采用鼓风机吹落花瓣防治草莓果实灰霉病的研究
2018-05-14韩永超张庆华过聪
韩永超 张庆华 过聪
摘要 灰霉病是草莓生產过程中的主要病害,亟需开发实用的草莓灰霉病绿色防控技术,保障草莓持续健康发展。本研究从第一花序盛花期至果实大量成熟,每周使用鼓风机将发育中果实(花托)上残留的衰老花瓣吹落。在第一、二次吹落花瓣前后分别统计每朵花上花瓣数量,计算每朵花平均花瓣数和花瓣吹落效率。49 d后分别调查花瓣吹落处理区与对照区果实灰霉病发病率。结果显示:草莓盛花期花瓣不易脱落,在盛花期一周后使用鼓风机吹落花瓣的效率较高。连续7次使用鼓风机清理后,对照区果实灰霉病平均发病率(8.27%)显著高于处理区(1.52%)。在草莓第一批果实发育期间使用鼓风机吹落衰老花瓣能显著降低果实灰霉病发病率,该方法对果实灰霉病防效为81.56%。
关键词 草莓; 花瓣; 灰霉病; 鼓风机; 弱寄生
中图分类号: S 436. 68
文献标识码: B
DOI: 10.16688/j.zwbh.2017465
Abstract Strawberry (Fragaria×ananassa Duch.) is an important fruit widely planted in China. Gray mold is very harmful to the strawberry production. Development of practical green control method for gray mold in strawberry will reduce the use of chemical pesticides in strawberry production, reduce pesticide residues in strawberry fruits and ensure the sustainable and healthy development of strawberry industry. Strawberry cultivar ‘Sweet Charlie was used in this study, and the test area was evenly divided into two parts, one for the petals treat area (PT) and the other for the control area (CK). In PT, a blower was used to blowing residual senescence petals away from the developing strawberry fruit (receptacle). The CK was not treated with blower. The PT was treated with a blower once a week, from the flowering period of first inflorescence to the fruits mature period. The number of petals on each flower was counted before and after the petal blowing treatment, and the average number of petals per flower and the rate of petal blow-down were calculated. When fruit of the first inflorescences were mature (after 49 days), the incidence of Botrytis fruit rot in PT and CK was investigated respectively. The result indicated a large number of senescent petals can be blow away from developing fruits (receptacle) when using a blower against the strawberry petals during the flowering season. Because of the high percentage of fresh petals in full flowering stage, the rate of blow-off of petals was 7.83% after blow-up. But the blow-off rate of petals one week later after full flowering stage was 17.54%, which is significantly higher than that at full flowering stage. After cleaning senescent petals with blower for 7 times, the average incidence ofBotrytisfruit rot in control area (8.27%) was significantly higher than that in the treatment area (1.52%). The use of a blower in a greenhouse could significantly reduce the incidence of fruit gray mold disease and the control efficacy reached 81.56%.
Key words strawberries; petals; Botrytis fruit rot; blower; weak parasite
3 結论与讨论
分生孢子是植物病害流行的侵染源,初侵染后会在罹病组织上大量形成分生孢子,分生孢子通过气流、雨水等方式传播,为病害再侵染和田间病害流行提供大量菌源[19-20]。本研究在设施大棚内使用鼓风机清理草莓花瓣,会导致病原菌孢子飞散,可能会加重病害传播。炭疽病、灰霉病、白粉病是我国草莓生产上的三大主要病害[21-22]。草莓炭疽病由刺盘孢属真菌Colletotrichum spp.侵染引起。炭疽菌的最适生长温度为28~30℃,最高和最低生长温度分别为42℃和6℃[22]。炭疽病是典型的高温病害,主要在夏季草莓育苗期及缓苗期发生,冬季低温环境不利于炭疽病发生[21]。草莓白粉病由羽衣草单囊壳菌Sphaerotheca aphanis侵染引起。温度是影响白粉病发病的关键因子。白粉病发生的温度范围为0~25℃,其中最适温度为15~20℃,25℃以上病害发生受到抑制[23],连续10 d温度高于25.53℃即可终止此病害的病程[24]。草莓白粉病的初侵染源主要来自夏季繁育的生产苗,而我国南方地区夏季持续高温不利于白粉菌孢子越夏,因此,草莓白粉病主要在我国北方地区发生,南方地区偶有发生[25]。灰霉病是草莓结果期的主要病害,在我国草莓种植区普遍发生。灰葡萄孢主要通过分生孢子在田间传播,自然情况下草莓果实上灰葡萄孢的带菌率很高[13],但是灰葡萄孢在健康组织中保持潜伏或休眠状态,被侵染的组织通常没有症状,一直到果实采收都不会发病[12]。在本研究中,在持续使用鼓风机7次后,大棚内草莓炭疽病发病率没有显著升高;同时,使用鼓风机清理果实上残留的花瓣能够显著降低果实灰霉病发病率,对草莓果实灰霉病防效为81.56%(图3)。因此,通过综合分析,在我国南方地区,确认大棚内没有白粉病发生的前提下可以使用鼓风机清理草莓花瓣防治草莓果实灰霉病。
花是植物生殖器官,花瓣具有吸引授粉昆虫传粉的作用,过早地将花瓣吹落可能会影响授粉导致畸形果比例增加。花瓣脱落涉及细胞结构、生理生化代谢、转录和转录后调节等多个层面的变化,既受植物自身发育的调节,也受外界环境因素的影响[26]。草莓花瓣脱落快慢主要与品种有关, ‘晶瑶现蕾后7 d花瓣自然脱落率高达99.0%,而‘甜查理现蕾后7 d花瓣自然脱落率只有26.0%[18]。自然情况下花瓣脱落快的品种,无需额外采用人工清理花瓣,而在我国南方地区广泛种植的‘甜查理花瓣脱落慢,需要采用人工清理花瓣以降低果实灰霉病发病率。本研究以草莓品种‘甜查理为材料,发现新鲜花瓣不易被吹落,授粉完成后衰老的花瓣则容易被吹落。乙烯是多种植物中调节花瓣衰老的关键信号物质,正常植物花中乙烯含量很低[27-30]。新鲜花瓣与花托结合紧密不易脱落,花中的乙烯含量在授粉完成后迅速上升,促进离层形成和花瓣脱落[16, 31]。盛花期草莓新鲜花瓣比例高,使用鼓风机清理后只有7.83%的花瓣被吹落,而一周后再次清理则能吹落17.54%的花瓣(表 1)。因此,在实际使用过程中不需要担心吹风使新鲜花瓣提前脱落,导致畸形果率增加的问题。从清理效率和节约人工的角度考虑,在实际使用过程中应在大部分花瓣开始衰老后进行花瓣清理。同时,由于草莓是连续开花,每隔一段时间就需要清理一次花瓣。目前并没有用于棚内吹花瓣的专用机械,本研究中我们使用经过改装的农用喷粉机清理草莓花瓣,在实际使用过程中仍会有一些衰老的花瓣无法被清理。机械、天气、湿度、温度等都可能影响花瓣清理效率,后续研究中有必要对该技术进一步优化。
本研究结果表明,针对花瓣脱落慢的草莓品种‘甜查理,在第一批果实发育期间使用鼓风机将草莓果实上的衰老花瓣吹落,能显著降低果实灰霉病发病率。
参考文献
[1] 农业部.2015年全国各地蔬菜、西瓜、甜瓜、草莓、马铃薯播种面积和产量[J].中国蔬菜, 2017(1): 18.
[2] DEAN R, VAN KAN J A L, PRETORIUS Z A, et al. The top 10 fungal pathogens in molecular plant pathology [J]. Molecular Plant Pathology, 2012, 13(4): 414-430.
[3] 张建人,陆宏.南方草莓灰霉病的发生与综合防治[J].植物保护,1991(4):6-7.
[4] CHEN Hua, XIAO Xiang, WANG Jun, et al. Antagonistic effects of volatiles generated byBacillus subtilison spore germination and hyphal growth of the plant pathogen,Botrytis cinerea[J]. Biotechnology Letters, 2008, 30(5): 919-923.
[5] YIN D, CHEN X, Hamada M S, et al. Multiple resistance to QoIs and other classes of fungicides inBotrytis cinerea populations from strawberry in Zhejiang Province, China [J]. European Journal of Plant Pathology, 2015, 141(1): 169-177.
[6] FAN F, HAMADA M, LI N, et al. Multiple fungicide resistance inBotrytis cinerea from greenhouse strawberries in Hubei Province, China [J]. Plant Disease, 2017, 101(4): 601-606.
[7] 韩永超, 方建坤, 刘建军, 等. 武汉市城郊草莓产业发展情况调研报告[J]. 湖北农业科学, 2016, 55(24): 6470-6473.
[8] 张中义. 中国真菌志 第26卷 葡萄孢属 柱隔孢属[M]. 北京: 科学出版社, 2006.
[9] WILLIAMSON B, TUDZYNSK B, TUDZYNSKI P, et al.Botrytis cinerea: the cause of grey mould disease [J]. Molecular Plant Pathology, 2007, 8(5): 561-580.
[10]SUTTON J C. Botrytis fruit rot (gray mold) and blossom blight [M]∥MAAS J L. Compendium of strawberry diseases, 3rd ed. American Phytopathological Society, St. Paul M N. 1998: 28-31.
[11]GONZLEZ-FERNNDEZ R, ALORIA K, VALERO-GALVN J, et al. Proteomic analysis of mycelium and secretome of differentBotrytis cinerea wild-type strains [J]. Journal of Proteomics, 2014, 97: 195-221.
[12]DIK A J, WUBBEN J P. Epidemiology ofBotrytis cinerea diseases in greenhouses [M]∥ ELAD Y, WILLIAMSON B, TUDZYNSKI P, et al.Botrytis:biology,pathology and control. Springer, Dordrecht, 2007: 319-333.
[13]高翠珠,杨红玲,黄夏宇骐,等.湖北省设施草莓灰霉病发生规律及流行因子分析[J].中国农业科学,2017,50(9):1617-1623.
[14]BULGER M A, ELLIS M A, MADDEN L V. Influence of temperature and wetness duration on infection of strawberry flowers byBotrytis cinerea and disease incidence of fruit originating from infected flowers [J].Phytopathology,1987,77(8):1225-1230.
[15]BRISTOW P R, MCNICOL R J, WILLIAMSON B. Infection of strawberry flowers byBotrytis cinerea and its relevance to grey mould development[J]. Annals of Applied Biology, 1986, 109(3): 545-554.
[16]COUZIGOU J M, MAGNE K, MONDY S, et al. The legume NOOT-BOP-COCH-LIKE genes are conserved regulators of abscission, a major agronomical trait in cultivated crops[J]. New Phytologist, 2016, 209(1): 228-240.
[17]BOFF P, KASTELEIN P, DE KRAKER J, et al. Epidemiology of grey mould in annual waiting-bed production of strawberry [J].European Journal of Plant Pathology,2001,107(6):615-624.
[18]韓永超, 曾祥国, 向发云, 等. 草莓花瓣脱落对果实灰霉病的影响[J]. 中国农业科学, 2015, 48(22): 4460-4468.
[19]DAHLBERG K R, ETTEN J L V. Physiology and biochemistry of fungal sporulation[J]. Annual Review of Phytopathology, 1982, 20(1): 281-301.
[20]徐成楠, 王亚南, 胡同乐, 等. 蓝莓炭疽病病原菌鉴定及致病性测定[J]. 中国农业科学, 2014, 47(20): 3992-3998.
[21]向发云, 韩永超, 曾祥国, 等. 湖北省草莓育苗期炭疽病病害调查[J]. 湖北农业科学, 2012, 51(24): 5650-5653.
[22]HAN Yongchao, ZENG Xiangguo, XIANG Fayun, et al. Distribution and characteristics ofColletotrichum spp. associated with anthracnose of strawberry in Hubei, China [J]. Plant Disease, 2016, 100(5): 996-1006.
[23]刘娜.四川省小麦白粉病的流行研究[D].成都:四川农业大学,2013.
[24]李伯宁, 周益林, 段霞瑜. 小麦白粉病与温度的定量关系研究[J]. 植物保护, 2008, 34(3): 22-25.
[25]胡锐, 邢彩云, 杨爱华, 等. 保护地草莓白粉病的发生与防治[J]. 中国果菜, 2011(9): 26-27.
[26]TAYLOR J E, WHITELAW C A. Signals in abscission [J]. New Phytologist, 2001, 151(2): 323-340.
[27]WANG K L C, LI H, ECKER J R.Ethylene biosynthesis and signaling networks [J]. Plant Cell, 2002, 14:131-151.
[28]MEIR S, PHILOSOPH-HADAS S, SUNDARESAN S, et al. Microarray analysis of the abscission-related transcriptome in the tomato flower abscission zone in response to auxin depletion [J]. Plant Physiology, 2010, 154(4): 1929-1956.
[29]BROEKGAARDEN C, CAARLS L, VOS I A, et al. Ethylene: traffic controller on hormonal crossroads to defense [J]. Plant Physiology, 2015, 169(4): 2371-2379.
[30]WEN C K. Ethylene in plants [M]. Springer Netherlands, 2015.
[31]IANNETTA P PM, LAARHOVEN L J, MEDINA-ESCOBAR N, et al. Ethylene and carbon dioxide production by developing strawberries show a correlative pattern that is indicative of ripening climacteric fruit [J]. Physiologia Plantarum, 2006, 127(2): 247-259.
(責任编辑:杨明丽)