拟探讨主要粮食作物的产量、籽粒部分的Zn含量、Zn分配对Zn肥施用的响应,发现问题并提出切实可行的改善措施,展望研究前景,为今后的相关研究提供理论依据。
1 主要粮食作物籽粒锌含量现状
粮食作物主要是指小麦、水稻、玉米等农作物。小麦大约占粮食总产量的30%[15],小麦籽粒中的Zn含量在20~30 mg/kg之间,美国、北欧等发达国家小麦籽粒的平均Zn含量为28.7 mg/kg左右[16],中国的在24~33 mg/kg之间[17],在发展中国家由于土壤缺Zn,加上农户不注重Zn肥的施用,小麦籽粒的Zn含量会低至 7~11 mg/kg之间[18];水稻供给了全球人口21%的能量与蛋白质,90%的水稻种植在东亚、南亚、东南亚等发展中国家[19],水稻籽粒的Zn含量在20 mg/kg左右[20–21];玉米是继小麦、水稻之后人类最主要的食物,在非洲的一些国家,如埃及和南非等,玉米是主要的食物来源,即使在发达国家,玉米也是日常食物中不可或缺的一部分[20],玉米籽粒的Zn含量约为20 mg/kg左右[22],在缺Zn土壤中,会低至13 mg/kg左右[23],不同国家主要粮食作物籽粒Zn含量详细数据见表1。通过分析可以看出,主要粮食作物籽粒部分的Zn含量普遍低于40~50 mg/kg,达不到人体对Zn元素的需求。
造成粮食作物Zn含量不足的原因主要有两方面:一方面是粮食作物对于土壤Zn含量的变化非常敏感,其产量与品质易受到土壤缺Zn的影响[24];另一方面是用于种植粮食作物的耕地,微量营养元素Zn普遍缺乏[25]。据估计目前占全球50%的用于种植粮食作物的耕地缺Zn[26–27],Zn的有效性也比较低[28],从而导致粮食作物可食部分的Zn含量普遍不足,并且这种情况在发展中国家呈恶化趋势[29]。此外,粮食作物中植酸的含量比较高,植酸可以与Zn在胃肠道形成络合物或者沉淀,从而影响人体对于Zn的吸收[30–31]。研究发现,如果饮食中P∶Zn <12,则认为基本上不会存在Zn摄入不足的情况;如果饮食中P∶Zn > 18,则认为人体Zn摄入不足[32]。简言之,以粮食作物为主食的人较易出现缺Zn状况,目前主要利用补施Zn肥这一农艺措施来提高粮食作物的Zn含量,如土施Zn肥、叶面喷施Zn肥等。
表 1 不同国家主要粮食作物籽粒Zn含量 (mg/kg, DW)Table 1 Zn contents of main food crops in different countries
2 主要粮食作物产量对锌肥的响应
主要粮食作物小麦、水稻和玉米的产量会因为土壤缺Zn而显著下降,补施Zn肥后其产量会明显提升[83–84]。因为Zn不仅是叶绿体的组成成分[85],而且会对碳酸酐酶 (催化光合作用过程中可逆的CO2水合反应) 的活性产生影响[86],所以缺Zn会导致叶绿体合成受阻,碳酸酐酶活性降低,光合速率下降,最终使农作物减产。对于小麦来讲,不同的Zn肥施用方式均可以增加小麦产量 (图1)。如Yilmaz等[87]研究发现,在缺Zn土壤中,小麦产量很低,不同的补施Zn肥措施均可以显著提高其产量,在土施Zn肥措施下,小麦的产量最高,达到了2042 kg/hm2,与不施Zn肥相比产量提高了262%,与叶喷Zn肥相比提高了约63%。叶喷Zn肥的增产效果显著低于土施Zn肥,一方面是由于在本研究中土施Zn肥的施Zn量为23 kg/hm2,而叶喷Zn肥为440 g/hm2,施用量差异极大;另一方面是由于根系Zn的吸收对于小麦的增产效果要优于叶喷Zn肥[88]。然而也有研究发现,补施Zn肥后小麦的产量与不施Zn肥相比没有显著差异[89]。这种结果可能是由土壤Zn含量所决定的,例如Yilmaz等的研究区域,农田土壤有效Zn含量为0.12 mg/kg,显著低于农田土壤缺Zn临界值0.5 mg/kg[90],属于极度缺Zn土壤,已经对小麦产量造成了显著的减产效应,补施Zn肥后,小麦产量显著提高,这与郝明德等[91]18年长期施用Zn肥的研究一致,补施Zn肥后小麦有明显的增产效应;然而也有一些研究区域,农田土壤有效Zn含量虽然不高,但是并没有达到使小麦减产的水平,因而补施Zn肥后并没有明显的增产效果[92]。与小麦一样,有研究表明补施Zn肥对于水稻有明显的增产作用 (图2),从图2中可以看出,水稻产量随着施Zn量的增加先上升后下降。产量下降是由于过量的
Zn会对水稻产生毒害作用[93–94],例如Kumar等[95]研究发现,过量的Zn会降低水稻Fe和Ca等元素的吸收量,并降低产量。然而,也有研究表明施用Zn肥后,水稻产量变化不显著[40],造成这种现象的原因与小麦类似,所选取的试验地农田土壤有效Zn的背景值比较高,Zn不是作物生长的限制因子。此外,冯绪猛等[96]研究发现,与小麦一样,土施Zn肥的水稻籽粒产量明显高于叶喷Zn肥,说明土施Zn肥的增产效果要优于叶喷Zn肥。对于玉米来讲,补施Zn肥也会显著增加其产量,尤其是在缺Zn土壤中[41,79]。Liu等[48]研究发现,玉米产量会随着施Zn量的增加先上升,后趋于平稳,说明在施Zn超过一定量之后,Zn将不再是玉米生长的限制因子,增加施Zn量对于玉米就没有显著的增产作用 (图3)。与小麦、水稻不同的是,以往的研究[41,48,78–79,97]都表明玉米产量会随着施Zn量的增加而增加,一方面是因为玉米对于Zn肥的响应很高,产量潜力很大[98],另一方面可能是由于被研究的用于种植玉米的农田土壤严重缺Zn,Zn已成为玉米产量的主要限制因子之一。
图 1 不同施Zn肥处理对小麦产量的影响Fig. 1 Effects of different Zn application methods on wheat yields
图 2 不同施锌量对水稻产量的影响Fig. 2 Effects of Zn application rates on rice yields
图 3 不同施锌量对玉米产量的影响[48]Fig. 3 Effects of different Zn application rates on maize yields[48]
3 主要粮食作物籽粒锌含量对锌肥的响应
3.1 小麦籽粒锌含量对施用锌肥的响应
补施Zn肥对于提高小麦籽粒的Zn含量有明显的效果[104],产量与品质得到明显改善。Maqsood等[105]研究发现,土施Zn肥后,小麦籽粒的Zn含量由34.9 mg/kg增加到69.93 mg/kg,这与陆新春等[106]、曹玉贤等[107]、Yilmaz等[87]的研究结果基本一致,土施Zn肥可明显提高小麦籽粒的Zn含量。Wojtkowiak等[108]研究发现,土壤有效Zn含量与小麦籽粒Zn含量之间的决定系数达到了0.9105,存在极显著的相关关系。但是直接向土壤中施用Zn肥会受到土壤理化性质的影响[109–110],Zn的利用效率比较低,例如土壤中磷酸盐含量会显著影响Zn的有效性,研究发现土壤中磷酸盐含量越高,被土壤吸附固定的Zn就越多[111]。叶喷Zn肥可以显著提高Zn的表观利用率,并且叶喷Zn肥处理下的小麦Zn含量也明显高于土施Zn肥[112]。Zheng等[39]在7个国家的23个试验点进行了相关研究,发现叶喷Zn肥均显著提高了Zn在小麦籽粒中的含量,平均增幅为84%,而土施Zn肥仅为12%,Kutman等[113]和Cakmak等[100]也有类似的研究结果。Zheng等[39]在研究中还发现,不同的小麦品种对于Zn肥的响应存在差别,小麦籽粒中Zn含量在30~60 mg/kg之间不等,因此在品种的选择上要优先考虑对于Zn肥响应较高的类型,提高Zn肥利用率。此外,元素之间存在竞争或者协同的作用,例如,Stepien等[67]研究发现,与只施Zn肥相比,同时用含有Cu、Zn、Mn的微肥叶喷小麦能够最大幅度的提高小麦籽粒的Zn含量,说明其他微量元素的补充促进了小麦对于Zn的吸收与富集。Zhang等[114]研究发现,施肥过程中P与Zn会有拮抗作用,在一定量之后,Zn在小麦籽粒中的含量会随着P的增加而逐渐降低。买文选等[115]通过研究发现,补施Zn肥会降低小麦籽粒的植酸含量,提高小麦籽粒中Zn的生物有效性。虽然叶喷Zn肥可以显著提高小麦籽粒中的Zn含量,但是叶喷Zn肥增加了小麦种植的成本,增产效益也不如土施Zn肥,所以需要去降低施肥成本,增加收益。研究发现小麦种植为防治病虫灾害 (如蚜虫),需要喷洒农药[116],Ram等[38]通过田间试验发现,将Zn肥和农药一起叶喷与只喷Zn肥相比,小麦籽粒中的Zn含量无显著差异。研究还发现,将农药与Zn肥一次性叶喷到小麦上与分两次相比,每公顷小麦的净收入增加了118美元,例如中国作为主要的小麦种植国家,种植面积达到了2400万公顷,则每年农民的净收入可以增加接近29亿美元[117]。
3.2 水稻籽粒锌含量对施用锌肥的响应
通过土施Zn肥,稻田施Zn量在2.5、5.5、7.5 kg/hm2的情况下与不施Zn肥相比,水稻籽粒Zn含量分别提高了0.9%、8.5%、16.4%[27]。Zn在水稻中的富集量明显提高,但是要使水稻中的Zn含量达到要求,至少施用Zn肥 (以ZnSO4·7H2O计)25 kg/hm2,这对于农户来讲,生产成本很高,很难实现[118]。Shivay 等[44]将包膜尿素 (含 ZnSO4·7H2O) 土施到土壤中,在低施用量 (0.5% ZnSO4·7H2O) 的情况下,可以显著提高Zn肥的表观利用率,达到了17.6%,但是产量不高,水稻籽粒中的Zn含量也比较低;如果要使Zn的富集量达到要求,就要增加Zn的投入量(2.0% ZnSO4·7H2O),但是Zn的表观利用效率下降到12%。Shivay等[119]通过另一研究发现,随着施Zn量的增加 (施Zn量在1.3~9.1 kg/hm2之间),第一年其表观利用率从16.4%下降到8.3%,第二年从17%下降到10.6%。因此土施Zn肥虽然可以提高水稻籽粒中的Zn含量,但是施用的Zn肥量太大,Zn的表观利用效率太低,约为10%[44],这主要是因为施加到土壤中的Zn肥受到了土壤理化性质的影响,其有效性显著降低,研究发现叶喷Zn肥是克服这一缺点的有效途径[120–121]。与土施Zn肥相比,叶喷Zn肥的农学效益是其10倍,即用0.2% ZnSO4·7H2O的Zn肥叶喷水稻就可以达到用2% ZnSO4·7H2O的Zn肥土施到土壤中水稻籽粒Zn含量的水平,明显提高了Zn的表观利用率[43]。Phattarakul等[40]研究发现,在排除了土壤理化性质、管理措施等对Zn在水稻中含量的影响,叶喷Zn肥对于水稻籽粒中Zn含量的提高效果比土施Zn肥增加了66%。Wissuwa等[77]通过研究也发现,无论哪一种水稻类型,叶喷Zn肥与土施Zn肥相比都能够显著增加水稻籽粒中的Zn含量。但是与小麦一样,叶喷Zn肥的增产效益不如土施Zn肥,增加了农户的成本,一方面可以通过土施Zn肥与叶喷Zn肥的耦合进行互补,另一方面可以通过与其它农艺措施相结合来降低成本,以增加收益[38]。土施Zn肥与叶喷Zn肥的耦合与只叶喷Zn肥相比,水稻籽粒产量平均提高了约2.1%,Zn含量平均提高了约4.0%,增加了农户净收益[40]。此外,不同的水稻类型对于Zn肥的响应是不同的,Saha等[122]研究了不同水稻品种在富Zn方面的差异,不同的水稻品种即使在同一施肥模式下,其产量与Zn含量也不同,并发现‘GB1’(品种来自于印度的阿萨姆) 水稻品种在一次基肥、两次追肥的模式下,其Zn含量与产量均优于其它品种。因此针对不同的水稻类型,在兼顾产量的前提下要优先选用高富Zn的品种。
3.3 玉米籽粒锌含量对施用锌肥的响应
与小麦、水稻一样,土施Zn肥与叶喷Zn肥不仅都可以提高玉米籽粒中的Zn含量[123],还可以提高玉米的产量[98]。Harris等[66]通过研究发现,与不施Zn肥相比,在施Zn量为2.75 kg/hm2情况下,Zn在玉米籽粒中的富集量提高了18.0%;在施Zn量5.5 kg/hm2的情况下,富集量提高了39.8%。通过土施Zn肥,玉米籽粒中的Zn含量明显提高,但是施加的Zn肥量太大,Zn肥的有效性偏低。在发展中国家补施Zn肥增加了农户的生产成本,降低了农户施Zn肥的积极性,例如在巴基斯坦,不超过5%的农户施用Zn肥[124]。Manzeke等[78]依据津巴布韦当地的实际情况,将秸秆 (实际施Zn量430 g/hm2)、畜禽粪便 (实际施Zn量113 g/hm2) 等作为含Zn有机肥与NPK肥一起施入到土壤中,与只施用NPK肥相比,玉米籽粒中的Zn含量分别提高了64.3%和50%,同时也提高了玉米的产量。这是因为畜禽粪便中含有丰富的有机Zn,不仅提供了农作物生长所必需的微量营养元素Zn,而且提升了土壤肥力[110]。
4 施用锌肥对主要粮食作物中锌分配的影响
大量研究表明,施Zn肥可以显著提高主要粮食作物Zn含量,缓解农作物缺Zn情况,并能够增加产量[125–126]。但是农作物有特定的吸收分配机制,Zn元素正常情况下由根部吸收,经过木质部和韧皮部的运输,才能够在农作物的可食部位进行富集[127]。例如,Jiang等[128]通过同位素示踪的方法发现,水稻可食部分的Zn元素主要来自于根部的吸收,叶喷Zn肥大约50%的Zn元素留在了叶子里,另外的50%的分配到了其他有机体中,很少一部分被分配到谷粒当中。与水稻不同的是,小麦籽粒中的Zn还可以由叶子里的Zn重新分配进行补充[129]。通过施肥途径施加的Zn元素是否能够更多的在粮食作物可食部位分配,也是科学研究关注的热点。
对于小麦,Maqsood等[105]研究了巴基斯坦的12个小麦品种后发现,向土壤中施用Zn肥对于小麦籽粒及秸秆的Zn含量均有显著的提升作用,在秸秆中Zn的平均含量为41.54 mg/kg,在小麦籽粒中Zn的平均含量为58.92 mg/kg,与不施Zn肥相比分别提高了17.7%,22.1%。Li等[130]研究了叶喷Zn肥对小麦籽粒、白面粉、麸皮中Zn含量的影响,发现施用Zn肥后,Zn含量与不施Zn肥相比分别提高了92.5%、64.8%、77%,并且麸皮中的Zn含量最高为74.0 mg/kg,其次是小麦籽粒,为42.2 mg/kg,最低为白面粉,Zn含量为13.3 mg/kg。这与Zhang等[131]的研究结果一致,Zn在麦麸、小麦籽粒、白面粉中的含量是逐渐递减的 (图4)。在中国,小麦主要吃的是白面粉,所占的比重超过了85%[132],补施Zn肥虽能显著增加小麦籽粒的Zn含量,但是作为主要消耗品的白面粉,其Zn含量仍然比较低。对于水稻来讲,Phattarakul等[40]研究发现,通过土施Zn肥,Zn在精米中的含量为16.2 mg/kg,与稻谷、糙米相比Zn含量分别下降了15.3%、22.1%;通过叶喷Zn肥,Zn在精米中的含量为17.7 mg/kg,分别下降了45.2%、27.5%;通过土施Zn肥与叶喷Zn肥结合的方式,Zn在精米中的含量为18.4 mg/kg,分别下降了47.0%、27.8% (图5)。这与相关研究的结果基本一致,发现补施Zn肥后稻谷中含Zn总量占水稻总Zn吸收量的比值为18.22%[44],Zn在精米中的富集量与稻谷相比下降明显,约为12%[20]。综上所述,白面、精米等细粮的Zn含量与麦麸、糙米等粗粮相比具有很大的差异,因此在日常的饮食中应该增加粗粮的摄入量,弥补细粮Zn含量不足的状况。何宇纳等[133]研究中国成年人粗杂粮摄入水平时也发现,高粗粮摄入水平的群体其每日的摄Zn量显著高于低粗粮摄入水平的群体。
图 4 喷施不同锌肥小麦籽粒不同组分的Zn含量[35]Fig. 4 Zn contents in different grain parts of wheat sprayed with different Zn fertilizers[35]
图 5 不同施锌方式下水稻籽粒不同组分的Zn含量[40]Fig. 5 Zn contents in different grain parts of rice affected by Zn fertilization mode [40]
5 问题与讨论
补施Zn肥可以提高粮食作物可食部分的Zn含量,增加作物的产量,但是两种施肥措施都存在缺陷:Zn在人们主要消费的白面粉和精米中的含量很少;施用较高量的Zn肥虽提高了主要粮食作物的的Zn含量,但是在土壤有效Zn含量处于中等偏下水平的土壤上,主要粮食作物的产量对Zn肥的响应不明显,甚至过高的施Zn量会使农作物减产,加上Zn肥的价格比较高,让农户难以接受;Zn肥的利用率很低,尤其是盲目的大量施用Zn肥会造成浪费,并使土壤遭受潜在的Zn污染[134];肥料中的各营养元素之间存在交互作用,Zn与其它营养元素之间存在竞争或者协同作用,影响Zn肥的吸收;不同的农作物品种对于Zn肥的响应具有较大差异,富Zn量较高的品种,其产量偏低,产量较高的品种,其富Zn量达不到要求,产量与Zn含量难以同时达标。
针对国内外研究现状及存在的一系列问题,今后的研究可重点关注:1) 深入开展与Zn元素在肥–土–作物系统中吸收分配机制相关的研究,清楚掌握Zn元素在肥–土–作物系统中的富集与分配规律,同时建立全国范围内主要农田土壤的Zn数据库,构建产量、富Zn量与Zn肥之间的响应模型,为通过施肥途径改善粮食作物缺Zn状况提供有力的理论依据,避免不必要的浪费与污染或者施Zn肥不足,实现精准施肥。2) 加大新型廉价肥料技术的研发力度,降低肥料制作成本,寻找其他廉价替代品,例如畜禽粪便、污泥堆肥等,降低补施Zn肥的成本,与其它农艺措施相结合,提高产量,增加农户的净收益。3) 进一步探索改善土壤理化性质的有效措施,例如,pH、土壤有机质和离子强度等,降低土壤对Zn的固定能力,提高Zn肥对于农作物的有效性及其肥效的持久性,也可以通过添加其它物质,如生物质炭等。研究表明生物质炭不仅含有一定量的微量元素[135],能够增加土壤保水保肥的能力[136],而且还可以促进作物根系的生长,提高作物的养分吸收能力[137],今后可进行生物质炭与Zn的耦合研究。4) 加强系统研究,综合考虑多种营养元素对粮食作物产量与品质的影响,探明微量元素、常量元素之间的交互作用,找到最佳投入量与最佳配比,整体提升粮食作物的营养价值。5) 对小麦、水稻、玉米等主要粮食作物的品种进行筛选,在兼顾产量优势的前提下,选出对施Zn肥高响应的品种或通过杂交与基因工程育种技术来获得对Zn肥高产量与高富
Zn量响应的品种类型。6) 加强主要粮食作物富Zn的分子生物学机制研究,例如研究[138–140]发现ZIP转运蛋白起到了将Zn转入到根细胞的转运子作用,增加了粮食作物对Zn的吸收富集能力,今后可在分子水平上对与Zn的吸收、富集及转运相关的基因进行鉴定和筛选,并可通过基因工程育种技术和杂交技术等进行品种改良。
[1]Jurowski K, Szewczyk B, Nowak G, et al. Biological consequences of zinc deficiency in the pathomechanisms of selected diseases[J].Journal of Biological Inorganic Chemistry, 2014, 19(7): 1069–1079.
[2]Black R E, Allen L H, Bhutta Z A, et al. Maternal and child undernutrition 1 - maternal and child undernutrition: Global and regional exposures and health consequences[J]. Lancet, 2008,371(9608): 243–260.
[3]Gibson R S, Manger M S, Krittaphol W, et al. Does zinc deficiency play a role in stunting among primary school children in NE Thailand?[J]. British Journal of Nutrition, 2007, 97(1): 167–175.
[4]Shankar A H, Prasad A S. Zinc and immune function: The biological basis of altered resistance to infection[J]. American Journal of Clinical Nutrition, 1998, 68(2): 447S–463S.
[5]Fang Y Z, Yang S, Wu G Y. Free radicals, antioxidants, and nutrition[J]. Nutrition, 2002, 18(10): 872–879.
[6]Prasad A S. Discovery of human zinc deficiency: Its impact on human health and disease[J]. Advances in Nutrition, 2013, 4(2):176–190.
[7]SCF. Report of the scientific committee on food the revision of essential requirements of infant formulae and follow–on formulae(adopted on 4 April 2003)[R]. Brussels, Belgium: European commission health and consumer protection directorate-general,scientific committee on food (SCF); 2003.
[8]Tapiero H, Tew K D. Trace elements in human physiology and pathology: Zinc and metallothioneins[J]. Biomedicine &Pharmacotherapy, 2003, 57(9): 399–411.
[9]Brown K H, Wuehler S E, Peerson J M. The importance of zinc in human nutrition and estimation of the global prevalence of zinc deficiency[J]. Food & Nutrition Bulletin, 2001, 22(22): 113–125.
[10]Cakmak I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification?[J]. Plant and Soil, 2008, 302(1–2): 1–17.
[11]Cakmak I. Plant nutrition research: Priorities to meet human needs for food in sustainable ways[J]. Plant and Soil, 2002, 247(1): 3–24.
[12]Pardo M T, Guadalix M E. Zinc sorption-desorption by two Andepts: Effect of pH and support medium[J]. European Journal of Soil Science, 1996, 47(2): 257–263.
[13]Zahedifar M, Karimian N, Yasrebi J. Influence of applied zinc and organic matter on zinc desorption kinetics in calcareous soils[J].Archives of Agronomy and Soil Science, 2012, 58(2): 169–178.
[14]Joy E J M, Stein A J, Young S D, et al. Zinc-enriched fertilisers as a potential public health intervention in Africa[J]. Plant and Soil,2015, 389(1–2): 1–24.
[15]Mckevith B. Nutritional aspects of cereals[J]. Nutrition Bulletin,2004, 29(2): 111–142.
[16]Scherz H, Kirchhoff E. Trace elements in foods: Zinc contents of raw foods –a comparison of data originating from different geographical regions of the world[J]. Journal of Food Composition and Analysis, 2006, 19(5): 420–433.
[17]Zhang Y, Song Q, Yan J, et al. Mineral element concentrations in grains of Chinese wheat cultivars[J]. Euphytica, 2010, 174(3):303–313.
[18]Erdal I, Yilmaz A, Taban S, et al. Phytic acid and phosphorus concentrations in seeds of wheat cultivars grown with and without zinc fertilization[J]. Journal of Plant Nutrition, 2002, 25(1):113–127.
[19]FAO. The state of food insecurity in the world: Addressing food insecurity in protracted crises[R]. Rome, Italy: The Food and Agriculture Organization of the United Nations, 2010. 58.
[20]Prasad R, Shivay Y S, Kumar D. Agronomic biofortification of cereal grains with iron and zinc[J]. Advances in Agronomy, 2014,125: 55–91.
[21]Stein A J, Nestel P, Meenakshi J, et al. Plant breeding to control zinc deficiency in India: How cost-effective is biofortification?[J].Public Health Nutrition, 2007, 10(5): 492–501.
[22]White P J, Broadley M R. Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper,calcium, magnesium, selenium and iodine[J]. New Phytologist,2009, 182(1): 49–84.
[23]Bänziger M, Long J. The potential for increasing the iron and zinc density of maize through plant-breeding[J]. Food & Nutrition Bulletin, 2000, 21(4): 397–400.
[24]Alloway B J. Soil factors associated with zinc deficiency in crops and humans[J]. Environmental Geochemistry and Health, 2009,31(5): 537–548.
[25]Takkar P N, Walker C D. The distribution and correction of zinc deficiency[M]. Springer Netherlands, 1993.
[26]Cakmak I. Zinc deficiency in wheat in Turkey[M]. Springer Netherlands, 2008.
[27]Shivay Y S, Prasad R, Rahal A. Genotypic variation for productivity, zinc utilization efficiencies, and kernel quality in aromatic rices under low available zinc conditions[J]. Journal of Plant Nutrition, 2010, 33(12): 1835–1848.
[28]Salim R M, Shaikh B Z. Distribution and availability of zinc in soil fractions to wheat on some alkaline calcareous soils[J]. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde, 1988, 151(6): 385–389.
[29]Khoshgoftarmanesh A H, Schulin R, Chaney R L, et al.Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture. A review[J]. Agronomy for Sustainable Development, 2010, 30(1): 83–107.
[30]Lawson J A. Comparative quantification of health risks. Global and regional burden of disease attributable to selected major risk factors[J]. Canadian Journal of Public Health, 2006, 97(4): 319.
[31]Prasad A S. Impact of the discovery of human zinc deficiency on health[J]. Journal of the American College of Nutrition, 2009, 28(3):257–265.
[32]Wessells K R, Brown K H. Estimating the global prevalence of zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting[J]. PLoS ONE, 2012, 7(11):e50568.
[33]Murphy K M, Reeves P G, Jones S S. Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars[J]. Euphytica, 2008, 163(3): 381–390.
[34]Freitas M C, Pacheco A M G, Bacchi M A, et al. Compton suppression instrumental neutron activation analysis performance in determining trace-and minor-element contents in foodstuff[J].Journal of Radioanalytical and Nuclear Chemistry, 2008, 276(1):149–156.
[35]Norton G J, Douglas A, Lahner B, et al. Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice(Oryza sativa L.) grown at four international field sites[J]. PLoS ONE, 2014, 9(2): e89685.
[36]Codling E E, Mulchi C L, Chaney R L. Grain yield and mineral element composition of maize grown on high phosphorus soils amended with water treatment residual[J]. Journal of Plant Nutrition, 2007, 30(2): 225–240.
[37]Pedersen B, Eggum B O. The influence of milling on the nutritivevalue of flour from cereal-grains.5. Maize[J]. Qualitas Plantarum-Plant Foods for Human Nutrition, 1983, 33(4): 299–311.
[38]Ram H, Rashid A, Zhang W, et al. Biofortification of wheat, rice and common bean by applying foliar zinc fertilizer along with pesticides in seven countries[J]. Plant and Soil, 2016, 403(1–2):389–401.
[39]Zheng L. The distribution of zinc concentration in soils of China[J].Scientia Agricutura Sinica, 1994, 27(1): 30–37.
[40]Phattarakul N, Rerkasem B, Li L J, et al. Biofortification of rice grain with zinc through zinc fertilization in different countries[J].Plant and Soil, 2012, 361(1–2): 131–141.
[41]Hossain M A, Jahiruddin M, Islam M R, et al. The requirement of zinc for improvement of crop yield and mineral nutrition in the maize-mungbean-rice system[J]. Plant & Soil, 2008, 306(1–2):13–22.
[42]Velu G, Singh R, Huertaespino J, et al. Breeding for enhanced zinc and iron concentration in cimmyt spring wheat germplasm[J]. Czech Journal of Genetics and Plant Breeding, 2011, 47(4): S174–S177.
[43]Pooniya V, Shivay Y S. Enrichment of basmati rice grain and straw with zinc and nitrogen through ferti-fortification and summer green manuring under indo-gangetic plains of India[J]. Journal of Plant Nutrition, 2013, 36(1): 91–117.
[44]Shivay Y S, Prasad R. Zinc-coated urea improves productivity and quality of basmati rice (Oryza sativa L.) under zinc stress condition[J]. Journal of Plant Nutrition, 2012, 35(6): 928–951.
[45]Behera S K, Shukla A K, Singh M V, et al. Yield and zinc, copper,manganese and iron concentration in maize (Oryza sativa L.) grown on vertisol as influenced by zinc application from various zinc fertilizers[J]. Journal of Plant Nutrition, 2015, 38(10): 1544–1557.
[46]Saha S, Mandal B, Hazra G C, et al. Can agronomic biofortification of zinc be benign for iron in cereals?[J]. Journal of Cereal Science,2015, 65: 186–191.
[47]Tang J, Zou C, He Z, et al. Mineral element distributions in milling fractions of Chinese wheats[J]. Journal of Cereal Science, 2008,48(3): 821–828.
[48]Liu D Y, Zhang W, Yan P, et al. Soil application of zinc fertilizer could achieve high yield and high grain zinc concentration in maize[J]. Plant and Soil, 2017, 411(1–2): 47–55.
[49]Wang J, Mao H, Zhao H, et al. Different increases in maize and wheat grain zinc concentrations caused by soil and foliar applications of zinc in loess plateau, China[J]. Field Crops Research, 2012, 135: 89–96.
[50]Xia H, Zhao J, Sun J, et al. Maize grain concentrations and aboveground shoot acquisition of micronutrients as affected by intercropping with turnip, faba bean, chickpea, and soybean[J].Science China(Life Sciences), 2013, 56(9): 823–834.
[51]Heinemann R J B, Fagundes P L, Pinto E A, et al. Comparative study of nutrient composition of commercial brown, parboiled and milled rice from Brazil[J]. Journal of Food Composition & Analysis,2005, 18(4): 287–296.
[52]Poletti J, Pozebon D, de Fraga M V, et al. Toxic and micronutrient elements in organic, brown and polished rice in Brazil[J]. Food Additives & Contaminants Part B, 2014, 7(1): 63–69.
[53]Martins K V, Dourado–Neto D, Reichardt K, et al. Preliminary studies to characterize the temporal variation of micronutrient composition of the above ground organs of maize and correlated uptake rates[J]. Frontiers in Plant Science, 2017, 8: 14.
[54]Ekholm P, Reinivuo H, Mattila P, et al. Changes in the mineral and trace element contents of cereals, fruits and vegetables in Finland[J].Journal of Food Composition and Analysis, 2007, 20(6): 487–495.
[55]Genc Y, McDonald G K. The potential of synthetic hexaploid wheats to improve zinc efficiency in modern bread wheat[J]. Plant and Soil, 2004, 262(1–2): 23–32.
[56]Ryan M H, Derrick J W, Dann P R. Grain mineral concentrations and yield of wheat grown under organic and conventional management[J]. Journal of the Science of Food and Agriculture,2004, 84(3): 207–216.
[57]Gregorio G B, Senadhira D, Htut H, et al. Breeding for trace mineral density in rice[J]. Food & Nutrition Bulletin, 2000, 21(4):382–386.
[58]Baize D, Bellanger L, Tomassone R. Relationships between concentrations of trace metals in wheat grains and soil[J].Agronomy for Sustainable Development, 2009, 29(2): 297–312.
[59]Oury F X, Leenhardt F, Remesy C, et al. Genetic variability and stability of grain magnesium, zinc and iron concentrations in bread wheat[J]. European Journal of Agronomy, 2006, 25(2): 177–185.
[60]Broadhurst C L, Chaney R L, Davis A P, et al. Growth and cadmium phytoextraction by Swiss chard, maize, rice, noccaea caerulescens, and alyssum murale in pH adjusted biosolids amended soils[J]. International Journal of Phytoremediation, 2015, 17(1):25–39.
[61]Stipesevic B, Jug D, Jug I, et al. Winter wheat and soybean zinc uptake in different soil tillage systems[J]. Cereal Research Communications, 2009, 37(2): 305–310.
[62]Svecnjak Z, Jenel M, Bujan M, et al. Trace element concentrations in the grain of wheat cultivars as affected by nitrogen fertilization[J]. Agricultural and Food Science, 2013, 22(4):445–451.
[63]Kovacevic V, Brkic I, Simic D, et al. The role of genotypes on phosphorus, zinc, manganese and iron status and their relations in leaves of maize on hydromorphic soil[J]. Plant Soil and Environment, 2004, 50(12): 535–539.
[64]Vragolovic A, Simic D, Buhinicek I, et al. Lack of association for iron and zinc concentrations between leaf and grain of maize genotypes grown on two soil types[J]. Cereal Research Communications, 2007, 35(2): 1313–1316.
[65]Calderini D F, Ortiz–Monasterio I. Are synthetic hexaploids a means of increasing grain element concentrations in wheat?[J].Euphytica, 2003, 134(2): 169–178.
[66]Harris D, Rashid A, Miraj G, et al. 'On-farm' seed priming with zinc sulphate solution -A cost effective way to increase the maize yields of resource-poor farmers[J]. Field Crops Research, 2007, 102(2):119–127.
[67]Stepien A, Wojtkowiak K. Effect of foliar application of Cu, Zn,and Mn on yield and quality indicators of winter wheat grain[J].Chilean Journal of Agricultural Research, 2016, 76(2): 220–227.
[68]Suchowilska E, Wiwart M, Kandler W, et al. A comparison of macro- and microelement concentrations in the whole grain of four triticum species[J]. Plant Soil and Environment, 2012, 58(3):141–147.
[69]Leśniewicz A, Kretowicz M, Wierzbicka K, et al. Inorganic micronutrients in food products of plant origin used for breakfast in Poland[J]. International Journal of Environmental Analytical Chemistry, 2009, 89(8–12): 621–634.
[70]Hu X Z, Zheng J M, Li X P, et al. Chemical composition and sensory characteristics of oat flakes: A comparative study of naked oat flakes from China and hulled oat flakes from western countries[J]. Journal of Cereal Science, 2014, 60(2): 297–301.
[71]Pedersen B, Eggum B O. The influence of milling on the nutritivevalue of flour from cereal-grains.2. Wheat[J]. Plant Foods for Human Nutrition, 1983, 33(1): 51–61.
[72]Hamner K, Kirchmann H. Trace element concentrations in cereal grain of long-term field trials with organic fertilizer in Sweden[J].Nutrient Cycling in Agroecosystems, 2015, 103(3): 347–358.
[73]Hamner K, Weih M, Eriksson J, et al. Influence of nitrogen supply on macro- and micronutrient accumulation during growth of winter wheat[J]. Field Crops Research, 2017, 213: 118–129.
[74]Kirchmann H, Mattsson L, Eriksson J. Trace element concentration in wheat grain: Results from the Swedish long-term soil fertility experiments and national monitoring program[J]. Environmental Geochemistry and Health, 2009, 31(5): 561–571.
[75]Tattibayeva D, Nebot C, Miranda J M, et al. A study on toxic and essential elements in wheat grain from the Republic of Kazakhstan[J]. Environmental Science and Pollution Research,2016, 23(6): 5527–5537.
[76]Graham R, Senadhira D, Beebe S, et al. Breeding for micronutrient density in edible portions of staple food crops: Conventional approaches[J]. Field Crops Research, 1999, 60(1–2): 57–80.
[77]Wissuwa M, Ismail A M, Graham R D. Rice grain zinc concentrations as affected by genotype, native soil-zinc availability,and zinc fertilization[J]. Plant and Soil, 2008, 306(1–2): 37–48.
[78]Manzeke G M, Mapfumo P, Mtambanengwe F, et al. Soil fertility management effects on maize productivity and grain zinc content in smallholder farming systems of Zimbabwe[J]. Plant & Soil, 2012,361(1–2): 57–69.
[79]Manzeke G M, Mtambanengwe F, Nezomba H, et al. Zinc fertilization influence on maize productivity and grain nutritional quality under integrated soil fertility management in Zimbabwe[J].Field Crops Research, 2014, 166: 128–136.
[80]Oikeh S O, Menkir A, Maziya–Dixon B, et al. Genotypic differences in concentration and bioavailability of kernel-iron in tropical maize varieties grown under field conditions[J]. Journal of Plant Nutrition, 2003, 26(10–11): 2307–2319.
[81]Joy E J M, Broadley M R, Young S D, et al. Soil type influences crop mineral composition in Malawi[J]. Science of the Total Environment, 2015, 505: 587–595.
[82]van Jaarsveld P J, Faber M, van Stuijvenberg M E. Vitamin a, iron,and zinc content of fortified maize meal and bread at the household level in 4 areas of South Africa[J]. Food & Nutrition Bulletin, 2015,36(3): 315–326.
[83]Alloway B J. Micronutrient deficiencies in global crop production[M]. Springer Netherlands, 2008.
[84]王孝忠, 田娣, 邹春琴. 锌肥不同施用方式及施用量对我国主要粮食作物增产效果的影响[J]. 植物营养与肥料学报, 2014, 20(4):998–1004.Wang X Z, Tian D, Zou C Q. Yield responses of the main cereal crops to the application approaches and rates of zinc fertilizer in China[J]. Journal of Plant Nutrition and Fertitizer, 2014, 20(4):998–1004.
[85]王振林, 沈成国, 余松烈. 小麦供锌状况对叶片结构及叶绿体超微结构的影响[J]. 作物学报, 1993, 19(6): 553–557+579–580.Wang Z L, Shen C G, Yu S L. Effects of zinc supply on leaf structure and chloroplast ultrastructure in wheat[J]. Acta Agronomica Sinica, 1993, 19(6): 553–557+579–580.
[86]Guliev N M, Bairamov S M, Aliev D A. Functional organization of carbonic anhydrase in higher plants[J]. Soviet Plant Physiology,1992, 39(4): 537–544.
[87]Yilmaz A, Ekiz H, Torun B, et al. Effect of different zinc application methods on grain yield and zinc concentration in wheat cultivars grown on zinc-deficient calcareous soils[J]. Journal of Plant Nutrition, 1997, 20(4–5): 461–471.
[88]Haslett B S, Reid R J, Rengel Z. Zinc mobility in wheat: Uptake and distribution of zinc applied to leaves or roots[J]. Annals of Botany,2001, 87(3): 379–386.
[89]贾舟, 陈艳龙, 赵爱青, 等. 硫酸锌和EDTA-Zn不同施用方法对第二季小麦籽粒锌和土壤锌有效性的影响[J]. 植物营养与肥料学报, 2016, 22(6): 1595–1602.Jia Z, Chen Y L, Zhao A Q, et al. Effects of different application method of ZnSO4and EDTA-Zn on wheat grain zinc biofortification and soil zinc availability in the next year[J]. Journal of Plant Nutrition and Fertitizer, 2016, 22(6): 1595–1602.
[90]刘铮. 我国土壤中锌含量的分布规律[J]. 中国农业科学, 1994,27(1): 30–37.Liu Z. The distribution of zinc concentration in soils of China[J].Scientia Agricutura Sinica, 1994, 27(1): 30–37.
[91]郝明德, 魏孝荣, 党廷辉. 旱地小麦长期施用锌肥的增产作用及土壤效应[J]. 植物营养与肥料学报, 2003, 9(3): 377–380.Hao M D, Wei X R, Dang T H. Effect of long term applying zinc fertilier on wheat yield and content of zinc in dryland[J]. Plant Nutrition and Fertitizer Science, 2003, 9(3): 377–380.
[92]杨月娥, 王森, 王朝辉, 等. 我国主要麦区小麦籽粒锌含量对叶喷锌肥的响应[J]. 植物营养与肥料学报, 2016, 22(3): 579–589.Yang Y E, Wang S, Wang Z H, et al. Response of wheat grain Zn concentration to foliar sprayed Zn in main wheat production regions of China[J]. Journal of Plant Nutrition and Fertitizer, 2016, 22(3):579–589.
[93]Borkert C M, Cox F R, Tucker M R. Zinc and copper toxicity in peanut, soybean, rice, and corn in soil mixtures[J]. Communications in Soil Science and Plant Analysis, 1998, 29(19–20): 2991–3005.
[94]Mortvedt J J. Plant tissue analysis in micronutrients[A]. Mortvedt J J, Cox F R, Shuman L M, Welch R M. Micronutrients in Agriculture (2nd Edition)[M]. Madison, WI: Soil Science Society of America. 1991.
[95]Kumar F N. Influence of micronutrients on dry matter yield and interaction with other nutrients in annual crops[J]. Pesquisa Agropecuária Brasileira, 2002, 37(12): 1765–1772.
[96]冯绪猛, 郭九信, 王玉雯, 等. 锌肥品种与施用方法对水稻产量和锌含量的影响[J]. 植物营养与肥料学报, 2016, 22(5): 1329–1338.Feng X M, Guo J X, Wang Y W, et al. Effects of Zn fertilizer types and application methods on grain yield and Zn concentration of rice[J]. Journal of Plant Nutrition and Fertitizer, 2016, 22(5):1329–1338.
[97]Tariq M, Khan M A, Perveen S. Response of maize to applied soil zinc[J]. Asian Journal of Plant Sciences, 2002, 1(4): 476–477.
[98]Potarzycki J, Grzebisz W. Effect of zinc foliar application on grain yield of maize and its yielding components[J]. Plant Soil and Environment, 2009, 55(12): 519–527.
[99]刘敦一, 庞丽丽, 张伟, 等. 锌肥施用方式对小麦、玉米产量和籽粒锌含量的影响[J]. 中国土壤与肥料, 2014, (4): 76–80+90.Liu D, Pang L, Zhang W, et al. Effects of different zinc fertilization methods on yield and grain Zn concentration of maize and wheat[J].Soil and Fertilizer Sciences in China, 2014, (4): 76–80+90.
[100]Cakmak I, Kalayci M, Kaya Y, et al. Biofortification and localization of zinc in wheat grain[J]. Journal of Agricultural and Food Chemistry, 2010, 58(16): 9092–9102.
[101]郭九信, 隋标, 商庆银, 等. 氮锌互作对水稻产量及籽粒氮、锌含量的影响[J]. 植物营养与肥料学报, 2012, 18(6): 1336–1342.Guo J, Sui B, Shang Q, et al. Effects of N and Zn interaction on yield and contents of N and Zn in grains of rice[J]. Plant Nutrition and Fertitizer Science, 2012, 18(6): 1336–1342.
[102]Guo J X, Feng X M, Hu X Y, et al. Effects of soil zinc availability,nitrogen fertilizer rate and zinc fertilizer application method on zinc biofortification of rice[J]. Journal of Agricultural Science, 2016,154(4): 584–597.
[103]Shivay Y S, Kumar D, Prasad R, et al. Relative yield and zinc uptake by rice from zinc sulphate and zinc oxide coatings onto urea[J]. Nutrient Cycling in Agroecosystems, 2008, 80(2): 181–188.
[104]陆欣春, 田霄鸿, 杨习文, 等. 氮锌配施对不同冬小麦品种产量及锌营养的影响[J]. 中国生态农业学报, 2010, 18(5): 923–928.Lu X C, Tian X H, Yang X W, et al. Effect of combination use of Zn and N fertilizers on yield and Zn content in winter wheat[J].Chinese Journal of Eco-Agriculture, 2010, 18(5): 923–928.
[105]Maqsood M A, Rahmatullah, Kanwal S, et al. Evaluation of Zn distribution among grain and straw of twelve indigenous wheat(Triticum aestivum L.) genotypes[J]. Pakistan Journal of Botany,2009, 41(1): 225–231.
[106]陆欣春, 田霄鸿, 杨习文, 等. 氮锌配施对石灰性土壤锌形态及肥效的影响[J]. 土壤学报, 2010, 47(6): 1202–1213.Lu X C, Tian X H, Yang X W, et al. Effects of combined application of nitrogen and zinc on zinc fractions and fertilizer efficiency in calcareous soil[J]. Acta Pedologica Sinica, 2010, 47(6):1202–1213.
[107]曹玉贤, 田霄鸿, 杨习文, 等. 土施和喷施锌肥对冬小麦子粒锌含量及生物有效性的影响[J]. 植物营养与肥料学报, 2010, 16(6):1394–1401.Cao Y X, Tian X H, Yang X W, et al. Effects of soil and foliar applications of Zn on winter wheat grain Zn concentration and bioavailability[J]. Plant Nutrition and Fertitizer Science, 2010,16(6): 1394–1401.
[108]Wojtkowiak K, Stepien A, Warechowska M, et al. Content of copper, iron, manganese and zinc in typical light brown soil and spring triticale grain depending on a fertilization system[J]. Journal of Elementology, 2014, 19(3): 833–843.
[109]Wang S L, Nan Z R, Zeng J J, et al. Desorption of zinc by the kaolin from Suzhou, China[J]. Applied Clay Science, 2007, 37(3–4):221–225.
[110]Zhang S, Li Z, Yang X. Effects of long-term inorganic and organic fertilization on soil micronutrient status[J]. Communications in Soil Science and Plant Analysis, 2015, 46(14): 1778–1790.
[111]Zhao K, Selim H M. Adsorption-desorption kinetics of Zn in soils:Influence of phosphate[J]. Soil Science, 2010, 175(4): 145–153.
[112]Cakmak I, Pfeiffer W H, McClafferty B. Biofortification of durum wheat with zinc and iron[J]. Cereal Chemistry, 2010, 87(1): 10–20.
[113]Kutman U B, Yildiz B, Ozturk L, et al. Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen[J].Cereal Chemistry, 2010, 87(1): 1–9.
[114]Zhang W, Liu D, Liu Y, et al. Overuse of phosphorus fertilizer reduces the grain and flour protein contents and zinc bioavailability of winter wheat (Triticum aestivum L.)[J]. Journal of Agricultural and Food Chemistry, 2017, 65(8): 1473–1482.
[115]买文选, 田霄鸿, 陆欣春, 等. 磷锌肥配施对冬小麦籽粒锌生物有效性的影响[J]. 中国生态农业学报, 2011, 19(6): 1243–1249.Mai W X, Tian X H, Lu X C, et al. Effect of Zn and P supply on grain Zn bioavailability in wheat[J]. Chinese Journal of Eco-Agriculture, 2011, 19(6): 1243–1249.
[116]Mushtaq S, Rana S A, Khan H A, et al. Diversity and abundance of family aphididae from selected crops of Faisalabad, Pakistan[J].Pakistan Journal of Agricultural Sciences, 2013, 50(1): 103–109.
[117]Wang X Z, Liu D Y, Zhang W, et al. An effective strategy to improve grain zinc concentration of winter wheat, aphids prevention and farmers' income[J]. Field Crops Research, 2015, 184: 74–79.
[118]Gupta S P, Singh M V, Dixit M L. Deficiency and management of micronutrients[J]. Indian Journal of Fertilizer, 2007, 3: 57–60.
[119]Shivay Y S, Kumar D, Prasad R. Effect of zinc-enriched urea on productivity, zinc uptake and efficiency of an aromatic rice-wheat cropping system[J]. Nutrient Cycling in Agroecosystems, 2008,81(3): 229–243.
[120]Fang Y, Wang L, Xin Z, et al. Effect of foliar application of zinc,selenium, and iron fertilizers on nutrients concentration and yield of rice grain in China[J]. Journal of Agricultural and Food Chemistry,2008, 56(6): 2079–2084.
[121]Yuan L, Wu L H, Yang C L, et al. Effects of iron and zinc foliar applications on rice plants and their grain accumulation and grain nutritional quality[J]. Journal of the Science of Food and Agriculture, 2013, 93(2): 254–261.
[122]Saha S, Chakraborty M, Padhan D, et al. Agronomic biofortification of zinc in rice: Influence of cultivars and zinc application methods on grain yield and zinc bioavailability[J]. Field Crops Research,2017, 210: 52–60.
[123]Fahad S, Hussain S, Saud S, et al. Grain cadmium and zinc concentrations in maize influenced by genotypic variations and zinc fertilization[J]. CLEAN-Soil Air Water, 2015, 43(10): 1433–1440.
[124]FAO. Fertilizer use by crop in Pakistan[A]. FAO. Land and Plant Nutrition Management Service, Land and Water Development Division[C]. Rome, 2004
[125]Grzebisz W, Wronska M, Diatta J B, et al. Effect of zinc foliar application at an early stage of maize growth on patterns of nutrients and dry matter accumulation by the canopy. Part I. Zinc uptake patterns and its redistribution among maize organs[J]. Journal of Elementology, 2008, 13(1): 17–28.
[126]Ram H, Sohu V S, Cakmak I, et al. Agronomic fortification of rice and wheat grains with zinc for nutritional security[J]. Current Science, 2015, 109(6): 1171–1176.
[127]Liliana Garcia–Banuelos M, Pedro Sida–Arreola J, Sanchez E.Biofortification-promising approach to increasing the content of iron and zinc in staple food crops[J]. Journal of Elementology, 2014,19(3): 865–888.
[128]Jiang W, Struik P C, Lingna J, et al. Uptake and distribution of rootapplied or foliar-applied Zn-65 after flowering in aerobic rice[J].Annals of Applied Biology, 2007, 150(3): 383–391.
[129]Pearson J N, Rengel Z. Distribution and remobilization of Zn and Mn during grain development in wheat[J]. Journal of Experimental Botany, 1994, 45(281): 1829–1835.
[130]Li M, Wang S X, Tian X H, et al. Zn distribution and bioavailability in whole grain and grain fractions of winter wheat as affected by applications of soil N and foliar Zn combined with N or P[J].Journal of Cereal Science, 2015, 61: 26–32.
[131]Zhang Y Q, Shi R L, Rezaul K M, et al. Iron and zinc concentrations in grain and flour of winter wheat as affected by foliar application[J]. Journal of Agricultural and Food Chemistry,2010, 58(23): 12268–12274.
[132]Li Q L. The produce and consumption of wheat and wheat flour in China[J]. Flowr Milling, 2006, 5: 9–14.
[133]何宇纳, 赵丽云, 于冬梅, 等. 中国成年人粗杂粮摄入水平对膳食营养素的贡献[J]. 营养学报, 2016, 38(4): 326–331.He Y N, Zhao L Y, Yu D M, et al. The coarse food intake and its impact on dietary nutrients in Chinese adults[J]. Acta Nutrimenta Sinica, 2016, 38(4): 326–331.
[134]王淑英, 于同泉, 王建立, 等. 北京市平谷区土壤有效微量元素含量的空间变异特性初步研究[J]. 中国农业科学, 2008, 41(1):129–137.Wang S Y, Yu T Q, Wang J L, et al. Preliminary study on spatial variability and distribution of soil available microelements in Pinggu district of Beijing[J]. Scientia Agricultura Sinica, 2008,41(1): 129–137.
[135]Smider B, Singh B. Agronomic performance of a high ash biochar in two contrasting soils[J]. Agriculture Ecosystems & Environment,2014, 191: 99–107.
[136]Herath H, Camps–Arbestain M, Hedley M. Effect of biochar on soil physical properties in two contrasting soils: An alfisol and an andisol[J]. Geoderma, 2013, 209: 188–197.
[137]张伟明, 孟军, 王嘉宇, 等. 生物炭对水稻根系形态与生理特性及产量的影响[J]. 作物学报, 2013, 39(8): 1445–1451.Zhang W M, Meng J, Wang J Y, et al. Effect of biochar on root morphological and physiological characteristics and yield in rice[J].Acta Agronomica Sinica, 2013, 39(8): 1445–1451.
[138]Fu X Z, Zhou X, Xing F, et al. Genome-wide identification, cloning and functional analysis of the zinc/iron-regulated transporter-like protein (zip) gene family in trifoliate orange (Poncirus trifoliata L.Raf.[J]. Frontiers in Plant Science, 2017, (8): 588.
[139]Guerinot M L. The zip family of metal transporters[J]. Biochimica Et Biophysica Acta-Biomembranes, 2000, 1465(1–2): 190–198.
[140]汪洪, 金继运. 植物对锌吸收运输及积累的生理与分子机制[J].植物营养与肥料学报, 2009, 15(1): 225–235.Wang H, Jin J Y. The physiological and molecular mechanisms of zinc uptake, transport, and hyperaccumulation in plants:A review[J].Plant Nutrition and Fertitizer Science, 2009, 15(1): 225–235.