警惕危险性害虫草地贪夜蛾入侵中国
2018-05-14郭井菲赵建周何康来
郭井菲 赵建周 何康来
摘要 草地贪夜蛾Spodoptera frugiperda (Smith)是一种原产于美洲的重要的毁灭性农业害虫,目前已经入侵到撒哈拉以南非洲地区及亚洲的印度,对我国构成入侵威胁。本文综述了草地贪夜蛾的生物学特征、为害、分布区域及入侵性、形态及分子鉴定方法,以及防治措施,并对其入侵中国的风险进行了预测分析,同时提出应对策略。
关键词 草地贪夜蛾; 生物学特征; 分布; 鉴定; 防治
中图分类号: S 435.132
文献标识码: A
DOI: 10.16688/j.zwbh.2018452
Abstract Fall armyworm,Spodoptera frugiperda (Smith), is a major and destructive crop insect pest native to the Americas. It has invaded subSaharan Africa and India in recent years. It is a potential invasive insect pest to China. In this review, we summarized the biological characteristics and damage, distribution and invasion, morphological and molecular identification of S. frugiperda, as well as the control measures. We also made predictions for its potential invasion risk to China and proposed strategies to combat the potential invasion.
Key words Spodoptera frugiperda; biological characteristics; distribution; identification; control
草地贪夜蛾Spodoptera frugiperda(Smith),也称秋黏虫,隶属于鳞翅目Lepidoptera,夜蛾科Noctuidae,是一种原产于美洲热带和亚热带地区的杂食性害虫[1],广泛分布于美洲大陆[2],为害多种作物,是重要的农业害虫[3]。近年来, 随着国际贸易活动的日趋频繁,草地贪夜蛾传播扩散的几率越来越大,现已入侵到撒哈拉以南的44个非洲国家以及亚洲的印度[4],并有進一步向以东南亚和中国南部为主的亚洲其他地区入侵蔓延的态势[5]。我国毗邻印度,同时云南、广西和广东、海南等省区地处热带或亚热带地区,气候温暖、植物种类丰富,是草地贪夜蛾的适生区。一旦草地贪夜蛾入侵我国,可在这些地区周年繁殖。由于其具有巨大的繁殖力、暴发为害及迁飞能力,草地贪夜蛾将严重威胁我国的农业生产和粮食安全。本文综述了草地贪夜蛾的生物学特征及为害特点、分布区域及扩散特点、鉴定方法及防治措施等,希望有助于防范该害虫入侵为害。
1 生物学特性及为害
草地贪夜蛾是杂食性害虫,其寄主植物广泛,包括玉米、苜蓿、大麦、荞麦、棉花、燕麦、粟、水稻、花生、黑麦草、高粱、甜菜、苏丹草、大豆、烟草、番茄、马铃薯、洋葱、小麦等80余种植物[6]。草地贪夜蛾分为玉米品系(corn strain, C strain)和水稻品系(rice strain, R strain)两种单倍型(haplotypes),前者主要取食为害玉米、棉花和高粱,后者主要取食为害水稻和各种牧草[7-9]。这两种单倍型外部形态基本一致,但在性信息素成分、交配行为以及寄主植物范围等方面具有明显差异[10-11]。草地贪夜蛾完成一个世代要经历卵、幼虫、蛹和成虫4个虫态[6],其世代长短与所处的环境温度及寄主植物有关。草地贪夜蛾的适宜发育温度为11~30℃,在28℃条件下,30 d左右即可完成一个世代,而在低温条件下,需要60~90 d才能完成一个世代。由于没有滞育现象,在美国,草地贪夜蛾只能在气候温和的南佛罗里达州和德克萨斯州越冬存活[2],而在气候、寄主条件适合的中、南美洲以及新入侵的非洲大部分地区,可周年繁殖[12]。草地贪夜蛾成虫可在几百米的高空中借助风力进行远距离定向迁飞[13],
每晚可飞行100 km[12]。成虫通常在产卵前可迁飞500 km[14],如果风向风速适宜,迁飞距离会更长,有报道称草地贪夜蛾成虫在30 h内可以从美国的密西西比州迁飞到加拿大南部,长达1 600 km距离[15]。成虫具有趋光性,一般在夜间进行迁飞、交配和产卵,卵块通常产在叶片背面。成虫寿命可达两至三周,在这段时间内,雌成虫可以多次交配产卵,一生可产卵900~1 000粒[14]。在适合温度下,卵在2~4 d内即可孵化成幼虫。幼虫有6个龄期,高龄幼虫具有自相残杀的习性[16]。
草地贪夜蛾在幼虫期取食为害,取食部位及为害程度与作物的种类、生育期以及幼虫的龄期密切相关,6龄幼虫为害最为严重[12]。在玉米上,1~3龄幼虫通常隐藏在叶片背面取食,取食后形成半透明薄膜“窗孔”。低龄幼虫还会吐丝,借助风扩散转移到周边的植株上继续为害。4~6龄幼虫对玉米的为害更为严重,取食叶片后形成不规则的长形孔洞,可将整株玉米的叶片取食光,严重时可造成玉米生长点死亡,影响叶片和果穗的正常发育。此外,高龄幼虫还会取食玉米雄穗和果穗[17]。
草地贪夜蛾为害严重威胁玉米生产。据统计,在美国佛罗里达州,草地贪夜蛾为害可造成玉米减产20%[18]。在一些经济条件落后的地区,其为害造成的玉米产量损失更为严重,比如在中美洲的洪都拉斯,其为害可造成玉米减产达到40%[19],在南美的阿根廷和巴西,其为害可分别造成72%[20]和34%[21]的产量损失。2017年9月,国际农业和生物科学中心(CABI)报道,仅在已被入侵的非洲12个玉米种植国家中,草地贪夜蛾为害可造成玉米年减产830万到2 060万t,经济损失高达24.8亿到61.9亿美元[12]。
2 分布区域与入侵性
草地贪夜蛾原产于美洲热带和亚热带地区[18],2016年1月在非洲首次被发现[22]。由于从撒哈拉沙漠带到非洲南部的大多数非洲国家都是草地贪夜蛾的适生区[18],因此从2016年1月在尼日利亚、多哥、贝宁以及圣多美和普林西比等非洲国家发现草地贪夜蛾后[22],草地贪夜蛾在撒哈拉沙漠以南地区迅速入侵蔓延[18]。到2017年4月28日,有12个非洲国家官方报道了草地贪夜蛾的侵入,到2017年9月28日,已经有28个撒哈拉以南的非洲国家证实草地贪夜蛾的侵入,尚有9个国家需要进一步确认[12]。到2018年1月,仅仅两年的时间,草地贪夜蛾就已经入侵到撒哈拉以南非洲几乎所有44个国家。
草地贪夜蛾主要是通过国际频繁的人员流动和贸易往来传入非洲的[23-24]。虽然草地贪夜蛾能借助风力进行远距离迁飞,但因为美洲和非洲间的季风是从非洲吹向美洲,且在2016年前从没有发生过草地贪夜蛾侵入非洲的事件,因此草地贪夜蛾的远距离迁飞并不是其侵入非洲的主要途径[12],但却和其在非洲范围内的快速蔓延密切相关[18]。草地贪夜蛾可以跨海迁飞数百千米[13],这就意味着草地贪夜蛾可以从撒哈拉以南非洲国家迁飞到非洲北部[18]。虽然目前摩洛哥等北非国家还没有发现草地贪夜蛾的入侵,但是草地贪夜蛾可以在一些农作物丰富的北非地区定殖。一旦入侵到北非并定殖,其季节性迁飞到欧洲的可能性就非常高,目前欧洲已经将其作为检疫害虫[25]。随着尼日利亚、加纳等非洲国家与世界各国贸易和交通运输的日益频繁[24],草地贪夜蛾很可能“搭乘”非洲到欧洲、东亚、东南亚等国家的贸易“便车”,“偷渡”入侵到中国、印度尼西亚、泰国、马来西亚、菲律宾和澳大利亚等适合草地贪夜蛾定殖的国家[18]。2018年5月,Sharanabasappa和Kalleshwara等人在印度的卡纳塔克邦州的希莫加地区首次发现了草地贪夜蛾[26],表明草地贪夜蛾已经侵入印度[27]。Shylesha等在2018年也通过形态鉴定及DNA条形码技术证实了草地贪夜蛾已经入侵到卡纳塔克邦州的奇卡布拉普尔地区,并得到官方证实[28]。2018年10月9日,印度《经济时报》报道,草地贪夜蛾已经蔓延至印度的6个邦,继卡纳塔克邦以后,在印度的泰米尔纳德邦、特仑甘纳邦、安得拉邦和西孟加拉邦相继发现了草地贪夜蛾后,在马哈拉施特拉邦的甘蔗上也发现了草地贪夜蛾的为害[29]。专家推测草地贪夜蛾很可能从印度向孟加拉、尼泊尔、巴基斯坦等毗邻国家扩散[26],进而蔓延至以东南亚和中国南部为主的亚洲其他地区,严重威胁亚洲數百万计玉米和水稻小农户的粮食安全[5]。
3 草地贪夜蛾的外部形态及分子特征
准确、快速地识别草地贪夜蛾是研究其防控技术的第一步[30]。草地贪夜蛾的主要形态特征[30-33]:卵呈圆顶形,直径0.4 mm,高为0.3 mm,通常100~200粒卵堆积成块状,初产时为浅绿或白色,孵化前逐渐变为棕色。幼虫共6龄,体色和体长随龄期而变化,低龄幼虫体色呈绿色或黄色,体长6~9 mm,头呈黑或橙色。高龄幼虫多呈棕色,也有呈黑色或绿色的个体存在,体长30~36 mm,头部呈黑、棕或者橙色,具白色或黄色倒“Y”型斑。幼虫体表有许多纵行条纹,背中线黄色,背中线两侧各有一条黄色纵条纹,条纹外侧依次是黑色、黄色纵条纹。草地贪夜蛾幼虫最明显的特征是其腹部末节有呈正方形排列的4个黑斑。老熟幼虫常在2~8 cm的土壤中化蛹,蛹呈椭圆形,红棕色,长14~18 mm,宽4.5 mm。成虫,翅展32~40 mm,前翅深棕色,后翅灰白色。
草地贪夜蛾的分子鉴定方法包括限制性片段长度多态性聚合酶链反应(polymerase chain reaction, restriction fragment length polymorphism, PCRRFLPs)[34-37]、扩增片段长度多态性(amplified fragment length polymorphisms, AFLP)[38]、多态异型酶(allozyme polymorphisms)[39]、线粒体单倍型分析(mitochondrial haplotyping)[40]以及DNA条形码(DNA barcoding)[23,41]。特别是基于线粒体DNA细胞色素C氧化酶亚基I基因(mitochondrial cytochrome C oxidase subunit I, mtDNA,COⅠ)的DNA条形码已经逐渐成为检测监测草地贪夜蛾入侵的一种有效手段。例如Goergen等基于COⅠ基因的DNA条形码技术的检测结果首次报道了草地贪夜蛾入侵到了非洲大陆[22],随后Cock等利用DNA条形码技术证明草地贪夜蛾已扩散到加纳[23]。此外,基于mtDNACOⅠ基因的序列分析还能有效地鉴别草地贪夜蛾的不同单倍型,例如Jacobs等通过对从南非采集的19个草地贪夜蛾的COⅠ基因序列的分析发现草地贪夜蛾的玉米品系和水稻品系都已侵入非洲[42]。除COⅠ基因以外,位于Z染色体上磷酸甘油醛异构酶基因(triose phosphate isomerase,Tpi)也可以作为草地贪夜蛾分子鉴定的标记基因[43-45]。例如,Nagoshi等通过对草地贪夜蛾的COⅠ和Tpi基因序列分析,推测入侵多哥的草地贪夜蛾可能起源于美洲东部和大安的列斯群岛,对草地贪夜蛾的入侵来源进行了解析[46]。
总之,传统的形态学鉴定方法通常会受到虫态、单倍型以及样本受损情况的影响,同时鉴定时容易将草地贪夜蛾的幼虫与其他形态与之类似的鳞翅目幼虫混淆[33],因此仅依靠形态鉴定具有一定的局限性,而将分子鉴定方法与形态学鉴定方法有机结合,互为补充,可实现对草地贪夜蛾的快速、准确的鉴定。
4 防治措施
4.1 农业防治
农业防治就是综合协调管理作物、害虫和环境因素,创造一个不利于害虫发生和繁殖的农田生态环境。健康的植株通常抗虫性更好[47],因此生产中可通过加强田间管理、合理施肥浇水、促进作物健康生长等措施来提高作物本身的抗虫、耐虫性。也可以通过调整作物播期使作物易受草地贪夜蛾为害的敏感生育期与其主要发生期错开以减轻为害。此外,将作物与驱避害虫、吸引害虫天敌的其他植物进行间作或轮作也是防治草地贪夜蛾的方法之一,目前试验已经证明“推拉”伴生种植策略(“pushpull” companion cropping)在非洲地区可以有效地防治草地贪夜蛾。这种防治策略就是将作物与驱避草地贪夜蛾的植物进行间作,进而将草地贪夜蛾从作物上驱避(即“推”),同时在作物周围种植诱集杂草将草地贪夜蛾诱集到周围的杂草上(即“拉”)。此外,多种植物的种植也为草地贪夜蛾天敌昆虫提供了庇护所,从而提高了天敌对草地贪夜蛾的自然控制作用。2017年,肯尼亚、乌干达和塔桑尼亚等国家的250个农户采用了“推拉”伴生种植策略来防治草地贪夜蛾,试验结果显示能使单株玉米幼虫数量降低82.7%,为害程度降低86.7%,产量增加2.7倍[48]。种植抗草地贪夜蛾的作物品种,也是防治草地贪夜蛾为害的一项经济、安全、有效的措施。研究发现Mp707、Mp708等多个改良的热带/亚热带玉米自交系都对草地贪夜蛾具有一定的抗性[31]。总之,农业防治措施主要依靠人力,经济投入相对较少,因此更适合缺少资金购买杀虫剂和其他植保产品的小农户使用,但是在生产中需要综合考虑防治的效果,以及所消耗的人力和物力来选择合适的农业防治方法。
4.2 化学防治
目前,化学防治仍然是在多种作物上控制草地贪夜蛾的主要方法[49-50]。多杀菌素、氟氯氰菊酯、顺式氯氰菊酯、氟虫双酰胺、氯虫苯甲酰胺、乙酰甲胺磷、丁硫克百威等多种杀虫剂对草地贪夜蛾都有较好的防治效果[50-51]。例如,用氯虫苯甲酰胺和溴氰虫酰胺处理大豆种子能显著降低草地贪夜蛾在大豆V7和R6时期的存活率[52]。与药剂拌种相比,喷施杀虫剂防治草地贪夜蛾效果更好,需要注意的是,喷施杀虫剂时要充分考虑幼虫的生物学特性,在合适的时期使用正确的方式进行喷施。由于高龄幼虫会钻蛀在植物组织内部为害,喷施药剂往往对它不起作用,为了取得较好的防治效果,要在低龄幼虫时期及时喷施药剂,此外,低龄幼虫通常在夜间才会出来取食为害,因此在清晨和黄昏时喷施药剂防治效果更好[51]。用杀虫剂防治草地贪夜蛾时要注意轮换和交替使用不同作用方式的杀虫剂,根据田间种群监测及经济为害水平来决定是否需要防治,避免频繁用药,还要根据农药使用说明书推荐的浓度和剂量进行适量喷施,以延缓草地贪夜蛾抗药性的产生[53]。据报道,在美洲的部分地区,草地贪夜蛾已经对氨基甲酸盐类、有机磷酸酯类和拟除虫菊酯-除虫菊酯农药产生了抗药性[12,54]。一旦害虫对一类杀虫剂产生了抗药性,就需要加大使用剂量,或者选择可替代的杀虫剂。一些杀虫剂,如灭多威、甲基对硫磷、硫丹等虽能有效防治草地贪夜蛾,但它们的高毒性不仅给生态环境和人类健康带来不利影响,还能杀死害虫的捕食性或者寄生性天敌[54]。因此,应该根据国家立法和国际准则,选择国际上已经注册登记、允许使用的农药来防治草地贪夜蛾[55]。
4.3 生物防治
害虫的生物防治是指利用生物及其产物来防治害虫。草地贪夜蛾的生物防治方法包括田间释放天敌昆虫、使用微生物农药、植物源农药、昆虫致病线虫以及利用昆虫性信息素诱捕害虫等。草地贪夜蛾的天敌资源丰富[56-57],包括短管赤眼蜂Trichogramma pretiosum Riley[58]、夜蛾黑卵蜂Telenomus remus Nixon[59-60]、黑唇姬蜂Campoletis sonorensis(Cameron)[61-63]、缘腹绒茧蜂Cotesia marginiventris(Cresson) 和小繭蜂Chelonus insularis Cresson[64]等寄生蜂,以及草蛉[65]、瓢虫[63]、蠼螋[66]和捕食蝽[67]等捕食性天敌。真菌、细菌、病毒等昆虫病原微生物也可用于草地贪夜蛾的防治,如白僵菌Beauveria bassiana、核型多角体病毒nucleopolyhedrovirus(SfMNPV)、苏云金芽胞杆菌Bacillus thuringiensis(Bt)等[12]。目前,白僵菌、Bt、核型多角体病毒以及杆状病毒等一些昆虫病原微生物杀虫剂已经在美国等国家登记用于草地贪夜蛾的防治[54]。昆虫病原线虫也是目前生物防治领域研究的热点。Landazabal等在1973年就报道在哥伦比亚地区利用新线虫Neoaplectana carpocapsae可以有效降低草地贪夜蛾的种群密度[68],但到目前为止还没有有关昆虫病原线虫的商业化产品。一些植物提取物也对草地贪夜蛾具有杀虫活性[56],例如棉叶膏桐和苦楝树衰老叶片的乙醇提取物对草地贪夜蛾具有拒食作用,且与氯氰菊酯一起使用具有增效作用[69]。从平顶龙属的一种植物Platypodium elegans种子中提取出来的库尼(kunitz)型肽酶抑制剂会抑制草地贪夜蛾幼虫的生长发育和体重,延长其发育历期,降低其胰蛋白酶和糜蛋白酶的活性[70]。此外,类黄酮[71]、洋椿苦素[72]、柠檬苦素类似物[73]、水蓼二醛和补身醇衍生物[74]、双稠哌啶类生物碱[75]以及其他一些植物提取物[76-79]对草地贪夜蛾都有明显的毒杀、拒食或生长抑制作用。昆虫性信息素也可以应用到草地贪夜蛾的防治中[80-83],生产上可以利用昆虫性信息素制成诱芯来干扰草地贪夜蛾交配和大面积诱杀草地贪夜蛾[84],性信息素诱杀法在一些北美洲国家广泛应用。
4.4 转Bt基因抗虫作物
在种植模式非常有利于草地贪夜蛾种群建立的热带或亚热带地区,种植转Bt基因抗虫玉米已被证明是一种控制草地贪夜蛾种群发展及为害的有效措施[85]。在巴西,种植转Bt基因抗虫玉米已经成为防治草地贪夜蛾的重要措施[86],如转cry1F基因抗虫玉米‘TC1507以及转cry1A.105/cry2Ab2基因的二价抗虫玉米‘MON89034对草地贪夜蛾都有较高抗性[85,87]。目前在南美洲的巴西、阿根廷或非洲的南非批准种植的转基因抗虫玉米有‘MON810、‘Bt11、‘MON89034、‘MON89034×TC1507、‘MIR162、‘Bt11×MIR162和‘MON810×TC1507×MIR162等,表达的蛋白有Cry1F、Cry1A.105、Cry1Ab、Cry2Ab2和Vip3Aa20(http:∥www.isaaa.org/gmapprovaldatabase/)。种植转Bt基因抗虫棉也能控制棉花上的草地贪夜蛾。研究发现转cry1Ia12基因抗虫棉对草地贪夜蛾幼虫具有明显毒性,可显著延长幼虫发育历期,致死率可达40%[88]。转cry1Ac和cry1F基因的双价抗虫棉能显著降低草地贪夜蛾的田间为害率,同时草地贪夜蛾死亡率可达90%~100%[89]。虽然转Bt基因抗虫作物对草地贪夜蛾有很好的防治作用, 但由于Bt蛋白在作物的各个生育期、各个组织部位持续高剂量表达[90],草地贪夜蛾一直处于Bt杀虫蛋白的选择压力下, 这就使草地贪夜蛾对转Bt基因抗虫作物产生了抗性[91]。特别是在巴西,每年可以连续种植两季玉米,草地贪夜蛾一年会发生多代并发生世代重叠,更容易对Bt蛋白产生抗性[92]。如Farias等报道转基因玉米‘TC1507在巴西商业化种植不到4年的时间,在田间就检测到了草地贪夜蛾的抗性种群[93], 致使不能有效地控制草地贪夜蛾的为害[94]。此外,在波多黎各[95-96]和美国东南部[97-99]也检测到抗Cry1F蛋白的草地贪夜蛾种群。草地贪夜蛾对Cry1Ab[92]和Cry2Ab2蛋白[100]也产生了抗性。尽管在巴西等地已经检测到了对Bt蛋白产生抗性的草地贪夜蛾种群,在新传入的地区需要采集当地田间种群并测定其对不同Bt蛋白的敏感性。近年来科学家就草地贪夜蛾对Bt抗性产生的机理进行了深入的研究[101-103],并制定了高剂量-庇护所策略、多基因策略等害虫对Bt的抗性治理策略来延缓草地贪夜蛾对Bt抗虫蛋白抗性的产生和发展[104]。使用新的杀虫蛋白—营养期杀虫蛋白(vegetative insecticidal proteins, Vips)也是害虫对Bt抗性治理策略的重要内容[105]。Vips是Bt在对数生长中期分泌的一类不同于Cry类杀虫晶体蛋白的新型杀虫蛋白,与其他Cry蛋白无交互抗性[106],特别是对一些对Cry杀虫蛋白不敏感的鳞翅目害虫有特异杀虫活性[86]。对草地贪夜蛾具有杀虫活性的Vip蛋白有Vip3Aa16[107]、Vip3Ab1[108]、Vip3Ac1[109]、Vip3Ae1[110]、Vip3Af1[111]和Vip3Aa20等[86,112]。表达Vip3Aa20蛋白的转基因玉米新品种‘MIR162于2009年已经在美国登记,这种玉米可有效控制对其他杀虫蛋白产生抗性的草地贪夜蛾,目前已经在美国、阿根廷、巴西等地进行商业化种植[112-113]。虽然在巴西也能检测到草地贪夜蛾对Vip3Aa20蛋白的抗性基因,但是其频率很低[114],因此转Vip3Aa20基因玉米仍然是目前控制草地贪夜蛾的有效措施[94],并且在高剂量+庇护所策略管理下必将会发挥更持久的抗虫作用[114]。
5 傳入中国的风险预测及应对措施
草地贪夜蛾的快速扩散和严重危害引发了全球关注,2017年3月,英国《自然》杂志刊登了“外来入侵害虫重创非洲”的文章[115];2017年5月在北京召开的第二十六届国际玉米螟及其他玉米害虫学术研讨会通报了草地贪夜蛾入侵非洲的情况,并特邀CABI的Clottery博士做了“草地贪夜蛾在西非洲的传播:需要应急对策预案”的报告;2017年10月,联合国粮农组织(FAO)特别启动了“非洲草地贪夜蛾可持续治理”项目,资助8 755万美元,在非洲开展草地贪夜蛾的风险评估、监测、治理、农民培训及相关政策的研究以应对入侵,遏制危害[116];美国USAID和CGIARCIMMYT 2017年9月在乌干达召开了非洲草地贪夜蛾田间防治研讨会,以此为基础并与其他机构合作,于2018年1月出版发行了“非洲草地贪夜蛾综合治理(IPM)指南”[117],为相关项目提供技术支撑。2018年8月2日,CABI在印度官方网站[28]确认草地贪夜蛾已侵入后发出了“毁灭性害虫草地贪夜蛾将在亚洲迅速传播”的预警[118],入侵印度的草地贪夜蛾很可能会向孟加拉、尼泊尔、巴基斯坦等毗邻国家扩散蔓延[26]。2018年10月在美国召开的“世界粮食奖”国际研讨会也将草地贪夜蛾作为重要议题之一[119]。
中国毗邻印度、孟加拉和尼泊尔,印度的西孟加拉邦已经确认草地贪夜蛾的侵入,该邦和孟加拉相邻,草地贪夜蛾传入孟加拉的可能性极大,草地贪夜蛾极有可能随春季印度洋季风,或经孟加拉、缅甸入侵中国云南等南部地区,同时也可能通过与有草地贪夜蛾分布和发生国家的贸易往来和运输工具传入中国。草地贪夜蛾一旦传入中国,如果不能及时采取有效措施加以剿灭就会快速扩散,鉴于其巨大的繁殖力、迁飞能力和为害力,必将成为威胁中国粮食作物安全生产的毁灭性害虫,因此我们建议:
(1) 农业农村部相关部门和科研单位及早开展入侵风险评估、鉴定技术及预警技术研究, 在云南、广西等地加强对草地贪夜蛾的早期检测与监测,并制定应急处置预案,一旦发现草地贪夜蛾入侵中国,便可迅速采取应急防控和管理措施,扑灭入侵点草地贪夜蛾种群,遏制草地贪夜蛾定殖和扩散。
(2) 将草地贪夜蛾列入检疫害虫名录,建立数据库, 对来自美洲、非洲和印度等草地贪夜蛾发生区的飞机和货物进行检疫,杜绝其随运输工具进入中国。
(3) 密切跟踪草地贪夜蛾在世界各地的发生与蔓延趋势,加强和开展与国外相关国家和国际组织(FAO, CABI, CIMMYT, ICIPE, IITA等)的学术合作和信息交流,借鉴美洲和非洲在草地贪夜蛾防治方面成功的经验和技术,根据草地贪夜蛾在中国的适生区域和该害虫的发生特点,制定有效的预防措施和应急防控预案,防止其在中国的传入、定殖和扩散。
参考文献
[1] TODD E L, POOLE R W. Keys and illustrations for the armyworm moths of the noctuid genusSpodopteraGuenée from the Western Hemisphere [J]. Annals of the Entomological Society of America, 1980, 73(6): 722-738.
[2] SPARKS A N. A review of the biology of the fall armyworm[J]. Florida Entomologist, 1979, 62(2): 82-87.
[3] MARTINELLI S, BARATA R M, ZUCCHI M I, et al. Molecular variability ofSpodoptera frugiperda (Lepidoptera: Noctuidae) populations associated to maize and cotton crops in Brazil [J]. Journal of Economic Entomology, 2006, 99(2): 519-526.
[4] NAKWEYA G. Global actions needed to combat fall armyworm [EB/OL]. (2018-9-28)[2018-10-6].https:∥www.scidev.net/subsaharanafrica/farming/news/globalactionscombatfallarmyworm.html.
[5] FAO. Fall armyworm likely to spread from India to other parts of Asia with South East Asia and South China most at risk[R]. Rome: Food and Agriculture Organization of the United Nations, 2018.
[6] CABI.Spodoptera frugiperda (fall armyworm)[R]. Wallingford, UK: CAB International, 2016.
[7] DUMAS P, LEGEAI F, LEMAITRE C, et al.Spodoptera frugiperda (Lepidoptera: Noctuidae) hostplant variants: two host strains or two distinct species?[J]. Genetica, 2015, 143(3): 305-316.
[8] PASHLEY D P, JOHNSON S J, SPARKS A N. Genetic population structure of migratory moths: the fall armyworm (Lepidoptera: Noctuidae) [J]. Annals of the Entomological Society of America, 1985, 78(6): 756-762.
[9] PASHLEY D P. Quantitative genetics, development, and physiological adaptation in host strains of fall armyworm [J].Evolution, 1988, 42(1): 93-102.
[10]CRUZESTEBAN S, ROJAS J C, SNCHEZGUILLN D, et al. Geographic variation in pheromone component ratio and antennal responses, but not in attraction, to sex pheromones among fall armyworm populations infesting corn in Mexico [J]. Journal of Pest Science, 2018, 91(3): 973-983.
[11]PASHLEY D P, MARTIN J A. Reproductive incompatibility between host strains of the fall armyworm (Lepidoptera: Noctuidae) [J]. Annals of the Entomological Society of America, 1987, 80(6): 731-733.
[12]ABRAHAMS P, BATEMAN M, BEALE T, et al. Fall armyworm: Impacts and implications for Africa. Evidence note (2), september 2017. Report to DFID [R].Wallingford, UK: CAB International, 2017.
[13]WESTBROOK J, NAGOSHI R, MEAGHER R, et al. Modeling seasonal migration of fall armyworm moths [J]. International Journal of Biometeorology, 2016, 60(2): 255-267.
[14]JOHNSON S J. Migration and the life history strategy of the fall armyworm,Spodoptera frugiperda in the Western Hemisphere [J]. International Journal of Tropical Insect Science, 1987, 8(4-5-6): 543-549.
[15]ROSE A, SILVERSIDES R, LINDQUIST O. Migration flight by an aphid,Rhopalosiphum maidis (Hemiptera: Aphididae), and a noctuid,Spodoptera frugiperda (Lepidoptera: Noctuidae) [J].The Canadian Entomologist,1975,107(6):567-576.
[16]CHAPMAN J W, WILLIAMS T, MARTNEZ A M, et al. Does cannibalism inSpodoptera frugiperda (Lepidoptera: Noctuidae) reduce the risk of predation?[J]. Behavioral Ecology & Sociobiology, 2000, 48(4): 321-327.
[17]FAO. Integrated management of the fall armyworm on maize[R]. Rome: Food and Agriculture Organization of the United Nations, 2017.
[18]EARLY R, GONZALEZMORENO P, MURPHY S T, et al. Forecasting the global extent of invasion of the cereal pestSpodoptera frugiperda, the fall armyworm [J/OL].BioRxiv, 2018, doi: https:∥doi.org/10.1101/391847.
[19]WYCKHUYS K A G, ONEIL R J. Population dynamics ofSpodoptera frugiperda Smith (Lepidoptera: Noctuidae) and associated arthropod natural enemies in Honduran subsistence maize [J]. Crop Protection, 2006, 25(11): 1180-1190.
[20]MURA G, MOLINAOCHOA J, COVIELLA C. Population dynamics of the fall armyworm,Spodoptera frugiperda (Lepidoptera: Noctuidae) and its parasitoids in northwestern Argentina [J].Florida Entomologist, 2006, 89(2): 175-182.
[34]CANOCALLE D, ARANGOISAZA R E, SALDAMANDOBENJUMEA C I. Molecular identification ofSpodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains in Colombia by using a PCRRFLP of the mitochondrial gene cytochrome oxydase I (COⅠ) and a PCR of the geneFR (for rice)[J]. Annals of the Entomological Society of America, 2015, 108(2): 172-180.
[35]LEVY H C, GARCIAMARUNIAK A, MARUNIAK J E. Strain identification ofSpodoptera frugiperda (Lepidoptera: Noctuidae) insects and cell line: PCRRFLP of cytochrome oxidase c subunit I gene [J].Florida Entomologist,2002,85(1): 186-190.
[36]LEWTER J A, AZALANSKI A L. Molecular identification of the fall armyworm,Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) using PCRRFLP[J]. Journal of Agricultural and Urban Entomology, 2007, 24(2): 51-57.
[37]MEAGHER R L, CALLOMEAGHER M. Identifying host of fall armyworm (Lepidoptera: Noctuidae)in Florida using mitochondrial markers[J]. Florida Entomologist, 2003, 86(4): 450-455.
[38]MCMICHAEL M, PROWELL D P. Differences in amplified fragmentlength polymorphisms in fall armyworm (Lepidoptera: Noctuidae) host strains[J]. Annals of the Entomological Society of America, 1999, 92(2): 175-181.
[39]PASHLEY D P. Hostassociated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): a sibling species complex [J].Annals of the Entomological Society of America, 1986, 79(6): 898-904.
[40]LU Y, ADANG M J. Distinguishing fall armyworm (Lepidoptera: Noctuidae) strains using a diagnostic mitochondrial DNA marker [J]. Florida Entomologist, 1996, 79(1): 48-55.
[41]NAGOSHI R N, SILVIE P, MEAGHER R L, et al. Identification and comparison of fall armyworm (Lepidoptera: Noctuidae) host strains in Brazil, Texas, and Florida [J]. Annals of the Entomological Society of America,2007,100(3):394-402.
[42]JACOBS A, VAN VUUREN A, RONG I. Characterisation of the fall armyworm (Spodoptera frugiperda J. E. Smith)(Lepidoptera: Noctuidae) from South Africa [J]. Africa Entomology, 2018, 26(1): 45-49.
[43]MURUA M G, NAGOSHI R N, DOS SANTOS D A, et al. Demonstration using field collections that Argentina fall armyworm populations exhibit strainspecific host plant preferences[J].Journal of Economic Entomology,2015,108(5):2305-2315.
[44]NAGOSHI R N, MURUA M G, HAYROE M, et al. Genetic characterization of fall armyworm (Lepidoptera: Noctuidae) host strains in Argentina [J]. Journal of Economic Entomology, 2012, 105(2): 418-428.
[45]NAGOSHI R N, MEAGHER R L. Using intron sequence comparisons in the triosephosphate isomerase gene to study the divergence of the fall armyworm host strains [J].Insect Molecular Biology, 2016, 25(3): 324-337.
[46]NAGOSHI R N, KOFFI D, AGBOKA K, et al. Comparative molecular analyses of invasive fall armyworm in Togo reveal strong similarities to populations from the eastern United States and the Greater Antilles [J/OL]. PLoS ONE, 2017, 12(7): e0181982.
[47]CHAPIN F S. Integrated responses of plants to stress [J]. Bioscience, 1991, 41(1): 29-36.
[48]MIDEGA C A O, PITTCHAR J O, PICKETT J A, et al. A climateadapted pushpull system effectively controls fall armyworm,Spodoptera frugiperda (J. E. Smith), in maize in East Africa [J]. Crop Protection, 2018, 105: 10-15.
[49]TOGOLA A, MESEKA S, MENKIR A, et al. Measurement of pesticide residues from chemical control of the invasiveSpodoptera frugiperda (Lepidoptera: Noctuidae) in a maize experimental field in Mokwa, Nigeria [J]. International Journal of Environmental Research and Public Health,2018,15(5):849.
[50]OKUMA D M, BERNARDI D, HORIKOSHI R J, et al. Inheritance and fitness costs ofSpodoptera frugiperda (Lepidoptera:Noctuidae) resistance to spinosad in Brazil[J]. Pest Management Science,2018,74(6):1441-1448.
[51]MWANGI D K. Fall armyworm technical briefmaize crop in Kenya [R]. Nairobi: Ministry of Agriculture, Livestock and Fisheries, 2018.
[52]THRASH B, ADAMCZYK J J, LORENZ G, et al. Laboratory evaluations of lepidopteranactive soybean seed treatments on survivorship of fall armyworm(Lepidoptera: Noctuidae) larvae [J]. Florida Entomologist, 2013, 96(3): 724-728.
[53]DAY R, ABRAHAMS P, BATEMAN M, et al. Fall armyworm: impacts and implications for Africa[J]. Outlooks on Pest Management, 2017, 28(5): 196-201.
[54]YU S. Insecticide resistance in the fall armyworm,Spodoptera frugiperda (Smith, J.E.)[J]. Pesticide Biochemistry and Physiology, 1991, 39(1): 84-91.
[55]FAO. FAOs position on the use of pesticides to combat fall armyworm [R]. Rome: Food and Agriculture Organization of the United Nations, 2018.
[56]AYILGUTIRREZ B A, SNCHEZTEYER L F, VAZQUEZFLOTA F, et al. Biological effects of natural products againstSpodoptera spp. [J]. Crop Protection, 2018, 114: 195-207.
[57]SHYLESHA A N, JALALI S, GUPTA A, et al. Studies on new invasive pestSpodoptera frugiperda(J. E. Smith) (Lepidoptera: Noctuidae) and its natural enemies [J]. Journal of Biological Control, 2018, 32(3): 1-7.
[58]BUTLER J G D, LOPEZ J D.Trichogramma pretiosum: Development in two hosts in relation to constant and fluctuating temperatures [J]. Annals of the Entomological Society of America, 1980, 73(6): 671-673.
[59]BUENO R C O D F, CARNEIRO T R, BUENO A D F, et al. Parasitism capacity ofTelenomus remus Nixon (Hymenoptera: Scelionidae) onSpodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) eggs[J]. Brazilian Archives of Biology and Technology, 2010, 53(1): 133-139.
[60]CAVE R D. Biology, ecology and use in pest management ofTelenomus remus[J]. Biocontrol News & Information, 2000, 21(1): 21-26.
[61]ISENHOUR D J.Campoletis sonorensis (Hym.: Ichneumonidae).as a parasitoid ofSpodoptera frugiperda (Lep.: Noctuidae): Host stage preference and functional response [J]. Entomophaga, 1985, 30(1): 31-36.
[62]JOURDIE V, ALVAREZ N, MOLINAOCHOA J, et al. Population genetic structure of two primary parasitoids ofSpodoptera frugiperda (Lepidoptera),Chelonus insularis andCampoletis sonorensis (Hymenoptera): to what extent is the host plant important?[J]. Molecular Ecology, 2010, 19(10): 2168-2179.
[63]WYCKHUYS K A G, ONEIL R J. Population dynamics ofSpodoptera frugiperda Smith (Lepidoptera: Noctuidae) and associated arthropod natural enemies in Honduran subsistence maize [J]. Crop Protection, 2006, 25(11): 1180-1190.
[64]MEAGHER R L, NUESSLY G S, NAGOSHI R N, et al. Parasitoids attacking fall armyworm (Lepidoptera: Noctuidae) in sweet corn habitats [J].Biological Control,2016,95:66-72.
[65]TAVARES W S, CRUZ I, SILVA R B, et al. Prey consumption and development ofChrysoperla externa(Neuroptera: Chrysopidae) onSpodoptera frugiperda (Lepidoptera: Noctuidae) eggs and larvae andAnagasta kuehniella (Lepidoptera: Pyralidae) eggs [J]. Maydica, 2011, 56(3): 283-289.
[66]SILVA A B D, BATISTA J D L, BRITO C H D. Capacidade predatória deEuborellia annulipes (Lucas, 1847) sobreSpodoptera frugiperda (Smith, 1797) [J]. Acta Scientiarum Agronomy, 2009, 31: 7-11.
[67]MALAQUIAS J B, RAMALHO F S, OMOTO C, et al. Imidacloprid affects the functional response of predatorPodisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) to strains ofSpodoptera frugiperda (J. E. Smith) on Bt cotton [J]. Ecotoxicology, 2014, 23(2): 192-200.
[68]LANDAZABAL A J, FERNANDEZ A F. FIGUEROA P A. Biological control ofSpodoptera frugiperda (J. E. Smith), with the nematodeNeoaplectana carpocapsae in corn (Zea mays)[Colombia].[Spanish].[J]. Acta Agronomica, 1997.
[69]BULLANGPOTI V, WAJNBERG E, AUDANT P, et al. Antifeedant activity ofJatropha gossypifolia andMelia azedarach senescent leaf extracts onSpodoptera frugiperda (Lepidoptera: Noctuidae) and their potential use as synergists [J]. Pest Management Science, 2012, 68(9): 1255-1264.
[70]RAMALHO S R, BEZERRA C D S, LOUREN O DE OLIVEIRA D G, et al. Novel peptidase Kunitz inhibitor fromPlatypodium elegans seeds is active againstSpodoptera frugiperda larvae [J]. Journal of Agricultural and Food Chemistry, 2018, 66(6): 1349-1358.
[71]GALLO M B, ROCHA W C, DA CUNHA U S, et al. Bioactivity of extracts and isolated compounds fromVitex polygama (Verbenaceae) andSiphoneugena densiflora (Myrtaceae) againstSpodoptera frugiperda (Lepidoptera:Noctuidae) [J]. Pest Management Science, 2006, 62(11): 1072-1181.
[72]GIONGO A M, VENDRAMIM J D, FREITAS S D, et al. Toxicity of secondary metabolites from Meliaceae againstSpodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae)[J]. Neotropical Entomology, 2016, 45(6): 1-9.
[73]CSPEDES C L, CALDERN J S, LINA L, et al. Growth inhibitory effects on fall armywormSpodoptera frugiperda of some limonoids isolated fromCedrela spp. (Meliaceae)[J]. Journal of Agricultural and Food Chemistry, 2000, 48(5): 1903-1908.
[74]MONTENEGRO I J, DEL CORRAL S, DIAZ NAPAL G N, et al. Antifeedant effect of polygodial and drimenol derivatives againstSpodoptera frugiperda andEpilachna paenulata and quantitative structureactivity analysis[J]. Pest Management Science, 2018, 74(7): 1623-1629.
[75]BERMUDEZTORRES K, HERRERA J M, BRITO R F, et al. Activity of quinolizidine alkaloids from three MexicanLupinus against the lepidopteran crop pestSpodoptera frugiperda[J]. BioControl, 2009, 54(3): 459-466.
[76]ANSANTE T F, DO PRADO RIBEIRO L, BICALHO K U, et al. Secondary metabolites from neotropical Annonaceae: Screening, bioguided fractionation, and toxicity toSpodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae)[J]. Industrial Crops and Products, 2015, 74: 969-976.
[77]MARTNEZ A M, AGUADOPEDRAZA A J, VIUELA E, et al. Effects of ethanolic extracts ofArgemone ochroleuca (Papaveraceae) on the food consumption and development ofSpodoptera frugiperda (Lepidoptera: Noctuidae)[J]. Florida Entomologist, 2017, 100(2): 339-345.
[78]SMIA R R, DE OLIVEIRA R L, MOSCARDINI V F, et al. Effects of aqueous extracts ofCopaifera langsdorfii (Fabaceae) on the growth and reproduction ofSpodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae)[J]. Neotropical Entomology, 2016, 45(5): 580-587.
[79]SANTOS A D, ANDRADE C G, FERREIRA O D, et al. Screening of Brazilian plant extracts as candidates for the control ofSpodoptera frugiperda[J]. Revista Colombiana de Entomología, 2018, 44(1): 32-38.
[80]ANDRADE R, CARLOS R, OEHLSCHLAGER A C, et al. Optimization of a pheromone lure forSpodoptera frugiperda (Smith) in Central America [J]. Journal of the Brazilian Chemical Society, 2000, 11(6): 609-613.
[81]CRUZ I, FIGUEIREDO M D L C, SILVA R B D, et al. Using sex pheromone traps in the decisionmaking process for pesticide application against fall armyworm (Spodoptera frugiperda[Smith].[Lepidoptera: Noctuidae]) larvae in maize[J]. International Journal of Pest Management, 2012, 58(1): 83-90.
[82]CRUZ I, FIGUEIREDO M D L C, SILVA R B, et al. Efficiency of chemical pesticides to controlSpodoptera frugiperda and validation of pheromone trap as a pest management tool in maize crop[J]. Revista Brasileira De Milho E Sorgo, 2010, 9(2): 1-16.
[83]MEAGHER R L, NAGOSHI R N, ARMSTRONG J S, et al. Captures and host strains of fall armyworm (Lepidoptera: Noctuidae) males in traps baited with different commercial pheromone blends[J]. Florida Entomologist, 2013, 96(3): 729-740.
[84]GUERRERO A, MALO E A, COLL J, et al. Semiochemical and natural productbased approaches to controlSpodoptera spp. (Lepidoptera: Noctuidae)[J]. Journal of Pest Science, 2014, 87(2): 231-247.
[85]WAQUIL J M, DOURADO P M, CARVALHO R A D, et al. Manejo de lepidópterospraga na cultura do milho com o evento Bt piramidado Cry1A.105 e Cry2Ab2 [J]. Pesquisa Agropecuaria Brasileira, 2013, 48: 1529-1537.
[86]BERNARDI O, AMADO D, SOUSA R S, et al. Baseline susceptibility and monitoring of Brazilian populations ofSpodoptera frugiperda (Lepidoptera: Noctuidae) andDiatraea saccharalis (Lepidoptera: Crambidae) to Vip3Aa20 insecticidal protein [J]. Journal of Economic Entomology, 2014, 107(2): 781-790.
[87]MWILLRICH S, BABOCK J M, NOLTING S, et al. Efficacy of Cry1F insecticidal protein in maize and cotton for control of fall armyworm (Lepidoptera: Noctuidae)[J]. Florida Entomologist, 2008, 91(4): 555-565.
[88]OLIVEIRA R S D, OLIVEIRANETO O B, MOURA H F N, et al. Transgenic cotton plants expressing Cry1Ia12 toxin confer resistance to fall armyworm (Spodoptera frugiperda) and cotton boll weevil (Anthonomus grandis)[J]. Frontier Plant Science, 2016, 7(854): 165.
[89]TINDALL K V, SIEBERT M W, LEONARD B R, et al. Efficacy of Cry1Ac:Cry1F proteins in cotton leaf tissue against fall armyworm, beet armyworm, and soybean looper (Lepidoptera: Noctuidae)[J]. Journal of Economic Entomology, 2009, 102(4): 1497-1505.
[90]MARTINELLI S, DE CARVALHO R A, DOURADO P M, et al. Resistance ofSpodoptera frugiperda toBacillus thuringiensis proteins in the Western Hemisphere [M]∥FIUZA L M, POLANCZYK R A, CRICKMORE N.Bacillus thuringiensis andLysinibacillus sphaericus: Characterization and use in the field of biocontrol. Gewerbestrasse: Springer International Publishing, 2017: 273-288.
[91]CARRIRE Y C N, TABASHNIK B E. Optimizing pyramided transgenic Bt crops for sustainable pest management [J]. Nature Biotechnology, 2015, 33:161-168.
[92]OMOTO C, BERNARDI O, SALMERON E, et al. Fieldevolved resistance to Cry1Ab maize bySpodoptera frugiperda in Brazil [J].Pest Management Science,2016,72(9):1727-1736.
[93]FARIAS J R, ANDOW D A, HORIKOSHI R J, et al. Fieldevolved resistance to Cry1F maize bySpodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil[J]. Crop Protection, 2014, 64(3): 150-158.
[94]BURTET L M, BERNARDI O, MELO A A, et al. Managing fall armyworm,Spodoptera frugiperda (Lepidoptera: Noctuidae), with Bt maize and insecticides in southern Brazil [J]. Pest Management Science, 2017, 73(12): 2569-2577.
[95]STORER N P, BABCOCK J M,SCHLENZ M, et al. Discovery and characterization of field resistance to Bt maize:Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico [J]. Journal of Economic Entomology,2010,103(4):1031-1038.
[96]STORER N P, THOMPSON G D, HEAD G P. Application of pyramided traits against Lepidoptera in insect resistance management for Bt crops [J].GM Crop Food,2012,3(3):154-162.
[97]LI Guoping, REISIG D, MIAO Jin, et al. Frequency ofcry1F nonrecessive resistance alleles in north Carolina field populations ofSpodoptera frugiperda (Lepidoptera: Noctuidae)[J/OL]. PLoS ONE, 2016, 11(4): e0154492.
[98]NIU Ying, MEAGHER R L, YANG Fei, et al. Susceptibility of field populations of the fall armyworm (Lepidoptera: Noctuidae) from Florida and Puerto Rico to purified Cry1F protein and corn leaf tissue containing single and pyramided Bt genes[J]. Florida Entomologist, 2013,96(3): 701-713.
[99]NIU Ying, YANG Fei, DANGAL V, et al. Larval survival and plant injury of Cry1Fsusceptible, resistant, andheterozygous fall armyworm (Lepidoptera: Noctuidae) on nonBt and Bt corn containing single or pyramided genes[J]. Crop Protection, 2014, 59: 22-28.
[100]NIU Ying, QURESHI J A, NI Xinzhi, et al. F2 screen for resistance toBacillus thuringiensisCry2Ab2maize in field populations ofSpodoptera frugiperda (Lepidoptera: Noctuidae) from the southern United States [J]. Journal of Invertebrate Pathology, 2016, 138: 66-72.
[101]BANERJEE R, HASLER J, MEAGHER R, et al. Mechanism and DNAbased detection of fieldevolved resistance to transgenic Bt corn in fall armyworm (Spodoptera frugiperda)[J]. Scientific Reports, 2017, 7(1): 10877.
[102]CAMARGO A M, CASTAERA P, FARINS G P, et al. Comparative analysis of the genetic basis of Cry1F resistance in two strains ofSpodoptera frugiperda originated from Puerto Rico and Florida [J]. Journal of Invertebrate Pathology, 2017, 146: 47-52.
[103]SANTOSAMAYA O F, TAVARES C S, MONTEIRO H M, et al. Genetic basis of Cry1F resistance in two Brazilian populations of fall armyworm,Spodoptera frugiperda[J]. Crop Protection, 2016, 81: 154-162.
[104]HORIKOSHI R J, BERNARDI D, BERNARDI O, et al. Effective dominance of resistance ofSpodoptera frugiperda to Bt maize and cotton varieties: implications for resistance management [J]. Scientific Reports, 2016, 6: 34864.
[105]LEE M K, WALTERS F S, HART H, et al. The mode of action of theBacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab deltaendotoxin [J]. Applied Environmental Microbiology,2003,69(8):4648-4657.
[106]GOUFFON C, VAN V A, VAN R J, et al. Binding sites forBacillus thuringiensisCry2Ae toxin on heliothine brush border membrane vesicles are not shared with Cry1A, Cry1F, or Vip3A toxin [J].Applied Environmental Microbiology, 2011, 77(10): 3182-3188.
[107]CHAKROUN M, BEL Y, CACCIA S, et al. Susceptibility ofSpodoptera frugiperda andS. exiguatoBacillus thuringiensis Vip3Aa insecticidal protein [J]. Journal of Invertebrate Pathology, 2012, 110(3): 334-339.
[108]ESCUDERO I R D, BANYULS N, BEL Y, et al. A screening of fiveBacillus thuringiensis Vip3A proteins for their activity against lepidopteran pests[J]. Journal of Invertebrate Pathology, 2014, 117(2): 51-55.
[109]FANG Jun, XU Xiaoli, WANG Ping, et al. Characterization of ChimericBacillus thuringiensis Vip3 toxins [J]. Applied Environmental Microbiology, 2007, 73(3): 956-961.
[110]HERNNDEZMARTNEZP, HERNNDEZRODRGUEZ C S, RIE J V, et al. Insecticidal activity of Vip3Aa, Vip3Ad, Vip3Ae, and Vip3Af fromBacillus thuringiensis against lepidopteran corn pests [J]. Journal of Invertebrate Pathology, 2013, 113(1): 78-81.
[111]SENA J A, HERN NDEZRODR GUEZ C S, FERR J. Interaction ofBacillus thuringiensisCry1 and Vip3A proteins withSpodoptera frugiperda midgut binding sites [J]. Applied & Environmental Microbiology, 2009, 75(7): 2236-2237.
[112]BERNARDI O, BERNARDI D, AMADO D, et al. Resistance risk assessment ofSpodoptera frugiperda (Lepidoptera: Noctuidae) andDiatraea saccharalis (Lepidoptera: Crambidae) to Vip3Aa20 insecticidal protein expressed in corn [J]. Journal of Economic Entomology,2015,108(6):2711-2719.
[113]严玉听. 先正达公司获准在阿根廷销售Agrisure Viptera牌玉米新品种[J]. 农药市场信息, 2011(15): 33.
[114]BERNARDI O, BERNARDI D, RIBEIRO R S, et al. Frequency of resistance to Vip3Aa20 toxin fromBacillus thuringiensis inSpodoptera frugiperda (Lepidoptera: Noctuidae) populations in Brazil [J]. Crop Protection, 2015, 76: 7-14.
[115]WILD S. African countries mobilize to battle invasive caterpillar [J]. Nature, 2017, 543:13-14.
[116]FAO. Sustainable management of the fall armyworm in Africa FAO programme for action [R]. Rome: Food and Agriculture Organization of the United Nations, 2017.
[117]PRASSANNA B M, HUESING J E, EDDY R, et al. Fall armyworm in Africa: A guide for integrated pest management[R]. Mexico, CDMX: CIMMYT,2018.
[118]CABI. CABI warns of rapid spread of cropdevastating fall armyworm across Asia[R]. Wallingford, UK: CAB International, 2018.
[119]WFP. The fall armyworm: advancing threat to global food security [R].Des Moines, Iowa: the World Food Prize,2018.
(責任编辑:田 喆)