脓毒症急性肾损伤的研究机制及进展
2018-05-08郑婷杨定平
郑婷 杨定平
[摘要] 急性肾损伤是严重脓毒症的最常见和严重的并发症之一。脓毒症急性肾损伤(SAKI)患者的发病率和死亡率居高不下。近年来,越来越多的研究表明线粒体动力学改变、自噬、氧化应激、炎性反应等机制在SAKI的形成过程中起到极其重要的作用。充分了解SAKI的发生发展机制,有助于更好地予以防治,有效降低发病率和病死率。因此,本文就SAKI的發生、发展机制作一综述。
[关键词] 脓毒症;急性肾损伤;线粒体;炎性反应;氧化应激;细胞凋亡;自噬
[中图分类号] R692 [文献标识码] A [文章编号] 1673-7210(2018)02(c)-0024-04
[Abstract] Acute kidney injury is one of the most common and serious complications of severe sepsis. And the incidence and mortality of patients with sepsis-induced acute kidney injury (SAKI) remained high. In recent years, more and more studies have shown that the mechanism of mitochondrial dynamics, autophagy, oxidative stress and inflammatory response plays an extremely important role in the formation of SAKI. Therefore, understanding the development mechanism of SAKI is helpful for better prevention and control, and effectively reduce morbidity and mortality. In this paper, the mechanism of occurrence and development of SAKI is reviewed.
[Key words] Sepsis; Acute kidney injury; Mitochondrial;Inflammatory response; Oxidative stress; Apoptosis; Autophagy
脓毒症是一种常见的致命性疾病,能导致宿主无法反应性控制入侵机体的微生物及其产物的活动性感染,而引起全身炎性反应综合征,进一步发展成脓毒性休克、多器官功能障碍综合征(MODS)[1]。因此脓毒症成为重症监护室病房内非心脏患者死亡的主要原因[2]。肾脏作为MODS最常受累器官之一,急性肾损伤(AKI)的发生率相当高[3-4]。Angus等[5]发现来自美国七个州的192 980例严重脓毒症患者中,AKI发生率为22%,死亡率为38.2%。在其他发达国家,监护室的AKI患病率高达38.4%~39.3%,其中90 d的死亡率占13.9%~33.7%[5-6]。我国的一项多中心前瞻性研究发现纳入的1255例监护室患者中AKI发病率为31.6%,其中脓毒症急性肾损伤(SAKI)患者占44.9%,90 d病死率为41.9%[7]。Wen等[8]研究发现AKI最常见的病因是脓毒症,占总患病的47.5%。因此,如何防治脓毒症最常见并发症之一的AKI的发生发展,成为当代医疗中非常严峻的医学问题之一。
1 AKI与脓毒症
AKI是指48 h血肌酐增高≥0.3 mg/dL或者血肌酐增高≥基础值1.5倍,明确或经推断其发生在之前7 d之内;或持续6 h尿量< 0.5 mL/(kg·h),表现为氮质血症、水电解质和酸碱平衡以及全身各系统症状一组临床综合征[9]。AKI由于高死亡率和高发病率,严重影响公众健康。脓毒症可引起多器官功能障碍,AKI是脓毒症最常见的并发症之一[10]。据相关研究报道约50%的脓毒症患者会合并AKI,70%患者的死亡与AKI相关[11-13]。
2 SAKI的相关发病机制
2.1 SAKI与自噬
自噬是通过溶酶体系统降解胞浆中受损的线粒体等细胞器及错误折叠的大分子蛋白质,来维持细胞稳态的一种细胞生物学过程[14],是一种广泛存在于真核细胞中对持续性内外刺激的非损伤性应答反应。生理状态下,适当的自噬在维持细胞结构、代谢和功能的平衡中起重要作用,而在过强或过久的内外病理刺激下引发的过度自噬可能直接诱发细胞发生Ⅱ型细胞程序性死亡即自噬性细胞死亡[15]。目前自噬在SAKI中是起到保护性作用还是促进细胞损伤一直存在争议,而多数研究证实自噬可减轻AKI。在盲肠穿刺结扎引起SAKI模型中发现,早期自噬反应的幅度越强,则后期脓毒症致肾损伤的程度越轻[16]。Mei等[17]在SAKI动物模型中,发现atg7基因敲除小鼠比野生型小鼠的AKI的程度更重。Wu等[18]发现SAKI模型中,LPS引起的AKI通过激活NF-κB信号通路来减少自噬和增强肾脏炎性反应对肾脏造成损伤,而抑制NF-κB信号通路,可增强自噬和减轻肾脏炎性反应,从而减轻对肾脏造成的损伤。因此,自噬增多及其清除功能增强在维持肾小管上皮细胞的稳态中具有重要的临床意义。
2.2 SAKI与炎性反应
在细菌释放的内毒素或内毒素样物质的作用下,机体中性粒细胞、单核巨噬细胞、血管内皮细胞发生复杂的免疫网络反应,并向血液循环中释放出大量的内源性炎症介质(包括IL-1、IL-6、TNF-α、PAF、前列腺素等),造成包括肾脏在内的多脏器损害。Zhao等[19]和Zhang等[20]发现,在LPS诱导的SAKI的SD大鼠模型中,甘草酸和橙花叔醇通过抑制NF-κB和TLR4信号通路减轻脓毒症AKI。Hu等[21]进一步研究发现提出银杏黄酮苷元通过上调SIRT1的表达,阻断NF-κB信号通路,来抑制LPS诱导的肾小管上皮细胞炎性反应。TLR4/NF-κB通路被证实参与肾脏炎症应答的过程[22],抑制TLR4/NF-κB介导的炎性反应对LPS诱导的AKI具有保护作用[23]。因此,炎性反应是SAKI的重要机制,抑制炎性反应通路是治疗脓毒症的一种重要的治疗方案,为临床上治疗SAKI患者提供了新思路。
2.3 SAKI与细胞凋亡
细胞凋亡是通过一系列基因的激活、表达以及调控等的作用,来维持细胞内环境稳定的程序性死亡。在受到病理性刺激后,细胞凋亡失调致使细胞死亡过度,引起器官功能障碍。既往观点认为肾缺血及炎性因子造成的急性肾小管坏死(acute tubular necrosis,ATN)在SAKI中起主导作用。然而近年来的研究表明,细胞凋亡是脓毒症致AKI发生发展的重要机制[24]。既往研究发现Fas和Caspase信号通路相关的细胞凋亡介导了SAKI的肾小管上皮细胞存在广泛死亡[25]。而这些线粒体依赖的细胞凋亡途径开始于细胞氧化应激的产生(包括线粒体来源活性氧增多、细胞内NO生成减少),随后促进Bax和Bcl-2蛋白复合物进入线粒体,致使线粒体通透性增加、线粒体转换孔开放,释放细胞色素C激活Caspase-3,启动细胞凋亡途径[26-28]。张敏等[29]发现在盲肠结扎穿孔致SAKI大鼠模型中,CHOP和Caspase-12基因表达增加,提示SAKI与内质网应激后凋亡途径诱导肾小管上皮细胞凋亡有关。虽然Caspase家族作为SAKI中肾脏细胞凋亡三大途径的共同交叉点,但其细胞凋亡信号的通路至今仍为未研究清楚。因此为使细胞凋亡成为SAKI临床干预的全新靶点,仍需进一步探讨SAKI中与细胞凋亡相关的其他信号通路。
2.4 SAKI与线粒体机制的研究
在SAKI的发生发展过程中,细胞缺氧是及其重要的发病机制。线粒体是为细胞生命活动提供能量的场所,在细胞代谢、细胞信号通路、细胞生存能力中起到非常重要的作用,也是人体氧代谢的最主要的细胞器[30]。当细胞受到外来刺激后,线粒体发生如下变化:①线粒体结构改变(线粒体外膜通透性增加,释放内膜cytochrome c等蛋白、线粒体膜电荷改变);②线粒体DNA突变(线粒体DNA点突变及缺失);③线粒体活性氧自由(mROS)产物过剩;④线粒体动力学变化(线粒体融合转向分裂)。
Levy等[31]就提出脓毒症组织的氧利用受损主要是由于线粒体功能障碍,导致ATP产生和生物能产生减少。随后Tran等[32]在SAKI的小鼠模型中,发现肾小管细胞发生线粒体结构发生改变(包括肾小管上皮细胞线粒体发生肿胀、线粒体嵴断裂),得出结论SAKI与线粒体的结构改变有关,除此之外,Tran等[32]进一步发现SAKI模型中PGC-1α表达量随着肾功能下降而减少,PGC-1α敲除小鼠比对照鼠肾功能损伤更严重。PGC-1α在近端肾小管内广泛表达。过表达PGC-1α可增加近端小管上皮细胞中线粒体数量,提高呼吸链功能,促进氧化应激后線粒体功能恢复,进而提高细胞存活率[33]。PGC-1α有望成为增加肾脏线粒体应激耐受力的有效靶点。Morigi等[34]证明线粒体分裂和线粒体融合促进线粒体间代谢产物和底物的交换,并且参与SAKI的发病机理。近期研究发现,通过调节线粒体膜上发动蛋白相关蛋白1、线粒体分裂因子、视神经萎缩1蛋白表达,来控制线粒体融合/分裂,促进PINK1相关的线粒体自噬[35]。
2.5 SAKI与肾脏缺血再灌注
脓毒症发生发展过程中,血液循环系统中的病原体释放大量炎症介质和细胞因子,致使心脏舒缩功能障碍、动脉血管舒张、肾脏血流量减少,同时也会造成血管内皮损伤、内皮素释放和微血栓形成更进一步导致肾小动脉痉挛及肾血流量减少。另外,由于肾脏缺氧及酸性代谢物增多,使得交感神经兴奋,RASS系统被激活,导致肾血管收缩、肾血流量进一步减少。以往,研究者认为缺血坏死是SAKI的主要发病机制,而Bagshaw等[36]发现,在脓毒性休克中,肾脏皮质和髓质的血流不仅未减少反而增加,并非只由缺血、坏死或者缺血/再灌注引起,因此SAKI的病理改变完全不同于其他AKI。另外,在脓毒症动物模型中,肾血流量减少占62%,不变或增加占38%。统计学单因素研究提示肾血流量的减少并非脓毒症的直接影响因素,统计学多因素分析提示心排出量降低,肾血流量明显下降,当肾脏发生再灌注时,肾血流恢复,机体会发生灌注损伤,产生氧自由基造成细胞损伤[37]。由此可见,缺血再灌注在SAKI发病过程中是否起重要作用,由于缺乏直接检测方法,其在SAKI中的具体机制还待进一步研究。
3 小结
SAKI在临床上的发病率和死亡率均较高,一直以来是研究的热点。近年来研究者对SAKI的认识不断深入,对于其发病机制、诊断、治疗也提出了一些新的观点。目前研究提示线粒体、细胞凋亡、自噬不仅参与SAKI的发病过程,而且是该疾病可观的治疗靶点。因此从不同的角度探讨SAKI的发病机理是非常有必要的,只有进一步研究清楚该病发病机制,才能更好地予以预防和靶向治疗,从而提高临床上该病的治愈率和减少该病的死亡率。
[参考文献]
[1] Singer M,Deutschman CS,Seymour CW,et al. The third international consensus definitions for sepsis and septic shock(Sepsis-3)[J]. The Journal of the American Medical Association,2016,315(8): 801-810.
[2] Ricci Z, Ronco C. Pathogenesis of acute kidney injury during sepsis [J]. Curr Drug Targets,2009,10(5):1179-1183.
[3] Doi K. Role of kidney injury in sepsis [J]. Curr Opin Crit Care,2014,20:588-595.
[4] Nisula S,Kaukonen KM,Vaara ST,et al. Incidence risk factors and 90-day mortality of patients with acute kidney injury in Finnish intensive care units FINNAKE study [J]. Intensive Care Med,2013,39(3):420-428.
[5] Angus DC,Linde-Zwirble WT,Lidicker J,et al. Epidemiology of severe sepsis in the United States:analysis of incidence,outcome,and associated costs of care [J]. Crit Care Med,2001,29(7):1303-1314.
[6] Shinjo H,Sato W,Imai E,et al. Comparis of kidney disease:improving global outcomes and acute kidney injury net work criteria for assessing patients in intensive care units [J]. Clin Exp Nephorl,2014,18(5):737-745.
[7] Fang Y,Ding X,Zhong Y,et al. Actue kidney injury in a Chinese hospitalized population[J].Blood Purif,2010,30(2):120-126.
[8] Wen Y,Jiang L,Xu Y,et al. Prevalence risk factors clinical course and outcome of acute kidney injury in Chinese intensive care units :a prospective cohort study [J].Chin Med J,2013,126(23):4409-4416.
[9] Kellum JA,Lameire N. KDIGO AKI Guide line Work Group Diagnosis,evaluation,and management of acute kidney injury. A KDIGO summary (part 1)[J]. Crit Care,2013,17(1):204.
[10] Goncalves GM,Zamboni DS,Camara NO. The role of innate immunity in septic acute kidney injuries [J]. Shock,2010,34(7):22-26.
[11] Hocherl K,Schmidt C,Kurt B,et al. Inhibition of NF-κB ameliorates sepsis-induced downregulation of aquaporin-2/V2 receptor expression and acute renal failure in vivo [J].Am J Physiol Renal Physiol,2010,298(1):F196-204.
[12] Lopes JA,Fernandes P,Jorge S,et al. Long-term risk of mortality after acute kidney injury in patients with sepsis:a contemporary analysis [J]. BMC Nephrology,2010, 11(1):1-10.
[13] Bagshaw SM,Darmon M,Ostermann M,et al. Current state of the art for renal replacement therapy in critically ill patients with acute kidney injury [J]. Intensive Care Med,2017,43(6):841-854.
[14] Mizushima N,Levine B,Cuervo AM,et al. Autophagy Fights disease through cellular self-digestion [J]. Nature,2008, 451(7182):1069-1075.
[15] Leventhal JS,Ni J,Osmond M,et al. Autophagy limits endotoxemic acute kidney injury and alters renal tubular epithelial cell cytokine expression [J]. PLoS One,2016, 11(3):e0 150 001.
[16] Jiang M, Wei Q,Dong G,et al. Autophagy in proximal tubules protects against acute kidney injury [J]. Kidney Int,2012,82(12):1271-1283.
[17] Mei S,Livingston M,Hao J,et al. Autophagy is activated to protect against endotoxic acute kidney injury [J]. Scientific Reports,2016,6:22 171.
[18] Wu Y,Zhang Y,Wang L,et al. The role of Autophagy in kidney inflammatory injury via the NF-κB route induced by LPS [J]. Int J Med Sci,2015,12(8):655-667.
[19] Zhao H,Zhao M,Wang Y,et al. Glycyrrhizic acid attenuates sepsis induced acute kidney injury by inhibiting NF-κB signaling pathway [J]. Evid Based Complement Alternat Med,2016:8 219 287.
[20] Zhang L,Sun D,Bao Y,et al. Nerolidol protects against LPS-induced acute kidney injury via inhibiting TLR4/NF-κB signaling [J]. Phytolther Res,2017,31(3):459-465.
[21] Hu L,Chen C,Zhang J,et al. IL-35 pretreatment alleviates lipopolysaccharide-induced acute kidney injury in mice by inhibiting NF-κB activation [J]. Inflammation,2017,40(4):1393-1400.
[22] Ye HY,Jin J,Jin LW,et al. Chlorogenic acid attenuates lipopolysaccharide-induced acute kidney injury by inhibiting TLR4/NF-kappaB signal pathway [J]. Inflammation,2017,40(2):523-529.
[23] Zhao H,Zheng Q, Hu X,et al. Betulin attenuates kidney injury in septic rats through inhibiting TLR4/NF-kappaB signaling pathway [J]. Life Sci,2016,144:185-193.
[24] Lerolle N,Nochy D,Guerot E,et al. Histopathyology of septic shock induced renal injury apotosis and leukocytic infiltration [J]. Intensive Care Med,2010,36(3):471-478.
[25] Cantaluppi V,Weber V,Lauritano C,et al. Protective effect of resin on septic plasma-induced tubular injury [J]. Critical Care,2010,14(1):R4.
[26] 宣小燕,張爱华,黄松明.线粒体通透性转换孔与急性肾损伤[J].中华肾脏病杂志,2010,48(16):1243-1246.
[27] Muthuraman A, Sood S,Ramesh M,et al. Therapeutic potential of 7,8-dimethoxvcoumarin on cisplatin and ischemia/reperfusion injury-induced acute renal failure in rats [J]. Naunyn Schmiedebergs Arch Pharmacol,2012, 385(7):739-748.
[28] Fernandes MP,Leite AC,Araujo FF,et al. The cratylia mollis seed leetin induces membrane permeability transition in isolated rat liver mitoehondria and a eyelosporine A-insensitive permeability ransition in trypanosoma cruzi mitochondria [J]. J Eukaryot Microbiol,2014,61(4):381-388.
[29] 张敏,严斌,陶悦,等.内质网应激在脓毒症大鼠肾损伤中的作用[J].中华实验外科杂志,2015,32(4):821-823.
[30] Pathak E,MacMillan-Crow LA,Mayeux PR. Role of mitochondrial oxidants in an in vitro model of sepsis-induced renal injury [J]. J Phar-macol Exp,2012,340(1):192-201.
[31] Levy MM,Fink MP,Marshall JC,et al. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference [J] Crit Care Med,2003,31(4):1250-1256.
[32] Tran M,Tam D,Bardia A,et al. PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice [J]. Clin Invest,2011,121:4003-4014.
[33] Rasbach KA,Schnellmann RG. PGC-1alpha over-expression promotes recovery from mitochondrial dysfunction and cell injury [J]. Biochem Biophys Res Commun,2007,355:734-739.
[34] Morigi M,Perico L,Rota C,et al. Sirtun 3-dependent mitochondrial dynamic improvements protect against acute kidney injury [J]. Clin Invest,2015,125(2):715-726.
[35] Parikh SM,Yang Y,He L,et al. Mitochondrial function and disturbances in the septic kidney [J]. Semin Nephrol,2015,35(1):108-119.
[36] Bagshaw SM,Uchino S,Bellomo R,et al. Septic acute kidney injury in critically ill patients:clinical characteristics and outcomes [J]. Clin J Am Soc Nephrol,2007,2(3):431-439.
[37] Langenberg C,Wan L,Egi M,et al. Renal blood flow in experimental septic acute renal failure [J]. Kidney Int,2006,69(11):1996-2002.
(收稿日期:2017-11-08 本文编辑:李岳泽)