糖尿病治疗药物对恶性肿瘤的作用及影响
2018-04-08李倩马力文
李倩,马力文
北京大学第三医院肿瘤化疗与放射病科,北京1001910
高胰岛素血症和高血糖症是确认的致癌风险因素,不仅因为降糖药物会影响胰岛素的浓度,同时,也因其会直接影响细胞的生长、增殖与代谢,从而可能对肿瘤发生的风险有不同的影响。本文结合现有的研究及报道,对不同降糖药物的机制及其对恶性肿瘤的影响作一综述。
1 胰岛素增敏剂
1.1 二甲双胍
二甲双胍抗肿瘤的机制主要是通过直接作用于癌细胞和间接作用于胰岛素以降低血糖水平而发挥作用[1]。
1.1.1 直接作用机制MTOR信号通路是促进癌症发生、发展的重要通路。二甲双胍能够通过影响线粒体氧化磷酸化途径,从而导致能量应激和腺苷三磷酸(adenosine triphosphate,ATP)合成减少[2]。ATP水平降低会激活单磷酸腺苷活化蛋白激酶(adenosine monophosphate‐activated protein kinase,AMPK),而AMPK的激活会抑制MTOR信号通路[3]。此外,二甲双胍可能也会通过AMPK非依赖的方式,即通过降低胰岛素和胰岛素样生长因子(insu‐lin‐like growth factor,ⅠGF)水平而抑制MTOR信号通路[4]。二甲双胍还可以通过激活肝脏激酶B1‐单磷酸腺苷活化蛋白激酶(liver kinase B1‐AMPK,LKB1‐AMPK)途径抑制肿瘤的生长[5]。通过激活细胞周期抑制因子如p53、p21、cyclinD1,抑制肿瘤增殖和诱导凋亡[6‐7]。通过降低活性氧类(reactive oxygen species,ROS)物质的产生、还原型辅酶Ⅰ(nicotinamide adenine dinucleotide,NADH)的利用而干扰线粒体氧化磷酸化[2]。通过抑制非折叠蛋白反应(unfolded protein response,UPR)诱导凋亡,通过干扰脂肪酸代谢刺激免疫系统产生CD8T细胞[1]。通过抑制缺氧诱导因子‐1(hypoxia inducible factor‐1,HⅠF‐1)和血管内皮生长因子(vascular en‐do‐thelial growth factor,VEGF)的表达,从而抑制癌细胞在低氧环境下的生长、血管生成和肿瘤转移[8],同时也会干扰P糖蛋白的多药耐药基因(multidrug resistance 1,MDR1)表达[2]。
1.1.2 间接作用机制主要的间接作用是通过抑制肝糖异生降低血糖水平,减少胃肠葡萄糖吸收和降低循环胰岛素水平[6]。主要是以LKB1/AMPK依赖和(或)非依赖的方式抑制糖异生[9]。通过肝细胞的单磷酸腺苷(adenosine monophosphate,AMP)蓄积而减少胰高糖素依赖的葡萄糖分泌[10]。此外,二甲双胍会通过减弱κ基因结合核因子(nu‐clear factor‐kappa‐gene binding,NF‐κB)的活性从而抑制炎性反应的发生[11],并可通过破坏肿瘤干细胞的上皮间质转化(epithelial mesenchymal transition,EMT)预防转移进程和肿瘤侵袭[12]。
1.1.3 二甲双胍对不同癌种的影响研究显示,二甲双胍可降低乳腺癌、胰腺癌、肝癌、结直肠癌、前列腺癌、肺癌、卵巢癌、肾癌及头颈部癌的发生风险[13‐22],详见表1。回顾性队列研究显示,二甲双胍并不能改善晚期胰腺癌患者的生存质量[23],反而会增加男性患者结直肠癌的发生率[14]。然而,另一些研究认为,二甲双胍与喉癌等其他肿瘤的发病风险无关[24‐25]。以上争议的原因可能是因为研究中病例选择的偏倚及病例数量的不足所造成的:二甲双胍常被用于患病时间短,无禁忌证(禁忌证如存在年龄大,合并肝肾功能疾病等)的患者,而这些禁忌证本身也会影响到肿瘤的发生风险。
因此,截至目前,虽然尚无明确结论表明二甲双胍能够降低肿瘤风险,但至少可以肯定的是,二甲双胍不会增加其风险,因此,二甲双胍是一种安全用药。
1.2 噻唑烷二酮类药物
1.2.1 机制噻唑烷二酮类属于过氧化物酶体增生物激活受体γ(peroxisome proliferator‐activated re‐ceptor gamma,PPARγ)激动剂。激活PPAR可降低胰岛素抵抗和改善血糖控制。体内外研究显示,噻唑烷二酮类化合物(thiazolidinedione,TZD)(尤其是曲格列酮和环格列酮)通过影响PPARγ途径促进细胞周期捕获和凋亡[26]。与此同时,还存在PPARγ非依赖的抗肿瘤作用机制:通过抑制B细胞淋巴瘤‐2基因(B‐cell lymphoma‐2,Bcl‐2)和 Bcl‐xL的抗凋亡活性,导致Caspase依赖的癌细胞凋亡[26]。TZD还可通过切除特异性蛋白1(specificity pro‐tein 1,Sp1)抑制癌细胞增殖、转移,降解Sp1会使雄激素受体(androgen receptor,AR)、前列腺特异性抗原(prostate specific antigen,PSA)、雌激素受体(estrogen receptor,ER)、凋亡抑制基因survivin、表皮生长因子受体(epidermal growth factor receptor,EGFR)和细胞间黏附分子‐1(intercellular cell adhe‐sion molecule‐1,ⅠCAM‐1)和血管细胞黏附分子‐1(vascular cell adhesion molecule 1,VCAM‐1)减少[26]。
1.2.2 噻唑烷二酮类对不同癌种的影响有研究发现,TZD使用者可降低乳腺癌、肺癌、肝癌、卵巢癌、前列腺癌、结直肠癌、肾癌、胰腺癌和甲状腺癌的发生风险[27‐32],详见表1。在甲状腺癌和软组织肉瘤中,联合化疗还会减少癌细胞的化疗耐药,增强抗肿瘤活性[33]。相反,也有报道显示,TZD会增加膀胱癌[34]、恶性黑色素瘤及非霍奇金淋巴瘤[31]的癌症发生风险。
2 胰岛素促泌剂
磺脲类药物通过关闭胰腺β细胞的钾通道,一方面会导致空腹和餐后胰岛素水平升高,进而促进肿瘤生长,而另一方面是关闭钾通道本身就具有抗肿瘤效应[35]。有研究显示,使用磺脲类药物的糖尿病患者的患癌风险会明显增加,可增加结肠癌和肝癌的发生风险[36‐37]。同时也有研究显示,胰岛素或磺脲类药物会降低28%前列腺癌的发生风险[38]。另外有研究发现,格列苯脲对卵巢癌细胞的浸润和转移有抑制作用[35],但该结论也存在争议[39]。一项来自英国的回顾性队列研究发现:磺脲类较二甲双胍的致癌风险高36%,但也不能排除其中的偏倚因素:医务人员更倾向于给偏瘦的患者开磺脲类药物[40]。另有来自15项研究的荟萃分析显示,二甲双胍可降低11%的结直肠癌患病风险,而磺脲类和胰岛素会分别增加11%与33%结直肠癌的患病风险,但是差异无统计学意义[16]。
3 胰岛素及胰岛素类似物
Dejgaard等[41]发现使用胰岛素类似物虽然比使用胰岛素的患癌风险低,但使用长效胰岛素类似物(甘精胰岛素或地特胰岛素)仍然存在致癌风险[42]。Karlstad等[43]发现使用胰岛素的糖尿病患者除了前列腺癌的患病风险降低外,肝癌、胰腺癌、肾癌、胃癌和呼吸系统恶性肿瘤的发生风险均明显升高;甘精胰岛素使用者结肠癌的患病风险降低,而乳腺癌的患病风险升高。体外研究中,甘精胰岛素在乳腺癌细胞、人类子宫内膜癌和结直肠癌细胞中均发挥抗凋亡作用[44]。有研究显示,甘精胰岛素使用者胰腺癌和前列腺癌的患病风险会增加。另外一些研究显示,甘精胰岛素不会增加使用者的患癌风险[45‐46]。但以上研究存在随访时间短等局限性,结论并不十分可靠。有荟萃分析显示,使用更高剂量的胰岛素也没有导致癌症的发生率增高[47]。因此,对于未控的糖尿病,不应该因为顾虑患癌风险而延迟使用胰岛素进行治疗。
表1 不同降糖药物对致癌风险的影响
4 基于肠促胰素的药物(GLP- 1激动剂,DDP- 4-i)
肠促胰素来自于肠,摄食后的反射性分泌会使血糖升高之前刺激胰岛素分泌。针对2型糖尿病患者肠促胰素活性缺乏的情况,人们研究出针对肠促胰素治疗的药物,根据其不同的作用机制分为胰升糖素样肽 1(glucagon‐like peptide‐1,GLP‐1)受体激动剂和二肽基肽酶4(dipeptidyl‐peptidase 4 inhibitor,DPP‐4)抑制剂两类药物。
基于美国食品药品监督管理局的分析数据报道的不良事件,GLP‐1受体激动剂艾塞那肽以及DPP‐4抑制药物西他列汀已受到质疑[48]。这两类药物可能会增加恶性肿瘤的发生风险,尤其是增加甲状腺癌和胰腺癌的发生风险。
GLP‐1激动剂治疗会诱导啮齿类动物甲状腺C细胞的成癌性,但是在人类甲状腺C细胞中并未发现类似效应,可能因为GLP‐1受体在啮齿类动物和人类细胞中的浓度不同(在啮齿类动物细胞中浓度高,在人类细胞中浓度低)[49]。Nauck等[50]发现GLP‐1激动剂治疗不会导致糖尿病患者的甲状腺髓样癌。
二肽基肽酶‐4抑制剂(dipeptidyl peptidase‐4 inhibitor,DDP‐4‐i)会通过抑制 DDP‐4酶阻断对GLP‐1的降解。有研究表明,GLP‐1激动剂或DDP‐4‐i可增加胰腺癌的发生风险[51]。但也有研究发现,利拉鲁肽可通过抑制PⅠ3K/AKT途径发挥对胰腺癌的抗肿瘤活性作用[52]。艾塞那肽可抑制小鼠前列腺癌细胞和结肠癌细胞的增殖,加速乳腺癌细胞的凋亡[53]。Gokhale等[54]研究发现 DDP‐4‐i使用者胰腺癌的发生风险低于磺脲类使用者,而与TZD使用者胰腺癌的发生风险类似。有研究显示,西他列汀也会减少鼠类的肠癌发生风险[55]。在其他研究中未发现DDP‐4‐i的促肿瘤活性作用[56]。GLP‐1受体激动剂和DDP‐4‐i抑制剂还可潜在地增加急性胰腺炎的不良反应,这可能会增加约2倍患胰腺癌的风险[48]。然而,另外一项回顾性分析[57]以及一项融合了25个研究的荟萃分析[58]均无法证明胰腺癌与艾塞那肽的相关性。
所以,基于肠促胰素的治疗风险和获益仍然是一个有争议的问题,由于疾病的演化及进展需要很长的时间[59],故需要开展长期前瞻性研究设计来分析它们具体的预后(胰腺炎、胰腺癌、甲状腺髓样癌)[60]。目前研究的数据尚不足以证明基于肠促胰素的治疗会增加癌症的发生风险。
5 α-葡萄糖苷酶抑制剂
α‐葡萄糖苷酶抑制剂竞争性抑制位于小肠的各种α‐葡萄糖苷酶,使淀粉类分解为葡萄糖的速度减慢,从而减缓肠道内葡萄糖的吸收,降低餐后高血糖。有研究发现,α‐葡萄糖苷酶抑制剂使用者会降低胃癌、肺癌的发生风险,但会增加肾癌的发生风险[19,61‐62]。
6 小结
不同种类的降糖药物在肿瘤的发生、发展过程中可以产生不同的影响,相关的研究尚存在争论。主要原因为以上研究多为回顾性研究,存在入组偏倚及随访时间较短的缺陷。因此,需要大规模长期随访的前瞻性研究来进一步验证各种降糖药物在不同癌种中可能的作用及机制。
[1]Kourelis TV,Siegel RD.Metformin and cancer:new appli‐cations for an old drug[J].Med Oncol,2012,29(2):1314‐1327.
[2]Pollak MN.Ⅰnvestigating metformin for cancer prevention and treatment:the end of the beginning[J].Cancer Discov,2012,2(9):778‐790.
[3]Schmelzle T,Hall MN.TOR,a central controller of cell growth[J].Cell,2000,103(2):253‐262.
[4]Memmott RM,Dennis PA.LKB1 and mammalian target of rapamycin as predictive factors for the anticancer efficacy of metformin[J].J Clin Oncol,2009,27(34):e226;author reply e227.
[5]Evans JM,Donnelly LA,Emslie‐Smith AM,et al.Metfor‐min and reduced risk of cancer in diabetic patients[J].Bmj,2005,330(7503):1304‐1305.
[6]Rattan R,Ali Fehmi R,Munkarah A.Metformin:an emerg‐ing new therapeutic option for targeting cancer stem cells and metastasis[J].J Oncol,2012,2012(3):928127.
[7]Rosta A.Diabetes and cancer risk:oncologic considerations[J].Orv Hetil,2011,152(29):1144‐1155.
[8]Tadakawa M,Takeda T,Li B,et al.The anti‐diabetic drug metformin inhibits vascular endothelial growth factor ex‐pression via the mammalian target of rapamycin complex 1/hypoxia‐inducible factor‐1α signaling pathway in ELT‐3 cells[J].Mol Cell Endocrinol,2015,399(5):1‐8.
[9]Pollak M.Potential applications for biguanides in oncology[J].J Clin Ⅰnvest,2013,123(9):3693‐3700.
[10]Miller RA,Chu Q,Xie J,et al.Biguanides suppress hepat‐ic glucagon signalling by decreasing production of cyclic AMP[J].Nature,2013,494(7436):256‐260.
[11]Hirsch HA,Ⅰliopoulos D,Struhl K.Metformin inhibits the inflammatory response associated with cellular transforma‐tion and cancer stem cell growth[J].Proc Natl Acad Sci USA,2013,110(3):972‐977.
[12]Mani SA,Guo W,Liao MJ,et al.The epithelial‐mesenchy‐mal transition generates cells with properties of stem cells[J].Cell,2008,133(4):704‐715.
[13]Vazquez‐Martin A,Oliveras‐Ferraros C,Del Barco S,et al.The anti‐diabetic drug metformin suppresses self‐re‐newal and proliferation of trastuzumab‐resistant tumor‐ini‐tiating breast cancer stem cells[J].Breast Cancer Res Treat,2011,126(2):355‐364.
[14]Bodmer M,Becker C,Meier C,et al.Use of antidiabetic agents and the risk of pancreatic cancer:a case‐control analysis[J].Am J Gastroenterol,2012,107(4):620‐626.
[15]Lee MS,Hsu CC,Wahlqvist ML,et al.Type 2 diabetes in‐creases and metformin reduces total,colorectal,liver and pancreatic cancer incidences in Taiwanese:a representa‐tive population prospective cohort study of 800,000 indi‐viduals[J].BMC Cancer,2011,11(1):1‐10.
[16]Singh S,Singh H,Singh PP,et al.Antidiabetic medica‐tions and the risk of colorectal cancer in patients with dia‐betes mellitus:a systematic review and meta‐analysis[J].Cancer Epidemiol Biomarkers Prev,2013,22(12):2258‐2268.
[17]Murtola TJ,Tammela TL,Lahtela J,et al.Antidiabetic medication and prostate cancer risk:a population‐based case‐control study[J].Am J Epidemiol,2008,168(8):925‐931.
[18]Tan BX,Yao WX,Ge J,et al.Prognostic influence of met‐formin as first‐line chemotherapy for advanced nonsmall cell lung cancer in patients with type 2 diabetes[J].Can‐cer,2011,117(22):5103‐5111.
[19]Lai SW,Liao KF,Chen PC,et al.Antidiabetes drugs corre‐late with decreased risk of lung cancer:a population‐based observation in Taiwan[J].Clin Lung Cancer,2012,13(2):143‐148.
[20]Gotlieb WH,Saumet J,Beauchamp MC,et al.Ⅰn vitro met‐formin anti‐neoplastic activity in epithelial ovarian cancer[J].Gynecol Oncol,2008,110(2):246‐250.
[21]Yang FQ,Wang JJ,Yan JS,et al.Metformin inhibits cell growth by upregulating microRNA‐26a in renal cancer cells[J].Ⅰnt J Clin Exp Med,2014,7(10):3289‐3296.
[22]Rêgo DF,Pavan LM,Elias ST,et al.Effects of metformin on head and neck cancer:a systematic review[J].Oral On‐col,2015,51(5):416‐422.
[23]Hwang AL,Haynes K,Hwang WT,et al.Metformin and survival in pancreatic cancer:a retrospective cohort study[J].Pancreas,2013,42(7):1054‐1059.
[24]Becker C,Jick SS,Meier CR,et al.Metformin and the risk of head and neck cancer:a case‐control analysis[J].Diabetes Obes Metab,2014,16(11):1148‐1154.
[25]Stevens RJ,Ali R,Bankhead CR,et al.Cancer outcomes and all‐cause mortality in adults allocated to metformin:systematic review and collaborative meta‐analysis of ran‐domised clinical trials[J].Diabetologia,2012,55(10):2593‐2603.
[26]Wei S,Yang J,Lee SL,et al.PPARgamma‐independent an‐titumor effects of thiazolidinediones[J].Cancer Letters,2009,276(2):119‐124.
[27]Monami M,Dicembrini Ⅰ,Mannucci E.Thiazolidinedio‐nes and cancer:results of a meta‐analysis of randomized clinical trials[J].Acta Diabetol,2014,51(1):91‐101.
[28]ColmersⅠN,Bowker SL,Johnson JA.Thiazolidinedione use and cancer incidence in type 2 diabetes:a systematic review and meta‐analysis[J].Diabetes Metab,2012,38(6):475‐484.
[29]Chang CH,Lin JW,Wu LC,et al.Association of thiazoli‐dinediones with liver cancer and colorectal cancer in type 2 diabetes mellitus[J].Hepatology,2012,55(5):1462‐1472.
[30]Joshi H,Pal T,Ramaa CS.A new dawn for the use of thia‐zolidinediones in cancer therapy[J].Expert OpinⅠnvestig Drugs,2014,23(4):501‐510.
[31]Ferrara A,Lewis JD,Quesenberry CP Jr,et al.Cohort study of pioglitazone and cancer incidence in patients with diabetes[J].Diabetes Care,2011,34(4):923‐929.
[32]Feng YH,Velazquez‐Torres G,Gully C,et al.The impact of type 2 diabetes and antidiabetic drugs on cancer cell growth[J].J Cell Mol Med,2011,15(4):825‐836.
[33]Fröhlich E,Wahl R.Chemotherapy and Chemoprevention by Thiazolidinediones[J].Biomed ResⅠnt,2015,2015:1‐14.
[34]Turner RM,Kwok CS,Chen‐Turner C,et al.Thiazolidine‐diones and associated risk of bladder cancer:a systematic review and meta‐analysis[J].Br J Clin Pharmacol,2014,78(2):258‐273.
[35]Yasukagawa T,Niwa Y,Simizu S,et al.Suppression of cellular invasion by glybenclamide through inhibited se‐cretion of platelet‐derived growth factor in ovarian clear cell carcinoma ES‐2 cells[J].FEBS Lett,2012,586(10):1504‐1509.
[36]Chang CH,Lin JW,Wu LC,et al.Oral insulin secreta‐gogues,insulin,and cancer risk in type 2 diabetes mellitus[J].J Clin Endocrinol Metab,2012,97(7):E1170‐E1175.
[37]Hsieh MC,Lee TC,Cheng SM,et al.The influence of type 2 diabetes and glucose‐lowering therapies on cancer risk in the Taiwanese[J].Exp Diabetes Res,2012,2012(5):413782.
[38]González‐Pérez A,García Rodríguez LA.Prostate cancer risk among men with diabetes mellitus(Spain)[J].Cancer Causes Control,2005,16(9):1055‐1058.
[39]Pasello G,Urso L,Conte P,et al.Effects of sulfonylureas on tumor growth:a review of the literature[J].Oncologist,2013,18(10):1118‐1125.
[40]Currie CJ,Poole CD,Gale EA.The influence of glucose‐lowering therapies on cancer risk in type 2 diabetes[J].Di‐abetologia,2009.52(9):1766‐1777.
[41]Dejgaard A,Lynggaard H,Råstam J,et al.No evidence of increased risk of malignancies in patients with diabetes treated with insulin detemir:a meta‐analysis[J].Diabetolo‐gia,2009,52(12):2507‐2512.
[42]Buchs AE,Silverman BG.Ⅰncidence of malignancies in patients with diabetes mellitus and correlation with treat‐ment modalities in a largeⅠsraeli health maintenance orga‐nization:a historical cohort study[J].Metabolism,2011,60(10):1379‐1385.
[43]Karlstad O,Starup‐Linde J,Vestergaard P,et al.Use of in‐sulin and insulin analogs and risk of cancer‐systematic re‐view and meta‐analysis of observational studies[J].Curr Drug Saf,2013,8(5):333‐348.
[44]Aizen D,Sarfstein R,BruchimⅠ,et al.Proliferative and signaling activities of insulin analogues in endometrial cancer cells[J].Mol Cell Endocrinol,2015,406(18):27‐39.
[45]Lim S,Stember KG,He W,et al.Electronic medical re‐cord cancer incidence over six years comparing new users of glargine with new users of NPH insulin[J].PLoS One,2014,9(10):e109433.
[46]Bordeleau L,Gerstein HC.The association of basal insu‐lin glargine and/or n‐3 fatty acids with incident cancers in patients with dysglycemia[J].Diabetes Care,2014,37(10):e216.
[47]Johnson JA,Bowker SL.Ⅰntensive glycaemic control and cancer risk in type 2 diabetes:a meta‐analysis of major tri‐als[J].Diabetologia,2011,54(1):25‐31.
[48]Elashoff M,Matveyenko AV,Gier B,et al.Pancreatitis,pancreatic,and thyroid cancer with glucagon‐like peptide‐1‐based therapies[J].Gastroenterology,2011,141(1):150‐156.
[49]Samson SL,Garber A.GLP‐1R agonist therapy for diabe‐tes:benefits and potential risks[J].Curr Opin Endocrinol Diabetes Obes,2013,20(2):87‐97.
[50]Nauck MA,Friedrich N.Do GLP‐1‐based therapies in‐crease cancer risk?[J].Diabetes Care,2013,36 Suppl 2:S245‐S252.
[51]Tseng CH,Lee KY,Tseng FH.An updated review on can‐cer risk associated with incretin mimetics and enhancers[J].J Environ Sci Health C Environ Carcinog Ecotoxicol Rev,2015,33(1):67‐124.
[52]Chalmer T,Almdal TP,Vilsbøll T,et al.Adverse drug reac‐tions associated with the use of liraglutide in patients with type 2 diabetes——focus on pancreatitis and pancreas can‐cer[J].Expert Opin Drug Saf,2015,14(1):171‐180.
[53]Nomiyama T,Kawanami T,Ⅰrie S,et al.Exendin‐4,a GLP‐1 receptor agonist,attenuates prostate cancer growth[J].Diabetes,2014,63(11):3891‐3905.
[54]Gokhale M,Buse JB,Gray CL,et al.Dipeptidyl‐peptidase‐4 inhibitors and pancreatic cancer:a cohort study[J].Dia‐betes Obes Metab,2014,16(12):1247‐1256.
[55]Femia AP,Raimondi L,Maglieri G,et al.Long‐term treat‐ment with Sitagliptin,a dipeptidyl peptidase‐4 inhibitor,reduces colon carcinogenesis and reactive oxygen species in 1,2‐dimethylhydrazine‐induced rats[J].Ⅰnt J Cancer,2013,133(10):2498‐2503.
[56]Simó R,Plana‐Ripoll O,Puente D,et al.Ⅰmpact of glu‐cose‐lowering agents on the risk of cancer in type 2 diabet‐ic patients.The Barcelona case‐control study[J].PLoS One,2013,8(11):e79968.
[57]Romley JA,Goldman DP,Solomon M,et al.Exenatide therapy and the risk of pancreatitis and pancreatic cancer in a privately insured population[J].Diabetes Technol Ther,2012,14(10):904‐911.
[58]Alves C,Batel‐Marques F,Macedo AF.A meta‐analysis of serious adverse events reported with exenatide and liraglu‐tide:acute pancreatitis and cancer[J].Diabetes Res Clin Pract,2012,98(2):271‐284.
[59]Yachida S,Jones S,BozicⅠ,et al.Distant metastasis oc‐curs late during the genetic evolution of pancreatic cancer[J].Nature,2010,467(7319):1114‐1117.
[60]Egan AG,Blind E,Dunder K,et al.Pancreatic safety of in‐cretin‐based drugs——FDA and EMA assessment[J].N Engl J Med,2014,370(9):794‐797.
[61]Chen YL,Cheng KC,Lai SW,et al.Diabetes and risk of subsequent gastric cancer:a population‐based cohort study in Taiwan[J].Gastric Cancer,2013,16(3)389‐396.
[62]Lai SW,Liao KF,Lai HC,et al.Kidney cancer and diabe‐tes mellitus:a population‐based case‐control study in Tai‐wan[J].Ann Acad Med Singapore,2013,42(3):120‐124.