APP下载

一类具Holling—Ⅳ型功能反应函数的动力学分析

2018-06-02路杰李明政任璐

价值工程 2018年15期

路杰 李明政 任璐

Dynamic Analysis of a Holling-Ⅳ Functional Reaction Function: Pulse Predator-Prey Model

摘要:通过讨论一类具Holling-Ⅳ型功能反應函数的脉冲捕食-食饵模型的动力学行为,对系统1的计算得出其无害虫(捕食者灭绝)周期解的存在性及解的具体表达形式,全局吸引及持久和全局渐近吸引的充分条件,为生物害虫的防治提供理论依据。

Abstract: By discussing the dynamic behavior of a kind of impulse predator-prey modelwith Holling-Ⅳ type functional response function, the existence of theperiodic solution of the pest-free (predator extinction) and the specificexpression form of the solution are calculated for the system 1. The fullconditions of global attraction and long-lasting and global asymptotic attractionprovide a theoretical basis for the prevention and control of biological pests.

关键词:Holling-Ⅳ型功能反应函数;捕食-食饵模型;全局吸引持久;全局渐近吸引

Key words: Holling-IVtype functional response function;predator-prey model;global attraction persistence;global asymptoticattraction

中图分类号:O175 文献标识码:A 文章编号:1006-4311(2018)15-0202-04

由于脉冲微分方程应用于害虫防治方面和Holling-IV型功能反应函数对生物种群[1]的动力学行为的重大影响,本文主要研究按常数比率周期地释放或存储捕食者、喷洒农药的具Holling-IV型功能反应函数的捕食-食饵模型:

结论:本文研究了一类具Holling-IV型功能反应函数的脉冲捕食–食饵模型,利用引理2我们知道当t足够大时,系统1的任一解是一致有上界的。此外,还得到了系统1的无害虫(捕食者灭绝)周期解的存在性及解的具体表达形式,全局吸引及持久的充分条件。通过定理1,得系统1的无害虫(捕食者灭绝)周期解全局渐近吸引的充分条件,为生物害虫的防治提供理论依据。

参考文献:

[1]徐光启.农政全书.卷四:玄扈先生井田考[M].

[2]E. C. Pielou. Mathematical Ecology[M]. John Wiley &: Sons, New York, (1977).

[3]V. Lashmikantham, D. D. Baino, P. S. Simenov. Theorey of Impulsive Differential equations [M]. World Scientific, 1989.

[4]D. D. Bainov, P. S. Simeonov. Impulsive Differential Equations: Periodic Solutions and Applications [M]. Longman, New York, 1993.

[5]S. W. Zhang, et al. The periodic n-species Gilpin-Ayala competition system with impulsive effect[J], Chaos Solitons & Fractals 26 (2005) 507-517.