肿瘤微环境中靶向调节性T细胞免疫治疗策略
2018-06-13刘家玲王仕敏卓召振袁军
刘家玲 王仕敏 卓召振 袁军
[摘要] 调节性T细胞(Treg)是一群具有负调节机体免疫反应的淋巴细胞。可抑制肿瘤相关抗原T细胞免疫,影响肿瘤免疫治疗效果以及疫苗活化。清除CD4+CD25+T细胞(Treg)可抑制肿瘤生长,但会引起自身免疫性疾病,这与Treg细胞维持自身免疫耐受有关。Treg根据来源可分为胸腺来源的天然调节性T细胞(nTreg)和外周诱导型调节性T细胞(iTreg)。虽然调节性T细胞在不同癌症类型和组织中表型多样且具有异质性,但都共表达CD4、CD25、foxp3分子标记。由于其肿瘤异质性和器官异质性,因此在肿瘤免疫治疗中靶向Treg细胞策略也不同。肿瘤免疫治疗中可清除Treg或清除限制Treg细胞免疫抑制的功能蛋白例如GITR、T-bet、Neoropilin-1、CTLA-4、IDO或PD-1。在清除Treg细胞时为防止引起自身免疫性疾病通常加入OVA疫苗;目前已获FDA批准Ipilimumab治疗黑色素瘤的分子机制就是靶向Treg细胞的CTLA-4。本文通过对Treg的表型、异质性及靶向Treg的肿瘤治疗策略的综述,为将来针对Treg治疗时,避免免疫紊乱提供研究思路。
[关键词] 调节性T细胞(Treg);肿瘤免疫治疗;肿瘤微环境
[中图分类号] R392.12 [文献标识码] A [文章编号] 1673-7210(2018)04(a)-0046-05
[Abstract] Regulatory T cell (Treg) is a group of lymphocytes with negetive regulation of inhibiting tumor-associated antigen T cell-mediated immune responses, targeted agents may influence tumor immunotherapy and vaccine activation. Systemic removal of CD25+CD4+ T cells perhaps elicit tumor growth in rodents, but also increasing the severity of the autoimmune diseases as peripheral self-tolerance is maintained by Treg cells. According to sources of Regulatory T cells, it can be classfied as two population of nTreg and iTreg cells. Regulatory T cells are phenotypically diversity and functionally heterogeneous in different types of tumor and tissues, whereas conferring the same marker of CD4, CD25 and foxp3. Because of its tumor heterogeneity and organ heterogeneity, therefore, the strategy of targeting Treg cells in tumor immunotherapy is different. On the other hand, removal Treg cell strategies is different in tumor immunotherapy, it can remove regulatory T cells (Treg) or dampen the function of Treg cells through limit its immunosuppression protein, such as GITR, T-bet, Neoropilin-1, CTLA-4, IDO or PD-1. The autoimmunities can be prevented by inoculating OVA vaccine when removing Tregs .Ipilimumab, which has recently been FDA-approved for therapy patients with advanced melanoma mechnism is targeting CTLA- 4 in Treg cells. In this paper, we review the phenotype, heterogeneity and tumor therapy strategies of Treg treatment in order to avoid immune disorders in the future.
[Key words] Regulatory T cells; Tumor immunotherapy; Tumor microenvironment
1 調节性T细胞(Treg)研究简史
调节性T细胞(Treg)在免疫系统中发挥着举足轻重的作用,但是其发现可追溯到1980s的“抑制性”淋巴细胞,最早建立起来的Treg细胞概念也只有20多年。1982年Powell等[1]在X-相关综合征(IPEX;也称X-相关自身免疫性变应性失调综合征即XLAAD)疾病中发现了foxp3基因的突变,而且人类foxp3基因与scurfy突变小鼠的foxp3基因具有同源性。直到1995年人们对Treg细胞进行分子标记,即CD4+CD25+ T细胞(CD25即IL-2受体),这是最早认识的调节性T细胞亚群,在小鼠和人身上均可表达CD25。随后的研究证明该转录因子foxp3对Treg细胞分化和功能具有重要作用,并进一步深入研究了Treg细胞胞内分子标记的CD4+CD25+foxp3+T细胞[2-4]。调节性T细胞(Treg)被定义为一群可表达转录因子forkhead boxP3 (foxp3)基因的免疫抑制性淋巴细胞。Foxp3不仅是Treg细胞的分子标记而且对调节性T细胞的功能和生成有着重要作用,即便CD25-的调节性T细胞表达foxp3后也具有免疫抑制功能[5],这与天然调节性CD4+CD25+T细胞相同。Fontenot构建的foxp3突变小鼠中证明了foxp3对于胸腺中的CD4+CD25+调节性T细胞生成很重要[6]。foxp3+与foxp3-细胞相比,对T细胞的刺激反应较弱,其IL-2和IL-10产生减少。数据表明foxp3表达与IL-10的mRNA数目增加有关[7]。然而这类T细胞功能差异是与foxp3表达数目相关,还是和细胞纯化手段或与体内细胞分化相关,目前尚不清楚。
2 人与小鼠Treg细胞表型比较
利用调节性T细胞(Treg)表面分子标记识别不同亚型的调节性T细胞对于研究调节性T细胞的来源、免疫抑制功能和不同亚型之间相互作用关系非常重要。一般情况下人和小鼠的标记都可用CD4+CD25+(IL-2Ra),对于小鼠分选或染色Treg细胞常用CD4+CD25+CD45Rblow标记[8],但是人的Treg细胞上CD25上调表达则大多在受到活化的状态下[9]。人的CD4+CD25hiTreg细胞可表达IL-10,低表达IFN-γ,在体外刺激过的CD4+CD25-细胞可表达foxp3[10-11]。并且人类的全血Treg细胞可用CD127(IL7R)标记即CD4+CD25+CD127low [12],抑制性的CD4+T细胞低表达CD127,该分子与foxp3表达水平相反,与CD25表达无关,CD4+CD25+CD127low/negfoxp3+也可作为nTreg分子标记[13];最近研究表明人与小鼠的Treg细胞虽然foxp3具有同源性,但存在很多差别,例如IL-35只表达在小鼠Treg细胞而人的Treg不表达IL-35[14]。
3 靶向清除Treg细胞及异质性
3.1 治疗策略一:Treg表达的功能性膜蛋白
Treg细胞在很多肿瘤组织中相对较高例如乳腺癌、肺癌、肝癌、胰腺癌、肠癌和恶性黑色素瘤[15],若CD8+T细胞和Treg细胞比例低则预后较差[16]。Treg表达的很多蛋白如CCR4、CD25、CTLA-4、PD-1和GITR,在效应T细胞上也可表达,只是肿瘤组织中Treg细胞可表达这些蛋白而效应T细胞中则呈现低表达[17]。这为阻断Treg免疫抑制功能蛋白提供治疗方案的可行性,但同时意味着如果要阻断Treg表面蛋白CD25、CTLA-4、PD-1和GITR就要把握好阻断剂量、时间和给药方式。人的CD4+foxp3+调节性T细胞具有表型功能异质性,可根据foxp3表达水平和膜表面分子CD45RA和CD25可将分成三种不同的亚型:①效应Treg(efoxp3),分子标记foxp3hiCD45RA-CD25hi,该细胞群为终末分化高度抑制性T细胞;②幼稚型Treg细胞,分子标记foxp3loCD45RA+CD25lo,该群细胞受到抗原刺激后诱导成eTreg细胞;③非Treg细胞,分子标记为foxp 3loCD45RA-CD25lo,该群细胞不具有免疫抑制功能,能分泌促炎因子[18]。
肿瘤组织和外周血中大多数T细胞包括Treg细胞都可表达趋化因子受体CCR4,肿瘤组织之所以可以募集如此多的CCR4+Treg细胞是受到肿瘤浸润性巨噬细胞CCL20的趋化的影响[19]。在健康或癌症患者外周血中CCR4可特异性地表达在终末分化抑制性调节性T细胞CD45RA-foxp3hi CD4+Treg(eTreg)细胞上,但在CD45RA+foxp3loCD4+ naive Treg细胞上无表达,相比外周血,肿瘤浸润性CD45RA-foxp3hi CD4+Treg(eTreg)更具有免疫抑制性功能并在肿瘤组织中高表达,特异性地阻断CCR4可清除掉eTreg,并抑制肿瘤生长[20]。已有研究表明肿瘤组织高表达的IDO和PD-L1可募集Treg细胞,而该募集机制需依赖于IFN-γ和CD8+T细胞表达的CCR4趋化因子[21],Treg细胞是受免疫系统趋化而非癌细胞,PD-L1上调是因为PTEN的活化而Akt信号通路受抑制[22]。既然肿瘤组织中的Treg细胞受CD8+CCR4+T细胞募集,那么为什么肿瘤生长没有受到抑制,可能的原因也许是肿瘤中共刺激分子B7-1和B7-2分子低表达,可能抗原呈递受到抑制,另一方面肿瘤组织大量分泌的IL-10细胞因子可抑制抗原呈递细胞DC活性,使抗原呈递受阻[23]。现在对于黑色瘤的治疗最新的研究药物就是靶向CTLA-4的Ipilimumab,该药物已获欧盟批准用于转移性(晚期)黑色素瘤[24]。其作用机制依赖于肿瘤微环境中巨噬细胞Fcγ受体来清除肿瘤病灶中表达CTLA-4的效应T细胞(Teff)和调节性T细胞(Treg),但是会增加淋巴结中肿瘤特异性CD4+效应T细胞的Treg[25]。GITR共刺激分子可在CD4+T和CD8+T细胞上低表达,但在Treg细胞上高表达[26]。如果阻断GITR或其配体将可抑制Treg细胞的免疫抑制功能。现在用于临床实验的阻断GITR和OX40联用,OX40是组成型表达在Treg细胞的表面分子[27]。
3.2 治疗策略二:直接清除Treg细胞
清除Treg的方法目前有PC61以及denileukin diftitox(Ontak),这些药物都是靶向CD25间接阻断Treg,其中denileukin diftitox(Ontak)在临床实验中用于治疗肾细胞癌和黑色素瘤[28-29]。但是阻断CD25同时也具有副作用,虽然清除了Treg细胞但同时肿瘤中的CD25+效应T细胞也会部分被删除,严重地破坏胰岛素分泌。转基因的DEREG小鼠可以选择性地清除总的foxp3+Treg而不影响CD25+效应T细胞[30]。在Klages等[31]的实验中利用了DEREG小鼠建立了OVA表达的B16黑色素瘤模型,该模型不仅很好地抑制肿瘤生长而且由于Treg-OVA联用即达到了治疗黑色素瘤效果同时又不会引起糖尿病副作用,为黑色素瘤治疗提供了新的研究方案。
雖然清除Treg细胞可促进免疫监视,但会引起自身免疫疾病、干扰效应T细胞作用以及活化髓系DC细胞瞬时表达CD25[32]。目前FDA批准的阻断CD25单克隆抗体药物Daclizumab虽不会介导胞毒活性但是会选择性下调CD25hiCD45RAneg Treg细胞数量并使CD45RAnegTregs细胞重新分泌IFN-γ,在临床实验中将Daclizumab与肿瘤疫苗联用清除Treg细胞,可同时增加CD4+和CD8+T细胞数量,而用于治疗乳腺癌,将Daclizumab与DC疫苗联用时,虽然CD25+T细胞被清除但不会促进DC疫苗的T细胞效应[33]。与另一种通过阻断IL-2R的Denileukin diftitox(Ontak)药物相比,清除IL-2R α-chain(CD25)的Daclizumab药物更为有效[34]。虽然Daclizumab药物作用机制是阻断IL-2信号通路,但是不会影响所有的Treg细胞,而是有选择性的干扰CD45RAnegfoxp3+Treg细胞,并不会影响CD45RA+Treg细胞数量及功能[35]。也许正是因为有CD45RA+Treg细胞存在以致于在阻断CD25+是没有引起自身免疫性疾病。
不同腫瘤组织靶向Treg细胞策略也要有所不同。这是因为Treg细胞异质性,不同组织Treg细胞属性也有所不同,例如皮肤中Treg细胞表达CD103和CCR4,如果清除这些分子信号,将会引起皮肤类的自身免疫疾病[36];在结肠炎中Treg细胞都是CCR7表达会抑制Treg细胞迁移到淋巴结[37];在EAE模型中Treg细胞迁移到Th17细胞介导的炎性环境中依赖于Treg细胞表达CCR6[38]等。卵巢癌中的Treg细胞特征是可表达TH1相关趋化因子受体CXCR3而CCR4+Treg或CCR6+Treg细胞数量在卵巢癌中比较少[39],这也充分显示出了Treg细胞的肿瘤异质性特征。这类卵巢癌中大量募集的CXCR3+Treg细胞可特异性调控I型T细胞免疫效应,特别是在实体瘤中,由于导致对有效抗肿瘤免疫的抑制[40]。人的结肠癌中也发现有大量的Treg细胞增殖促进肿瘤生长,但是这些Treg细胞与健康人的Treg细胞不一样,该群Treg细胞可共表达foxp3+和RORγt+转录因子,也就是说结肠癌中的Treg细胞低表达IL-10但会高表达IL-17[41]。相类似的情况也在小鼠的遗传性息肉疾病中被发现,如果在小鼠息肉疾病中清除foxp3+细胞中的RORγt+转录因子可维持Treg的稳态及抗炎作用及促进免疫监督达到治疗息肉疾病的效果。清除IL-6、IL-23和IL-17或TNF-α将减少息肉的数量但是不影响RORγt+表达,如果清除IL-17将不会影响RORγt+Treg细胞数量还会导致息肉增加[41]。由此推测在肿瘤治疗中尤其是结肠癌如何更好的平衡Treg抗炎和抑炎特性尤为关键:靶向RORγt+Treg细胞也许是潜在的治疗结肠癌的靶点。Blatner等[41]的研究说明治疗结肠癌需要平衡Treg细胞亚群而不是单独直接清除Treg细胞,如果单独地促进IL-17炎性反应也许会加重肿瘤细胞浸润性,靶向RORγt也许会是更好控制Treg细胞数量及炎性反应的更好治疗措施。
综上所述,无论是肿瘤、感染或者是自身免疫性疾病,Treg表型、作用和功能都有不同。单纯的靶向清除Treg细胞并不是最好的治疗策略,它依赖于特异性的疾病背景,清除Treg时还要注意Treg所引发的自身免疫性疾病等问题。
4 结语
虽然现在人们对Treg研究越来越多,但对于Treg是如何发挥免疫抑制功能仍然还有很多未知。首先,对于Treg细胞不稳定原因还没有完全弄清楚,其次靶向Treg细胞除了抑制调节性T细胞功能分子或转录因子foxp3外是否还有其他信号通路可用。如何做到在肿瘤免疫治疗中使Treg细胞既维持免疫稳态又能下调免疫抑制功能达到治疗效果都还需进一步探讨。如果能找到开启Treg分化成TH细胞的开关也许将会对肿瘤免疫治疗带来新的治疗方案。
[参考文献]
[1] Bennett CL,Christie J,Ramsdell F,et al. The immune dysregulation,polyendocrinopathy,enteropathy,X-linked syndrome (IPEX) is caused by mutations of FOXP3 [J]. Nature Genetics,2001,27(1):20.
[2] Hori S,Nomura T,Sakaguchi S. Control of Regulatory T Cell Development by the Transcription Factor Foxp3 [J]. Science,2003,299(5609):1057.
[3] Vignali DA,Collison LW,Workman CJ. How regulatory T cells work [J]. Nature Reviews Immunology,2008,8(7):523.
[4] Rothstein DM,Camirand G. New insights into the mechanisms of Treg function [J]. Current Opinion in Organ Transplantation,2015,20(4):376.
[5] Zhao H,Liao X,Kang Y. Tregs: Where We Are and What Comes Next? [J]. Front Immunol,2017,8.
[6] Fontenot JD,Gavin MA,Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells [J]. Nature Immunology,2003,4(4):330.
[7] Zhou X,Jeker LT,Fife BT,et al. Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity [J]. Journal of Experimental Medicine,2008,205(9):1983-1991.
[8] Deng G,Nagai Y,Xiao Y,et al. Pim-2 Kinase Influences Regulatory T Cell Function and Stability by Mediating Foxp3 Protein N-terminal Phosphorylation [J]. Journal of Biological Chemistry,2015,290(33):20211-20220.
[9] Fontenot JD,Rasmussen JP,Williams LM,et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3 [J]. Immunity,2005,22(3):329-341.
[10] Levings MK,Sangregorio R,Roncarolo MG. Human cd25(+)cd4(+) t regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function [J]. Journal of Experimental Medicine,2001,193(11):1295-1302.
[11] Zhao Y,Guo H,Qiao G,et al. E3 Ubiquitin Ligase Cbl-b Regulates Thymic-Derived CD4+CD25+ Regulatory T Cell Development by Targeting Foxp3 for Ubiquitination [J]. Journal of Immunology,2015,194(4):1639-1645.
[12] Seddiki N,Santnernanan B,Martinson J,et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells [J]. Journal of Experimental Medicine,2006,203(7):1693-1700.
[13] Liu W,Putnam AL,Zhou XY,et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+T reg cells [J]. Journal of Experimental Medicine,2006,203(7):1701-1711.
[14] Collison LW,Workman CJ,Kuo TT,et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function [J]. Nature,2007,450(7169):566.
[15] Nishikawa H. Regulatory T cells in cancer immunotherapy [J]. Rinsho Ketsueki,2014,55(10):2183-2189.
[16] Sato E,Olson SH,Nishikawa H,et al. Intraepithelial CD8+ Tumor-Infiltrating Lymphocytes and a High CD8+/regulatory T Cell Ratio Are Associated with Favorable Prognosis in Ovarian Cancer[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(51):18538.
[17] Gavin MA,Rasmussen JP,Fontenot JD,et al. Foxp3-dependent programme of regulatory T-cell differentiation [J]. Nature,2007,445(7129):771-775.
[18] Miyara M,Yoshioka Y,Kitoh A,et al. Functional delineation and differentiation dynamics of human CD4+T cells expressing the FoxP3 transcription factor [J]. Immunity,2009,30(6):899.
[19] Liu J,Zhang N,Li Q,et al. Tumor-Associated Macrophages Recruit CCR6+Regulatory T Cells and Promote the Development of Colorectal Cancer via Enhancing CCL20 Production in Mice [J]. PLoS One,2011,6(4):e19495.
[20] Sugiyama D,Nishikawa H,Maeda Y,et al. Anti-CCR4 mAb selectively depletes effector-type FoxP3+CD4+ regulatory T cells,evoking antitumor immune responses in humans [J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(44):17945-17950.
[21] Spranger S,Spaapen RM,Zha Y,et al. Up-Regulation of PD-L1,IDO,and Tregs in the Melanoma Tumor Microenvironment Is Driven by CD8+T Cells [J]. Science Translational Medicine,2013,5(200):200ra116.
[22] Song M,Chen D,Lu B,et al. PTEN loss increases PD-L1 protein expression and affects the correlation between PD-L1 expression and clinical parameters in colorectal cancer [J]. PLoS One,2013,8(6):e65821.
[23] Steinbrink K,Jonuleit H,Müller G,et al. IL-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8+,T cells resulting in a failure to lyse tumor cells [J]. Journal of Dermatological Science,1999, 16(5):1634-1642.
[24] Hao C,Tian J,Liu H,et al. Efficacy and safety of anti-PD-1 and anti-PD-1 combined with anti-CTLA-4 immunotherapy to advanced melanoma: A systematic review and meta-analysis of randomized controlled trials [J]. Medicine,2017,96(26):e7325.
[25] Simpson TR,Li F,Montalvoortiz W,et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma [J]. Journal of Experimental Medicine,2013, 210(9):1695-1710.
[26] Shimizu J,Yamazaki S,Takahashi T,et al. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance [J]. Nature Immunology,2002,3(2):135.
[27] Valzasina B,Guiducci C,Dislich H,et al. Triggering of OX40 (CD134) on CD4(+)CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR [J]. Blood,2005,105(7):2845.
[28] Dannull J,Su Z,Rizzieri D,et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells [J]. Journal of Clinical Investigation,2005,115(12):3623-3633.
[29] Mahnke K,Schnfeld K,Fondel S,et al. Depletion of CD4+CD25+ human regulatory T cells in vivo: kinetics of Treg depletion and alterations in immune functions in vivo and in vitro [J]. International Journal of Cancer Journal International Du Cancer,2007,120(12):2723-2733.
[30] Katharina L,Christoph L,Cathy D,et al. Selective depletion of Foxp3+regulatory T cells induces a scurfy-like disease [J]. Journal of Experimental Medicine,2007,204(1):57-63.
[31] Klages K,Mayer CK,Loddenkemper C,et al. Selective depletion of Foxp3+ regulatory T cells improves effective therapeutic vaccination against established melanoma [J]. Cancer Research,2010,70(20):7788-7799.
[32] Rech AJ,Mick R,Martin S,et al. CD25 blockade depletes and selectively reprograms regulatory T cells in concert with immunotherapy in cancer patients [J]. Science Translational Medicine,2012,4(134):134ra62.
[33] Rech AJ,Mick R,Recio A,et al. Phase I study of anti-CD25 mab daclizumab to deplete regulatory T cells prior to telomerase/survivin peptide vaccination in patients (pts) with metastatic breast cancer (MBC)[J]. Journal of Clinical Oncology,2010,28(15_suppl),2508.
[34] de Vries IJ,Castelli C,Huygens C,et al. Frequency of Circulating Tregs with Demethylated FOXP3 Intron 1 in Melanoma Patients Receiving Tumor Vaccines and Potentially Treg-Depleting Agents[J]. Clinical Cancer Research An Official Journal of the American Association for Cancer Research,2011,17(4):841.
[35] Sutmuller RPM,Van DLM,Andrea VE,et al. Synergism of Cytotoxic T Lymphocyte-Associated Antigen 4 Blockade and Depletion of Cd25+Regulatory T Cells in Antitumor Therapy Reveals Alternative Pathways for Suppression of Autoreactive Cytotoxic T Lymphocyte Responses [J]. Journal of Experimental Medicine,2001,194(6):823.
[36] Dudda JC,Perdue N,Bachtanian E,et al. Foxp3+ regulatory T cells maintain immune homeostasis in the skin [J]. Journal of Experimental Medicine,2008,205(7):1559-1565.
[37] Schneider MA,Meingassner JG,Martin L,et al. CCR7 is required for the in vivo function of CD4+CD25+regulatory T cells [J]. Journal of Experimental Medicine,2007,204(4):735.
[38] Yamazaki T,Yang XO,Chung Y,et al. CCR6 Regulates the Migration of Inflammatory and Regulatory T Cells [J]. Journal of Immunology,2008,181(12):8391-8401.
[39] Redjimi N,Raffin C,Raimbaud I,et al. CXCR3+ T regulatory cells selectively accumulate in human ovarian carcinomas to limit type I immunity [J]. Cancer Research,2012,72(17):4351-4360.
[40] Ohtani H,Yoshie O. Morphometric analysis of the balance between CXCR3+ T cells and FOXP3+ regulatory T cells in lymphocyte-rich and conventional gastric cancers [J]. Virchows Archiv An International Journal of Pathology,2010,456(6):615.
[41] Blatner NR,Mulcahy MF,Dennis KL,et al. Expression of RORγt Marks a Pathogenic Regulatory T Cell Subset in Human Colon Cancer [J]. Science Translational Medicine,2012,4(164):164ra159.