APP下载

人工智能教育应用的现状分析、典型特征与发展趋势

2018-05-14梁迎丽刘陈

中国电化教育 2018年3期
关键词:教育应用深度学习人工智能

梁迎丽 刘陈

摘要:新技术浪潮汹涌而至。大数据、并行计算和深度学习驱动人工智能技术飞速发展,并重塑教育新形态。人工智能教育应用现状与发展趋势研究有助于推动技术与教育的深度融合发展。该文从技术发展的角度回顾了人工智能的发展历程,概述了人工智能发展史上的三次浪潮,揭示了人工智能的三大要素与驱动力,阐述了人工智能在教育领域中的四大具体应用形态,分析了人工智能教育应用的五大典型特征,并指出其未来的发展趋势,最后归纳并构建了人工智能与教育的融合创新发展体系,旨在为我国人工智能与教育的融合发展提供理论指导。

关键词:人工智能;深度学习;ITS;自动化测评;教育应用

中图分类号:G434 文献标识码:A

大数据应用方兴未艾,人工智能已悄然而至。人工智能已逐渐渗透到社会的各个领域,引起经济结构、社会生活和工作方式的深刻变革,并重塑世界经济发展的新格局。人工智能在全球发展中的重要作用已引起国际范围内的广泛关注和高度重视,多个国家已将人工智能提升为国家战略,出台了相关政策和规划,力争抢占科技的制高点。美国先后颁布了《为人工智能的未来做好准备》和《国家人工智能研发战略规划》,欧盟委员会制定了SPARC机器人创新计划,英国和德国政府分别制定了“现代工业战略”和“工业4.0”计划,日本政府规划了人工智能产业化路线并部署了超智能社会。我国政府于2017年7月8日发布了《新一代人工智能发展规划》,指明了我国发展人工智能的重点任务,并对发展规划进行了全面部署,这是我国“抢占信息化制高点,增加国际话语权”的重要战略举措。

在人工智能浪潮的冲击和影响下,教育领域正在经历一场深层次变革,技术正在重塑教育的新形态。在此背景下,研究如何应用新技术推动教育事业的发展具有重要意义。教育技术领域已经涌现出一批相关研究,集中表现为人工智能内涵、技术与应用等内容的概述,如探讨了人工智能教育应用的热点问题;侧重对美国政府两个人工智能报告的解读,分析了教育人工智能的内涵、关键技术与应用趋势;探索了机器学习在教育中的应用;分析了人工智能与STEM等课程的融合;构筑了人工智能+教育的生态系统。已有研究揭开了人工智能的神秘面纱,为后续研究奠定了基础。然而,技术在其产生、发展与应用中存在一定的客观规律。人工智能发展到今天,其原因何在?教育领域中的人工智能有何不同?这些问题驱动着对人工智能的进一步深入研究。因此,有必要回顾人工智能的产生与发展历程,立足于人工智能技术在教育领域中的应用现状,剖析其在教育应用中的典型特征,并把握其未来发展趋势,为推动我国人工智能与教育的融合创新发展提供理论指导。

一、人工智能的发展历程与核心驱动力

(一)人工智能的三次浪潮

人工智能起源于1956年美国达特茅斯学院举办的夏季学术研讨会。在这次会议上,达特茅斯学院助理教授John McCarthy提出的“人工智能(Artificial Intelligence,AI)”这一术语首次正式使用。之后,人工智能的先驱艾伦·图灵提出了著名的“图灵测试”:在人机分隔的情况下进行测试,如果有超过30%的测试者不能确定被试是人还是机器,那么这台机器就通过了测试,并被认为具有人工智能。图灵测试掀起了人工智能的第一轮浪潮。在人工智能研究方法上,以抽象符号为基础,基于逻辑推理的符号主义方法盛行,其突出表现为:在人机交互过程中数学证明、知识推理和专家系统等形式化方法的应用。但在电子计算机诞生的早期,有限的运算速度严重制约了人工智能的发展。

20世纪80年代,人工智能再次兴起。传统的符号主义学派发展缓慢,有研究者大胆尝试基于概率統计模型的新方法,语音识别、机器翻译取得了明显进展,人工神经网络在模式识别等领域初露端倪。但这一时期的人工智能受限于数据量与测试环境,尚处于学术研究和实验室中,不具备普遍意义上的实用价值。

人工智能的第三次浪潮缘起于2006年Hinton等人提出的深度学习技术。ImageNet竞赛代表了计算机智能图像识别领域最前沿的发展水平,2015年基于深度学习的人工智能算法在图像识别准确率方面第一次超越了人类肉眼,人工智能实现了飞跃性的发展。随着机器视觉研究的突破,深度学习在语音识别、数据挖掘、自然语言处理等不同研究领域相继取得突破性进展。2016年,微软将英语语音识别词错率降低至5.9%,可与人类相媲美。如今,人工智能已由实验室走向市场,无人驾驶、智能助理、新闻推荐与撰稿、搜索引擎、机器人等应用已经走进社会生活。因此,2017年也被称为人工智能产业化元年。

(二)人工智能的三大要素与核心驱动力

回顾人工智能的发展历程,在三次浪潮的浮浮沉沉中,人工智能不断突破并接近自身的目标:能够根据对环境的感知,做出合理的行动,从而获得最大收益。从人工智能的发展历程来看,不难看出,运算力、数据量和算法模型是人工智能的三大要素。如图1所示,人工智能具体应用的实现,如语音识别和图像识别等,需要先赋予机器一定的推理能力,然后它才能做出合理的行动。而这种推理能力,源自于大量的应用场景数据集。通过使用大量的数据对算法模型进行一定的训练,机器才能够根据算法做出具有类人智能的判断、决策和行为。奠定了的坚实基础。

人工智能在逐步发展完善自身理论与方法,以及寻求外部动力的过程中螺旋式上升发展。从图灵测试理论的提出到无人驾驶汽车自动上路行驶,从实验室的“封闭世界”到外部“开放世界”的安全过渡,大数据、云计算和深度学习这三大核心驱动力,共同促成了人工智能的突破性进展。

1.大数据

人工智能建立于海量优质的应用场景数据基础之上。训练数据的数量、规模和质量尤为重要,丰富的海量数据集是算法模型训练的前提。甚至有观点认为,拥有更海量的数据比拥有更好的算法更重要。受益于移动互联网的发展和多样化智能终端的普及,以及物联网的发展和传感器的大量应用,源自各种设备及互联网应用的数据急剧增加,大数据迅速发展。大数据处理技术能在很大程度上提高人工智能训练数据集的质量,并能优化存储和管理标注后的数据。因此,可以说,海量数据是机器智能的源泉,大数据有力地助推了机器学习等技术的进步,在智能服务的应用中释放出无限潜力。

2.并行计算

人工智能发展过程中,有限的运算能力曾是制约人工智能发展的主要瓶颈。从电子计算机出现的早期至今,机器的运算处理能力不断提升,为人工智能的发展提供了极大的动力支持。云计算在虚拟化、动态易扩展的资源管理方面的优势,GPU等人工智能专用芯片的出现,奠定了人工智能在大规模、高性能并行运算的软硬件基础,推动数据处理规模和运算速度的指数级增长,极大地提高了算法执行效率和识别准确率。

3.深度学习

数据和硬件是人工智能的基础,而算法是人工智能的核心。人工智能发展史上,两个转折点尤其值得关注。一个是研究方法由符号主义转向统计模型,自此开辟了人工智能发展的新路径;另一个是深度学习凭借绝对优势,颠覆了其他算法设计思路,突破了人工智能的算法瓶颈。深度学习即深度网络学习,它受人类大脑神经结构的启发,由一组单元组成,每个单元借由一组输入值而产生输出值,该输出值又继续被传递到下游神经元。深度学习网络通常使用许多层次,且在每层使用大量单元,以便识别海量数据中极其复杂和精确的模式。深度学习将人类程序员从构建模型的复杂活动中解放了出来,并提供一种更优化、更智能的算法,能够自动从海量数据库中进行自我学习,自动调整规则参数并优化规则和模型,识别准确率极高。自学习状态已成为机器学习的主流方法。

二、人工智能教育应用的现状分析

逻辑推理、知识表示、规划和导航、自然语言处理和感知是人工智能的主要问题空间。在教育问题解决与应用中,人工智能主要有四大应用形态:智能导师系统、自动化测评系统、教育游戏与教育机器人。

(一)智能导师系统

智能导师系统(Intelligent Tutoring System,ITS)由早期的计算机辅助教学发展而来,它模拟人类教师实现一对一的智能化教学,是人工智能技术在教育领域中的典型应用。典型的智能导师系统主要由领域模型、导师模型和学习者模型三部分组成,即经典的“三角模型”。领域模型又称为专家知识,它包含了学习领域的基本概念、规则和问题解决策略,通常由层次结构、语义网络、框架、本体和产生式规则的形式表示,其关键作用是完成知识计算和推理。导师模型决定适合学习者的学习活动和教学策略,学习者模型动态地描述了学生在学习过程中的认知风格、能力水平和情感状态。事实上,ITS的导师模型、学习者模型和领域模型正是教学三要素——教师、学生、教学内容的计算机程序化实现,其互相关系如图2所示。其中,领域模型是智能化实现的基础,教学模型则是领域模型和学生模型之间的桥梁,其实质是做出适应性决策和提供个性化学习服务。教学模型根据领域知识及其推理,依据学习者模型反映的学习者当前的知识技能水平和情感状态,做出适应性决策,向学习者提供个性化推荐服务,如图3所示。

ITS尊重学习者的个性特征,如学习风格、兴趣、特长等,满足学习者的个性化需求。ITS根据学习者模型所刻画的个性特征,向其提供个性化的学习路径、学习资源和学习同伴等资源。美国国防高级研究计划署赞助开发的一种使用人工智能来模拟专家和新手之间的互动的数字导师系统,能够帮助学习者获得所需的技能,将海军新兵训练成为技术技能专家所需的时间从几年减少到几个月。

近年来,情感、元认知和动机等研究越来越受重视,神经科学、认知科学、心理学和教育学的研究表明,情感状态在一定程度上影响了学生的学习效率和态度,消极的情感状态会阻碍学生的思考过程,而积极的情感为学生的问题解决和创新进步提供有利的条件。然而,情感缺失一直是ITS中存在的突出问题。ITS通过与学生的交互实现情感的感知、识别、调节与预测。根据学生情感的来源,如面部表情、声音等可察因素,及可测量的行为等,采用传感器等技术获取数据,根据相关科学模型,应用人工智能的方法与技术,综合运用心理学和认知科学等知识进行情感推理,也称之为情感识别或情感计算。研究表明,系统通过对话的方式对学生进行的情感调节具有积极效果。

ITS中教学模型模拟人类教师实现一对一个性化教学的过程即是适应性教学策略选取和个性化资源推荐算法的实现过程,适应性教学策略选择是资源个性化推荐的前提。在适应性教学策略的选择方面,这种适应性表现为多个层次:从适应性应答学生的表现,适应学生的知识水平,帮助学生取得具体目标,到对学生的情感状态做出适应性干预调节,提供适应学生元认知能力的帮助。事实上,ITS要模拟人类教师凭借经验进行决策的复杂过程,具有一定难度。而人工智能引发了教育领域的数据革命和智能化革命,数据驱动的智慧教学与智能决策正在成为教育教学的新范式。

(二)自动化测评系统

评价是教学活动的重要组成部分。自动化测评技术的应用引发了评价方法和形式的深刻变革。自动化测评系统能够实现客观、一致、高效和高可用的测评结果,提供即时反馈,极大地减轻教师负担,并为教学决策提供真实可靠的依据。

1.ICT技能与程序作业的自动化测评系统

ICT技能培训与程序设计是计算机教育领域中的重要内容。ICT技能是信息时代的基本素养。文字编辑、电子表格数据处理、收发邮件、制作演示文稿和网页等技能的学习和培训过程中,ICT自动化测评系统所构建的信息模型通过信息获取、知识推理和综合评价三个步骤,动态跟踪用户的操作行为,并对操作过程进行诊断、评价和反馈,极大地提高了学习效率。

计算机程序设计是培养计算思维的有效途径,程序作业通常由学生上机完成。程序设计语言有其自身的语法规则。动态程序测评能够获取程序的编译和运行时信息,分析程序的行為和功能,从程序的功能和执行效率出发,展开综合评价。而静态程序测评,如图4所示,首先对程序代码进行信息提取,然后将程序进行中间形式表示,预测程序所有可能的执行路径与结果,利用知识发现技术实现对程序的评价。目前,国内外已经实现自动化测评的程序设计语言包括Java、C/C++、Python和Pascal,以及汇编语言、脚本语言和数据库查询语言等。

中间形式表示

2.自动化短文评价系统

短文写作是当前很多标准化测试的基本要求。随着人工智能技术的发展,自动化短文评价(Automated Assessment nf Essays and Short Answers)运用自然语言处理技术和机器学习等技术实现对短文本的计算分析和语义理解。美国教育考试服务中心(Educational Testing Service,ETS)设计和举办多项大型标准化考试,如TOEFL、SAT、GRE等。ETS始终致力于测评理论、方法和技术的研究,尤其在自动化测评领域一直处于前沿。目前,ETS已经实现了语音、短文、数学等领域的自动化评价与反馈。在其产品中,TextEvaluator是一种全自动化的基于Web的技术工具,旨在辅助教师、教材出版商和考试开发人员选取用于学习和测试的文本段落。TextEvaluator超越了传统的句法复杂性和词汇难度的可读性维度,解决了由于内聚性、具体性、学术导向、论证水平、叙述程度和交互式对话风格的差异而导致的复杂性变化。另外,E-rater引擎用于学生作文的自动化评分和反馈。在设定了评价标准之后,学生可以使用E-rater的反馈来评估他们的写作技巧,并确定需要改进的地方。教师可用来帮助学生独立发展自己的写作技巧,并自动获得建设性的反馈意见。除了提供短文的整体得分,E-rater还提供关于语法、写作风格和组织结构等的实时诊断和反馈。

3.自动化口语测评系统

自动化口语评价运用语音识别等技术实现了多种语言口语语音的自动化测试与评价,图5展示了基于移动智能终端和测评云服务的口语学习系统架构,其中声学模型和语言学模型是语音识别的关键。ETS的SpeechRater引擎是英语口语测评方面应用最广泛的测评引擎之一。其测评任务并不限定范围和对象,开放性是其最大特点。该引擎可以用于提高发音可靠性、语法熟练度和交际的流利程度。SpeechRater引擎使用自动语音识别系统处理每个响应,该系统特别适用于母语非英语的学习者。基于该系统的输出,使用自然语言处理和语音处理算法来计算在许多语言维度上定义语音的一组特征,包括流利性、发音、词汇使用、语法复杂性和韵律。然后将这些功能的模型应用于英语口语测评,最终得出分数并提供反馈建议。

对于我国的英语教学来说,言语环境匮乏是当前制约学生英语口语学习的最大障碍,口语评价难度较大且时效性差更加加剧了英语口语教与学的难度。科大讯飞依托语音技术的强劲优势,所开发的听说智能测试系统、英语听说智能考试与教学系统和大学英语四六级口语考试系统可以用于促进英语听说训练和自动化测试与反馈。另外,普通话模拟测试与学习系统和国家普通话智能测试系统在推广普通话及相关考试方面发挥着重要作用。

(三)教育游戏

游戏智能是人工智能研究内容的一部分。运用深度学习技术的AlphaGo大胜人类职业围棋选手,标志着人工智能技术的又一次飞跃。在教育应用领域中,计算机和视频游戏不仅仅提供一种娱乐方式,更能推动玩家在游戏中获得新的知识和技能。教育游戏具有明确、有意义的目标,多个目标结构,评分系统,可调节的难度级别,随机的惊喜元素,以及吸引人的幻想隐喻。教育游戏通过构建充分开放的游戏框架和环境,提供一种观察和认识世界的新视角。益智游戏玩家不仅使用游戏工具解决问题,而且还使用自己的知识和技能。在角色扮演中,玩家必须在恶劣的环境中生存和获得新的知识。在所有这些情况下,对周围空间的详细研究等活动都是对玩家的注意力、耐心、专业知识和逻辑思维的考验与锻炼。例如,芝加哥科学与工业博物馆的网站允许游客玩“生存模式”的游戏。该游戏专为青少年设计,专注于研究在极端情况下发生在人体内的主要身体系统的变化过程。游戏玩家不仅克服了许多障碍,还了解了人体的结构。另外,青少年学会使用鼠标和手写笔学习撰写简单的生存搜索等机器人程序。

(四)教育机器人

教育机器人在教学中的应用越来越普遍。一方面,教育机器人可以培养和发展学生的计算思维能力。越来越多的学校正在引进教育机器人作为创新的学习环境,用于提高和建立学生的高层思维能力,作为提高学生学习动机和抽象概念理解的补充工具,帮助学生解决复杂的问题。另一方面,教育机器人具有多学科性质,提供建设性的学习环境,有助于学生更好地理解科学知识,在科学、技术、工程和数学(STEM)教育方面发挥着重要作用。在STEM教学方面,机器人可以协助教师实现工程和技术概念的真实应用,将现实世界中的科学和数学概念进行具体化,有助于消除科学和数学的抽象性。事实上,各种教育机器人的应用推动了科学、技术、工程和数学在教学的改进,机器人固有的灵活性使其在STEM不同教育场景中的应用取得了成功。此外,使用机器人教学有助于增强批参与者的判性思维,促进团队合作,提高沟通交流能力和创新能力。

三、人工智能教育应用的典型特征与发展趋势

人工智能通过知识表示、计算与理解,可以模拟人类教师实现个性化教学;依托于问题空间理论,实现知识和技能的自动化测量与评价;借助于自然语言处理与语音识别技术,解决文本和口语语音的词法分析、语法判别和语义理解;通过教育游戏和教育机器人,以智能增强的方式赋予“寓教于乐”以新的内涵。进一步深入分析人工智能教育应用的典型特征,并把握其未来发展趋势是推动人工智能教育应用的必要条件。

(一)五大典型特征

人工智能在教育应用中的典型特征突出体现在以下五个方面:

1.智能化

智能化是教育信息化的發展趋势之一。海量数据蕴藏着丰富的价值,在知识表示与推理的基础上,构建算法模型,借助于高性能并行运算可以释放这种价值与能量。未来,在教育领域将会有越来越多支持教与学的智能工具,智慧教学将给学习者带来新的学习体验。在线学习环境将与生活场景无缝融合,人机交互更加便捷智能,泛在学习、终身学习将成为一种新常态。

2.自动化

与人相比,人工智能更擅长记忆、基于规则的推理、逻辑运算等程序化的工作,擅长处理目标确定的事务。而对于主观的东西,如果目标不够明确,则较为困难。如数学、物理、计算机等理工科作业,评价标准客观且容易量化,自动化测评程度较高。随着自然语言处理、文本挖掘等技术的进步,短文本类主观题的自动化测评技术将日益成熟并应用于大规模考试中。教师将从繁重的评价活动中解放出来,从而有精力专注于教学。

3.个性化

基于学习者的个人信息、认知特征、学习记录、位置信息、媒体社交信息等数据库,人工智能程序可以自学习并构建学习者模型,并从不断扩大更新的数据集中调整优化模型参数。针对学习者的个性化需求,实现个性化资源、学习路径、学习服务的推送。这种个性化将越来越呈现出客观、量化等特征。

4.多元化

人工智能涉及多个学科领域,未来的教学内容需要适应其发展需要,如美国已经高度重视STEM学科的学习,我国政府高度重视并鼓励高校扩展和加强人工智能专业教育,形成“人工智能+X”创新专业培养模式。从人才培养的角度分析,学校教育应更强调学生多元能力的综合性发展,以人工智能相关基础学科理论为基础,提供基于真实问题情境的项目实践,侧重激发、培养和提高学生的计算思维、创新思维、元认知等能力。

5.协同化

短期来看,人机协同发展是人工智能推动教育智能化发展的一种趋势。从学习科学的角度分析,学习是学习者根据自己已有的知识去主动构建和理解新知识的过程。对于人工智能来说,新知识是它们所无法理解的,所以这种时候学习者就需要教师的协同、协助和协调。因此在智能学习环境中,教师的参与必不可少,人机协同将是人工智能辅助教学的突出特征。

(二)发展趋势

人工智能在教育中的应用特征为推动人工智能与教育的融合创新发展指明了方向。在当前国家大力发展人工智能的政策引领下,不仅要从本质上认识人工智能的核心要素与驱动力,把握其典型应用特征,还要能够顺应其发展趋势。以数据驱动引领教育信息化发展方向,以深化应用推动教育教学模式变革,以融合创新优化教育服务供给方式,将是人工智能教育应用的未来发展趋势,也是人工智能时代教育发展的鲜明任务和重要机遇。

1.以数据驱动引领教育信息化发展方向

人工智能技术在教育领域的深入应用,推动着信息技术与教育的融合创新发展。纵观人工智能在教育领域的应用发展历程,从早期基于规则的知识表示与推理,到今天基于深度学习的自然语言处理、语音识别与图像识别,“智能”的习得已经由早期的专家赋予演变为机器主动学习获取。除了算法模型的显著改进,作为模型的训练数据集,大数据为人工智能添加了十足的动力燃料。大数据智能以数据驱动和认知计算为核心方法,从大数据中发现知识,进而根据知识做出智能决策。数据已经成为产业界争夺的焦点,数据驱动的智能决策与服务已经成为学术界研究的热点。在教育领域,数据可以解释教育现象,也可以揭示教育规律,并能够预测未来趋势。数据驱动的方法推动着教育研究从经验主义走向数据主义和实证主义。因此,教育数据革命已经到来。数据驱动的人工智能将引领教育信息化发展的新方向。

2.以深化应用推动教育教学模式变革

人工智能在教育领域取得如此大的成就,技术引领是关键。同时,不难看出,人工智能在教育领域的应用具有较强的场景性,也就是说,这种应用是针对教育实践活动中的具体问题而展开的,具有明确的问题空间和目标导向。也因此,这种由应用驱动的技术与教育的融合发展,是技术在教育领域中的一種深入应用。如自动化口语测评中,针对具体的语言语音对象,在语音识别技术的基础上,应用语音测评技术实现对学生口语的自动化评价。人工智能技术在教育领域的深化应用,创设了强感知、高交互、泛在的学习环境,为学生的知识建构活动提供了良好条件,为创新型教学模式的发现和运用提供了空间。

3.以融合创新优化教育服务供给方式

人工智能在教育领域中的应用实现了跨学科、跨领域和跨媒体的融合创新。人工智能与神经科学、认知科学、心理学、数学等相关基础学科的交叉融合,联合推动了教育人工智能技术的发展和应用。同时,人工智能本身的发展,离不开人工智能教育和培训。而这种教育更需要建立于STEM学科融合的基础之上。人工智能与教育两者相辅相成,互相促进。跨领域推理融合了多个领域的数据与知识,奠定了强大的智能基础。跨媒体感知计算以智能感知、场景感知、视听觉感知、多媒体自主学习等理论方法为依托,旨在实现超人感知和高动态、高纬度、多模式分布式大场景感知。人工智能技术与教学内容、教学媒体和知识传播路径的多层次融合,突破了传统教育方式的限制,提供跨学科、跨媒体、跨时空的智能教育服务供给,是建设“人人皆学、处处能学、时时可学”学习型社会的有效途径。

基于上述人工智能在教育中的主要应用与典型特征分析,本文提出如图6所示的人工智能与教育融合发展体系。在大数据和深度学习等技术的重要支撑下,人工智能关键技术的突破,推动了人工智能在教育领域中的多样化应用形态,并提供了更智能的学习服务与体验,呈现出智能化、自动化、个性化、多元化和协同化的特征与趋势。在服务监控与治理的保障下,以政策为引领,牢牢把握“应用驱动”的基本原则,进而展开理论和技术研究,是推动人工智能与教育融合创新发展的重要路径。

四、结束语

本文回顾了人工智能的发展历程,揭示了人工智能的三大内部要素与外部驱动力。结合人工智能技术在教育中的四大具体应用形态,深入分析了人工智能教育应用的五大典型特征,并据此指出其未来的发展趋势,最终将上述内容进行归纳总结,构建了人工智能与教育融合创新发展体系,旨在为我国人工智能与教育的融合发展提供理论指导。

人工智能技术正在推动教育信息化的快速发展。然而,在推进人工智能教育应用的过程中,还有很多具体问题值得探讨,亟待解决。如训练人工智能算法模型需要开放教育大数据,但会涉及到个人隐私暴露等信息安全问题;相关技术在教学与考试中的应用,可能需要政策和制度的同步完善;人工智能在提高教学效率和推动教育公平的同时,是否也会造成数字鸿沟的增大;未来的教师和学生、教育研究、教育管理和规划等该如何适应人工智能带来的诸多变革等。面对全球智能化发展趋势及其挑战,教育必须积极主动地调整自身发展,借助现有技术的优势与潜能,实现服务社会经济发展的功能。

猜你喜欢

教育应用深度学习人工智能
2019:人工智能
人工智能与就业
数读人工智能
MOOC与翻转课堂融合的深度学习场域建构
大数据技术在反恐怖主义中的应用展望
深度学习算法应用于岩石图像处理的可行性研究
基于深度卷积网络的人脸年龄分析算法与实现
下一幕,人工智能!
游戏教学法在幼儿教育中的应用
论微博在高校思想政治教育中的应用