同种异体骨移植在骨质疏松性肱骨近端骨折中的临床应用研究
2018-04-27曹烈虎翁蔚宗陈晓周启荣张军汪琳王尧纪方苏佳灿
曹烈虎 翁蔚宗 陈晓 周启荣 张军 汪琳 王尧 纪方 苏佳灿
肱骨近端骨折是骨质疏松人群中比较常见的一种骨折,其发病率每年约为90.9/100000[1],约占全身骨折的5%[2]。随着年龄的增长,其发生率也随之增高,且多见于老年人,约70%的肱骨近端骨折患者年龄>60岁[3-4],且大部分发生于女性,尤其是大于80岁以上的高龄老人,男女比例为3:7。明显移位以及骨质疏松的患者,骨折后易形成骨质压缩及丢失,致使肱骨颈部丧失其特有解剖对位标志,保守治疗对移位的骨折疗效较差,即使进行手术治疗,也给钢板固定造成极大困难,手术后容易发生复位丢失、缺血性坏死、螺钉穿出等并发症[5]。对于骨质疏松性肱骨近端骨折,锁定钢板治疗老年骨质疏松患者具有多角度固定、固定稳定的优势,能明显改善患者的术后功能,减少并发症的产生。但锁定钢板带来的并发症仍不少见,据文献报道,肱骨头骨量丢失和螺钉穿出率仍然高达29%,丢失约为6mm[6-7]。同种异体骨移植明显可以使肱骨头获得良好的支撑,促进骨折愈合,临床效果满意[8]。运用锁定钢板结合异体骨移植治疗老年骨质疏松肱骨近端骨折已有相关文献报道[9],但对不同的骨折类型进行临床疗效评判和影像资料分析,尚没有文献报道。因此,本文的目的在于探讨采用同种异体骨移植在骨质疏松性肱骨近端不同类型骨折中的应用价值。
资料与方法
一、一般资料
本研究共纳入患者36例,其中男17例,女19例,年龄65~82岁,平均(71.5±5.5)岁;致伤原因:摔伤25例,车祸外伤7例,运动伤4例。骨折根据Neer分型:外科颈或解剖颈二部分骨折14例,三部分骨折13例,四部分骨折9例。合并肩关节脱位4例,肋骨骨折3例,锁骨骨折1例。所有患者均采用切开复位锁定钢板内固定治疗。
二、纳入及排除标准
纳入标准:①患有骨质疏松症,双能X线骨密度T值<-2.5 SD(依据WHO推荐诊断标准,DXA 测定 T <-2.5 SD 为骨质疏松) ;②单侧肱骨近端骨折患者,骨折移位超过1 cm和成角大于45º;③骨折类型为Neer二部分、三部分和四部分骨折,且肱骨头与肱骨干嵌插、伴有肱骨头骨量丢失;④年龄≥60岁;⑤随访时间≥1年。
排除标准:①病理性骨折、开放性骨折;②合并有神经、血管损伤;③伤前上肢有手术史或慢性关节炎等影响肢体功能的疾病史。
三、手术方法
采用臂丛神经麻醉或全身麻醉,采用肩关节三角肌与胸大肌入路26例,三角肌劈开入路10例。术中尽量减少骨膜及周围软组织的剥离。对于简单骨折,助手根据术中骨折的具体情况适当牵引患肢,同时辅以内旋或外旋。抬升肱骨头,采用2枚2.5mm克氏针大结节上方置入肱骨头,通过克氏针操纵杆作用控制肱骨头的旋转、移位,从而辅助复位。对于复杂骨折,特别是大结节劈裂、小结节移位的粉碎性骨折,首先用2根不可吸收缝线分别穿过肩胛下肌止点、冈上肌和冈下肌止点,通过牵拉缝线来间接复位小结节或大结节骨折块。根据肱骨头移位的方向,适当牵引、内旋或外旋肱骨干,同时撬拨复位肱骨头。当骨折复位、肱骨头外形满意时,缝线可相互交叉打结临时固定骨折块,并于大结节后上方经皮将2枚克氏针置入肱骨头。确定内下区皮质复位满意后,同时,用2枚克氏针从肱骨干偏后方经皮斜向上置入肱骨头内下区,临时固定肱骨干与肱骨头。透视骨折复位大致满意后,直视下评估干骺端的缺损[10]。将准备好适量的同种异体骨植入在骨折端与肱骨头空隙内,再次透视确认骨折复位满意后,采用钢板进行最终固定;钢板放置于结节间沟外侧约5mm、大结节顶点下5~8mm处。近端置入锁定螺钉时,控制钻孔深度,经透视选择长度合适的螺钉,即达到肱骨头软骨下骨(距关节面6mm左右)。再于肱骨头内下区植入1枚内下斜向锁定螺钉,支撑肱骨头,防止肱骨头塌陷。放置钢板前于钢板缝合孔穿入3根2号不可吸收缝线,当钢板螺钉固定后,用不可吸收缝线穿过肩胛下肌、冈上肌、冈下肌和小圆肌止点并收紧打结。对于合并的小结节骨折,另采用1枚3.5mm空心钉固定。内固定结束后反复经C臂正侧位、腋位透视多角度透视确认螺钉不在关节腔内,确认无误后,再冲洗关闭伤口。本研究16例采用肱骨近端内固定锁定系统(proximal humeral internal locking system,PHILOS)钢板(Synthes公司,瑞士)固定,14例患者采用肱骨近端锁定钢板(1ocking proximal humeral plate,LPHP)(捷迈公司,美国)固定,6例采用国产肱骨近端锁定钢板(厦门大博器械有限公司)固定。术毕常规放置引流管,留置24 h内拔除引流管。
四、术后康复
术后第1天进行指间关节、腕关节的主动活动,术后1周进行肘关节的伸屈活动,肩关节小于90º外展活动,术后2周进行患侧上肢的爬墙练习。术后4周内予肩关节内旋及轻度前屈外展位悬吊固定。术后6周起进行肩袖肌群的等长收缩训练并逐渐过渡到肩关节主动锻炼。
五、随访评估指标
术后2周、1个月、2个月、3个月,然后每2个月进行门诊拍片,直至骨折愈合。根据影像学评估骨折愈合情况,记录术后颈干角,肱骨头高度(过钢板上缘和肱骨头顶点并垂直肱骨干纵轴的两条平行线间的距离)。术后1年应用Constant评分、加利福尼亚大学洛杉矶分校(University of California,Los Angeles,UCLA)肩关节评分、、疼痛视觉模拟评分(visual ana1ogue scale,VAS)评估患者疗效。同时记录末次随访患肩关节活动功能及术后相关并发症,如内固定失败、螺钉切出、肱骨头坏死、感染等。
结 果
所有患者术后获6~36个月(平均31.6个月)随访,34例患者获骨性愈合,骨折愈合时间(5.5±0.7)个月(3~9个月),未出现同种异体骨排异反应。术后1年时末次随访,二、三、四部分颈干角分别为 129°±5°(121~135°)、128°±3°(111~140°)、121°±4°(110~134°),四部分骨折颈干角明显低于二、三部分骨折,差异具有统计学意义(P <0.01);二、三、四部分肱骨头高度分别丢失(1.7±0.4)mm(1.2~2.7mm)、(1.8±0.3)mm(1.3~3.1mm)、(1.9±0.5)mm(1.4~3.5mm),三组之间差异无统计学意义(P >0.05);二、三、四部分疼痛VAS评分分别为(1.7±0.8)分(1~3分)、(1.5±0.5)分(1~3分)、(1.4±0.3)分(1~3 分),三组之间差异无统计学意义(P >0.05);但二、三、四部分功能Constant评分分别为(82.0±4.2)分(52~90分)、(78.0±3.6)分 (57~91分)、(63.0±3.8)分(55~89分),UCLA评分分别为(31.3±2.1)分(27~35分)、(30.2±1.5)分(26~33分)、(27.6±1.6)分(23~31分),二、三部分肩关节功能明显优于四部分骨折,差异有统计学意义(P <0.01)(表1)。7例患者出现相关并发症,并发症发生率19.4%,四部分骨折并发症发生率高达44.4%,明显高于二部分骨折7.6%,三部分骨折14.2%(表2)。二部分骨折1例出现肩峰撞击征,功能尚可,三部分骨折1例出现肩峰撞击征,疼痛尚可忍受,另外1例复位丢失,再次行翻修手术后3个月骨折愈合,四部分骨折1例患者螺钉穿出,予以取出突入关节内螺钉,2例患者出现肱骨头坏死,行半肩置换术,1例患者出现肱骨头塌陷,年龄较大,家属拒绝再次手术。典型病例见图1、2。
表1 不同类型骨折患者末次随访评估情况(±s)
表1 不同类型骨折患者末次随访评估情况(±s)
注:UCLA为加利福尼亚大学洛杉矶分校;VAS为视觉模拟评分
分型 例数颈干角(°)Constant(分)UCLA(分)高度丢失(mm)VAS(分)二部分骨折 13129±51.7±0.482.0±4.231.3±2.11.7±0.8三部分骨折 14128±31.8±0.378.0±3.630.2±1.51.5±0.5四部分骨折 9 121±41.9±0.563.0±3.827.6±1.61.4±0.3检验值 F=11.42 F=0.7133 F=68.45 F=11.96 F=0.7534 P值 0.0002 0.4974 <0.01 <0.01 0.4787
表2 不同类型骨折患者出现并发症情况
图1 患者,女,74岁,摔伤致右肱骨近端骨折(Neer 三部分骨折) 图A为术前X线片显示患者肱骨近端外翻压缩,蛋壳样结构;图B为术后即刻;图C为术后1年X线片示肱骨高度明显恢复,内侧皮质复位
图2 患者,男,84岁,车祸致右肱骨近端骨折(Neer 四部分骨折) 图A为术前X线片显示患者肱骨近端外翻伴骨折肱骨头脱位;图B为术前平扫CT; 图C为术后即刻; 图D为术后2个月X线片示肱骨头塌陷
讨 论
肱骨近端骨折多发生于≥65岁的老年人群,成为威胁老年人的第三大骨折。而且大部分老年人合并骨质疏松,骨质疏松是与年龄相关的一种全身性疾病,以低骨量和骨的微结构破坏为特征,导致骨强度降低,骨脆性增加,容易骨折。老年人因肱骨外科颈部骨质严重疏松、皮质骨变薄及髓腔骨质稀疏,使肱骨头颈部呈蛋壳样结构[11]。锁定钢板是治疗骨质疏松性肱骨近端骨折的金标准,可有效复位肱骨头的解剖性和连续性,但由于肱骨头内骨质压缩与丢失,遗留较大空腔,导致肱骨头与肱骨干缺乏有效支撑,螺钉的把持力下降[12]。据目前文献报道,锁定钢板带来的并发症发生率高达49%,包括肱骨头塌陷、螺钉穿出关节腔、内固定失败、缺血性坏死、畸形愈合等并发症[13-15]。Owsley等[16]发现在大于60岁以上老年患者当中,锁定钢板带来很高的螺钉穿出关节腔和手术再翻修率。其中骨质的低密度和内侧结构缺乏支撑是影响锁定钢板的重要因素,Krappinger等[17]报道证实低骨密度将会是加剧内固定失败和复位丢失的重要因素。 因此,骨质疏松性肱骨近端骨折进行有效的结构植骨可使肱骨头得到有效的支撑,从而降低肱骨头塌陷,降低螺钉穿出关节腔的发生概率。
同种异体骨植入可有效提高锁定钢板的稳定性,防止肱骨头塌陷,功能活动良好[18]。因此,本次研究运用锁定钢板结合异体骨植骨治疗老年骨质疏松性肱骨近端骨折,由于锁定钢板螺钉的把持固定和肱骨头受到同种异体骨的支撑,末次随访肱骨近端二、三部分骨折影像结果和临床效果满意。但在四部分骨折方面,肱骨头高度分别丢失(1.9±0.5)mm、颈干角 121°±4°、Constant评分(63.0±3.8)分,UCLA评分(27.6±1.6)分,1例患者螺钉穿出,2例患者出现肱骨头坏死,1例患者复位丢失、内翻塌陷,并发症发生率高达44.4%,临床效果较差。与二、三部分骨折存在明显的统计学差异,这与四部分骨折损伤较为严重,加上患者合并骨质疏松,骨折块难以维持复位以及血运破坏密切相关。因此,近年来有学者运用锁定钢板联合同种异体腓骨段重建内侧柱,术后相关并发症明显降低,可有效改善肱骨近端四部分骨折的术后功能,临床效果满意[19-20]。
临床中对于植骨材料的选择, 有自体骨、骨水泥、人工骨、同种异体骨等植骨材料。自体骨具有良好的骨传导、骨诱导和骨生成作用,是最理想的骨移植材料,但自体骨来源有限,并且取自体骨有血肿、感染、取区疼痛等并发症 ,很少在肱骨近端骨折采用。骨水泥聚甲基丙烯酸甲酯具有良好的生物力学特性,有学者通过尸体试验将甲基丙烯酸甲酯骨水泥固化骨质疏松性肱骨骨折螺钉头部来增强钢板稳定性,并通过生物力学试验证实其有增加螺钉的把持力[21-23]。其想法主要基于早期骨水泥强化主要用脊柱骨质疏松骨折椎弓根螺钉领域。通过骨水泥经螺钉中空流出通道,通过螺钉尖端侧孔弥散于骨小梁中,形成“螺钉-骨水泥-骨小梁”复合体, 使螺钉固定于椎体中, 从而提高了内固定的稳定性[24],但骨水泥散热带来对局部骨折和软骨的损伤可能会引起股骨头坏死,是不可忽视的问题。Lazejak等[25]体外实验研究表示加入0.5 ml聚甲基丙烯酸甲酯骨水泥螺钉周围软骨下和 关节面的温度分别为43.5º和38.6º,另外,仍然存在骨水泥渗漏、体内不能生物降解及不具生物相容性等问题。因此,聚甲基丙烯酸甲酯骨水泥并不能将其作为一个常规的手段。磷酸钙骨水泥具有可注射性、生物活性、 可生物降解等优点,在近年来用在肱骨近端骨折中较多。Robinson等[26]首次报道了将螺钉钢板结合可注射性硫酸钙治疗25例肱骨近端骨折患者,取得良好的效果。Egol等[27]通过病例对照研究,将92例肱骨近端骨折患者分成三组:磷酸钙骨水泥组、松质骨组和对照组,随访1年时间,结果硫酸钙组骨水泥较其他两组能明显降低骨折沉降和减少螺钉穿出率。Somasundaram等[28]报道运用硫酸钙结合锁定钢板21例患者(22处肱骨近端骨折),通过2年的随访,骨折都完全愈合,无股骨头坏死和螺钉穿出,人工骨6个月完全吸收。但其价格昂贵、固化时间较快、降解速度较慢,以及有出现排异反应,限制了其在临床中的广泛运用。
同种异体骨来源广泛,与自体骨相同的结构,具有一定的支撑力,异体冻干小块骨成为骨移植常用植骨材料,为骨再生提供并维持一个生长空间,且同种异体松质骨有成骨细胞容易黏附和增殖的界面,以及利于营养成分渗透的三维多孔结构,可为骨髓细胞提供良好的载体和吸附材料,其生物相容性好,能提供机械性结构支持,且人体易吸收[29]。因此,作者采用单皮质的同种异体髂骨植骨治疗塌陷型肱骨近端骨折,既避免了取自体骨引起的供区并发症,又比人工具有更好的生物相容性与术后早期的力学支撑。本研究采用锁定钢板联合同种异体骨治疗骨质疏松性肱骨近端骨折,末次随访研究发现二、三部分肱骨近端骨折中,肱骨头得到有效的支撑,骨折达到良好的愈合,肩关节的功能得到明显改善。
综上所述,同种异体骨植骨治疗骨质疏松性肱骨近端骨折可以使肱骨头得到有效的支撑,减少肱骨头高度的丢失和相关并发症。因此患者术后能够及早地进行功能锻炼,从而获得接近伤前的功能水平,但在四部分骨折方面,临床效果较差,并发症发生率较高。本文缺陷是单纯的病例回顾性研究,且病例数有限,有待扩大病例样本量、延长随访周期以及开展随机试验进一步验证。
[1] Park C, Jang S, Lee A, et al. Incidence and mortality after proximal humerus fractures over 50 years of age in South Korea: National claim data from 2008 to 2012[J]. J Bone Metab, 2015, 22(1):17-21.
[2] Court-Brown CM, Caesar B. Epidemiology of adult fractures: A review[J]. Injury, 2006, 37(8): 691-697.
[3] 吴克俭,王晓宁,张建.肱骨近端骨折[J/CD].中华肩肘外科电子杂志,2014,2(4):209-218.
[4] Sü dkamp N, Bayer J, Hepp P, et al. Open reduction and internal fixation of proximal humeral fractures with use of the locking proximal humerus plate. Results of a prospective, multicenter,observational study[J]. J Bone Joint Surg Am, 2009, 91(6):1320-1328.
[5] Gardner MJ, Weil Y, Barker JU, et al. The importance of medial support in locked plating of proximal humerus fractures[J]. J Orthop Trauma, 2007, 21(3): 185-191.
[6] Gerber C, Werner CM, Vienne P. Internal fixation of complex fractures of the proximal humerus[J]. J Bone Joint Surg Br, 2004,86B(6): 848-855.
[7] 白露,张洪雷,陈鹏,等.肱骨头内翻畸形导致肱骨近端骨折内固定失败的生物力学研究[J/CD].中华肩肘外科电子杂志,2015,3(2):7-13.
[8] 江红卫,曹烈虎,宋绍军,等.纳米人工骨与同种异体骨植骨治疗肱骨近端Ⅲ、Ⅳ型骨折的临床疗效对比[J].上海医学,2012,35(11):954-956.
[9] Olerud P, Ahrengart L, Söderqvist A, et al. Quality of Life and functional outcome after a 2-part proximal humeral fracture: a prospective cohort study on 50 patients treated with a locking plate[J]. J Shoulder Elbow Surg, 2010, 19(6): 814-822.
[10] Atalar AC, Eren I, Uludağ S, et al. Results of surgical management of valgus-impacted proximal humerus fractures with structural allografts[J]. Acta Orthop Traumatol Turc,2014, 48(5): 546-552.
[11] Hertel R. Fractures of the proximal humerus in osteoporotic bone[J]. Osteoporosis Int, 2005, 16(2): S65-S72.
[12] Charalambous CP, Siddique I, Valluripalli K, et al. Proximal humeral internal locking system (PHILOS) for the treatment of proximal humeral fractures[J]. Arch Orthop Trauma Surg,2007, 127(3): 205-210.
[13] Egol KA, Ong CC, Walsh M, et al. Early complications in proximal humerus fractures (OTA Types 11) treated with locked plates[J]. J Orthop Trauma, 2008, 22(3): 159-164.
[14] Ricchetti ET, Warrender WJ, Abboud JA. Use of locking plates in thetreatment of proximal humerus fractures[J]. J Shoulder Elbow Surg, 2010, 19(2 Suppl):66-75.
[15] Saltzman BM, Erickson BJ, Harris JD, et al. Fibular strut graft augmentation for open reduction and internal fixation of proximal humerus fractures: a systematic review and the authors' preferred surgical technique[J]. Orthop J Sports Med, 2016, 4(7): 2325967116656829.
[16] Owsley KC, Gorczyca JT. Displacement/screw cutout after open reduction and locked plate fixation of humeral fractures[J]. J Bone Joint Surg Am, 2008, 90A(2): 233-240.
[17] Krappinger D, Roth T, Gschwentner M, et al. Preoperative assessment of the cancellous bone mineral density of the proximal humerus using CT data[J]. Skeletal Radiol, 2012,41(3): 299-304.
[18] Schliemann B, Wähnert D, Theisen C, et al. How to enhance the stability of locking plate fixation of proximal humerus fractures?An overview of current biomechanical and clinical data[J].Injury, 2015, 46(7): 1207-1214.
[19] Matassi F, Angeloni R, Carulli C, et al. Locking plate and fibular allograft augmentation in unstable fractures of proximal humerus[J]. Injury, 2012, 43(11): 1939-1942.
[20] Osterhoff G, Baumgartner D, Favre P, et al. Medial support by fibula bone graft in angular stable plate fixation of proximal humeral fractures: an in vitro study with synthetic bone[J]. J Shoulder Elbow Surg, 2011, 20(5): 740-746.
[21] Unger S, Erhart S, Kralinger F, et al. The effect of in situ augmentation on implant Anchorage in proximal humeral head fractures[J]. Injury, 2012, 43(10): 1759-1763.
[22] Röderer G, Scola A, Schmölz W, et al. Biomechanical in vitro assessment of screw augmentation in locked plating of proximal humerus fractures[J]. Injury, 2013, 44(10): 1327-1332.
[23] Goetzen M, Windolf M, Schmoelz W. Augmented screws in angular stable plating of the proximal humerus: what to do when revision is needed? [J]. Clin Biomech (Bristol Avon),2014,29:1023-1026.
[24] Wu X, Gao MX, Sang HX, et al. Surgical treatment of osteoporotic thoracolumbar compressive fractures with open vertebral cement augmentation of expandable pedicle screw fixation: a biomechanical study and a 2-year follow-up of 20 patients[J]. J Surg Res, 2012, 173(1): 91-98.
[25] Lazejak M, Hofmann-Fliri L, Buchler L, et al. In vitro temperature evaluation during cement augmentation of proximal humerus plate screw tips[J]. Injury, 2013(44): 1321-1326.
[26] Robinson CM, Page RS. Severely impacted valgus proximal humeral fractures[J]. J Bone Joint Surg Am, 2004, 86 (2):143-155.
[27] Egol KA, Sugi MT, Ong CC, et al. Fracture site augmentation with Calcium phosphate cement reduces screw penetration after open reduction-internal fixation of proximal humeral fractures[J]. J Shoulder Elbow Surg, 2012, 21(6): 741-748.
[28] Somasundaram K, Huber CP, Babu V, et al. Proximal humeral fractures: the role of Calcium sulphate augmentation and extended deltoid splitting approach in internal fixation using locking plates[J]. Injury, 2013, 44(4): 481-487.
[29] Aponte-Tinao LA, Ritacco LE, Albergo JI, et al. The principles and applications of fresh frozen allografts to bone and joint Reconstruction[J]. Orthop Clin North Am, 2014, 45(2):257-269.