APP下载

考虑双方主体失望-欣喜感知的多指标双边匹配决策方法

2018-04-04李铭洋李博曹萍萍霍春辉

浙江大学学报(理学版) 2018年2期
关键词:双边决策岗位

李铭洋,李博,曹萍萍,霍春辉

(1. 辽宁大学 商学院, 辽宁 沈阳 110136; 2. 中国刑事警察学院 基础教研部, 辽宁 沈阳 110854)

0 引 言

双边匹配指依据双方主体的偏好或要求,尽可能达成令双方主体满意的匹配结果[1]. 美国学者GALE等[2]关于男女婚姻匹配问题和学生入学匹配问题的研究是双边匹配问题的起源. 在早期的双边匹配研究中,匹配决策信息通常为各主体针对对方主体的偏好排序[3-6],决策者依据偏好排序信息来寻求稳定的双边匹配结果. 近些年,针对不同背景下的双边匹配问题的研究日渐成熟,如企业轮岗制度中员工与岗位的匹配[7]、基于电子中介撮合条件的买卖双方交易匹配[8-11]、技术供需匹配[12]、知识供需匹配[13]、项目外包供需匹配[14]、志愿者与应急任务匹配[15]、风险投资商与风险企业匹配[16]等. 在这些双边匹配问题中,匹配决策信息不再局限于单一的偏好排序信息,而表现为多指标下的评价决策信息. 基于广泛的现实背景,对多指标双边匹配决策问题的研究具有较强的现实意义,逐渐成为学者们关注的重点.

在多指标双边匹配问题中,若双方主体针对所关注的指标提出期望要求,中介或决策者依据各主体的期望要求和对方主体的真实信息进行匹配决策,此类问题称为具有指标期望的双边匹配决策问题. 目前,已有学者开始关注此类问题,并提出了一些具有针对性的匹配决策方法[17-21]. JIANG等[17]在电子商务环境下考虑数量有折扣的多属性交易匹配问题,依据退火遗传算法(MOSAGA),提出了一种新的模型优化算法. 蒋忠中等[18]以B2C型电子中介买卖双方商品交易为实际背景,研究了模糊信息且需求不可分情形下多属性商品交易的优化匹配问题. 樊治平等[19]针对电子商务环境下的多属性商品交易匹配问题进行研究,基于公理设计理论给出了交易匹配度计算方法,并通过构建和求解优化模型获得交易匹配结果. 梁海明等[20]针对二手房交易匹配问题开展了研究,依据交易过程中卖方提供的评价信息以及买方提供的多属性期望水平和距离需求信息,给出了买卖双方匹配满意度的计算公式和匹配决策方法. 陈希等[21]针对多属性双边匹配问题进行了研究,依据前景理论计算匹配主体之间满意度的综合前景值,并进一步构建了双目标匹配优化模型.

需要指出的是,在已有的多指标双边匹配决策方法研究中,较少考虑双方主体欲与潜在匹配对象相匹配时产生失望或欣喜的心理感知,而心理感知与最终匹配方案中双方主体的满意程度密切相关. 具体来说,若匹配对象在某个指标下的真实情况优于主体期望,则主体针对该指标会表现出欣喜的心理感知;反之,若匹配对象在某个指标下的真实情况低于主体期望,则主体针对该指标会表现出失望的心理感知. 由此可见,对于具有指标期望的双边匹配决策问题,若要提升双方主体的满意程度,则需要对双方主体的心理感知进行有效刻画,进而提出相应的多指标双边匹配模型与方法. 鉴于此,本文依据失望理论[22-25],对双方主体失望-欣喜的心理感知进行有效刻画,提出一种新的多指标双边匹配决策方法. 首先,基于主体的指标期望值与对方主体真实值之间的差异,构建双方主体的损益矩阵;然后,依据失望-欣喜函数,建立双方主体在各指标下的感知效用矩阵;进一步,通过构建和求解以双方主体综合感知效用值最大为目标的多目标优化模型,获得最优的双边匹配结果.

1 问题描述

本文考虑的指标类型为效益型、成本型和区间型3类. 设CA1,CA2,CA3分别为指标集CA的效益型、成本型和区间型的指标子集:

CA1∪CA2∪CA3=CA.

为叙述方便,设F1,F2,F3分别为指标子集CA1,CA2,CA3的下标集合,有

F1={1,2,…,f1},

F2={f1+1,f1+2,…,f2},

F3={f2+1,f2+2,…,f},

F1∪F2∪F3=F.

类似地,设CB1,CB2,CB3分别为指标集CB的效益型、成本型和区间型指标子集,则有

CB1∪CB2∪CB3=CB.

设G1,G2,G3分别为指标子集CB1,CB2,CB3的下标集合,有

G1={1,2,…,g1},

G2={g1+1,g1+2,…,g2},

G3={g2+1,g2+2,…,g},

G1∪G2∪G3=G.

2 双边匹配方法

2.1 双方主体损益矩阵的构建

为了能够较好地刻画一方主体与另一方主体相匹配的“失望-欣喜”心理感知,首先构建双方主体在各指标下的损益矩阵.

(1)

(2)

(3)

(4)

i∈M,j∈N,k∈F3.

(5)

i∈M,j∈N,k∈F3.

(8)

类似地,对于主体Bj,可通过下列方法计算其在不同类型指标下的损失和收益.

(9)

(12)

i∈M,j∈N,t∈G3.

(13)

i∈M,j∈N,t∈G1,

(14)

i∈M,j∈N,t∈G2,

(15)

i∈M,j∈N,t∈G3.

(16)

i∈M,j∈N,k∈F1∪F2,

(17)

i∈M,j∈N,k∈F3,

(18)

i∈M,j∈N,t∈G1∪G2,

(19)

i∈M,j∈N,t∈G3.

(20)

2.2 双方主体感知效用矩阵的构建

在双边匹配过程中,主体的满意程度与两方面因素有关,一方面是该主体的期望水平,另一方面是对方主体的真实值. 在某个指标下,若该主体的期望水平超过了对方主体的真实值,则该主体表现为失望;反之,若该主体的期望水平低于对方主体的真实值,则该主体表现为欣喜. 显然,主体的这种失望-欣喜的心理感知与其对可能获得的匹配结果的满意程度密切相关. 为了更好地刻画主体的满意程度,下面通过引入失望函数和欣喜函数来计算主体在某指标下针对对方主体的失望值或欣喜值. 依据文献[23-25],失望函数D(·)与欣喜函数E(·)为非减函数,即D′(·)>0,E′(·)>0.E(·)的图形在x轴上方,为下凹函数,即E″(·)<0;D(·)的图形在x轴下方,为下凸函数,即D″(·)>0. 符合此形态特征的函数有多种,依据文献[25],失望函数D(·)和欣喜函数E(·)可表示为:

失望函数D(·):

D(x)=α-x-1,

(21)

其中,α为失望参数,0<α<1. LACIANA等[25]给出了符合大多数主体行为偏好的α值,为0.7≤α≤0.9,α值越大,主体对相同损失感知到的失望越小.

欣喜函数E(·):

E(x)=1-βx,

(22)

其中,β为欣喜参数,满足0<β<1. LACIANA等[25]在研究中也测得了符合大多数主体行为偏好的β值,为0.7≤β≤0.9,β越大,主体对相同收益感知到的欣喜越小. 失望函数D(·)与欣喜函数E(·)的图形如图1所示. 图1中,x表示在某指标下主体的期望水平与对方主体真实值之间的差值. 本文α和β取相同值,即α=β=0.8.

图1 失望函数和欣喜函数示意图Fig.1 The function diagram of disappointment and elation

i∈M,j∈N,k∈F.

(23)

i∈M,j∈N,t∈G.

(24)

(25)

(26)

2.3 匹配优化模型的构建与求解

(27a)

(27b)

(27c)

(27d)

(27e)

xij=0或1,i∈M,j∈N.

(27f)

在模型(27)中,有2个目标函数,分别是式(27a)和(27b),其含义是尽可能使匹配结果中A方主体和B方主体的综合感知效用最大;模型(27)中存在3个约束条件,分别是式(27c)、(27d)和(27e),其中式(27c)和(27d)为匹配约束条件,式(27c)的含义是每个A方主体至多与1个B方主体相匹配,式(27d)的含义是每个B方主体至多与1个A方主体相匹配;式(27e)为主体最低可接受约束条件,其含义是确保相互匹配的双方主体可以达到对方的最低可接受水平.

为求解优化模型(27),采用线性加权法[26]将其转化为单目标优化模型. 设ω1和ω2分别表示目标Z1和Z2的权重,满足0≤ω1,ω2≤1,ω1+ω2=1,则单目标优化模型可表示为:

(28a)

(28b)

(28c)

(28d)

xij=0或1,i∈M,j∈N.

(28e)

在模型(28)中,权重ωk(k=1,2)表示双方主体在匹配决策中的重要程度. 权重ω1,ω2之间存在3种情况: 若ω1>ω2,则表示在匹配决策中,中介或决策者更倾向考虑A方主体的满意程度;若ω1<ω2,则表示在匹配决策中,中介或决策者更倾向考虑B方主体的满意程度;若ω1=ω2=0.5,则表示在匹配决策中,中介或决策者注重双方主体的公平性. 目标函数(28a)和约束条件(28b)~(28d)均是线性的,模型(28)可以使用专门的优化软件包(如LINGO11.0,Cplex9.0等)进行求解.

综上,考虑双方主体失望-欣喜感知的多指标双边匹配决策方法的计算步骤如下:

步骤8以双方主体综合感知效用最大化为目标建立多目标优化模型(27);

步骤9将多目标优化模型(27)转化为单目标优化模型(28);

步骤10通过求解模型(28),获得最优的双边匹配结果.

3 算 例

企业岗位与员工的匹配是一类典型的双边匹配问题,本节以此类问题为背景,通过算例来说明其可行性.

M公司是一家金融投资咨询公司,主要从事融资理财、助贷咨询、证券市场预测分析等业务.每年分季度招聘新员工,并在招聘后对新员工进行入职培训和轮岗体验,进而将他们分派在合适的岗位上. 目前M公司有5个待入职岗位B={B1,B2,…,B5},分别为B1“客户营销”、B2“商务助理”、B3“客户服务”、B4“企业文秘”,B5“产品策划”. M公司最近录用的4名女性新员工A={A1,A2,A3,A4},均已进行了轮岗培训,在通过企业文化培训、基本素质与基本业务培训、岗位轮训体验等环节后,现在要依据岗位需求和员工的实际情况寻求新员工与岗位的最佳匹配方案.

为得到M公司中待分配员工与岗位的匹配结果,简要说明如下:

表1 针对各指标员工给出的期望向量

表2 针对各指标岗位的真实值

表3 针对各指标给出的各岗位期望向量

表4 针对各指标员工的真实值

V1=

进一步,依据式(25),构建员工的综合感知效用矩阵V=[vij]4×5:

V=

为进一步说明本文方法的有效性,下面应用文献[16]的方法对本算例进行求解.

U=[uij]4×5=

然后,通过构建和求解优化模型得到最终的匹配结果:x12=1,即通过此次技能培训和轮岗体验,只有员工A1成功入岗,被分派至岗位B2,而员工A2,A3和A4均未能入岗,将继续接受下一轮的培训和考察.

如果采用本文方法,员工A1,A2和A3均可成功入岗,员工A1被分派至岗位B2,员工A2被分派至岗位B5,员工A3被分派至岗位B1. 由于A2与B5,A3与B1在各指标下均达到了对方的最低可接受水平,因而采用本文方法可在双方主体均能接受的前提下达成更多匹配,这对降低企业管理成本、提升人岗双方匹配满意度具有积极意义.

4 结束语

通过对匹配主体失望-欣喜心理感知的刻画,给出了一种新的具有指标期望的多指标双边匹配决策方法. 依据失望-欣喜函数,构建双方主体的感知效用矩阵,以双方主体的最低可接受水平为约束,双方主体综合感知效用最大为目标,构建了考虑双方主体失望-欣喜感知的多目标优化模型,通过求解模型获得最优的双边匹配结果. 本文方法能够有效刻画双方主体在匹配过程中的失望-欣喜感知,有助于匹配决策者针对现实中的双边匹配问题进行合理决策. 在今后的研究中,将对本文方法进行合理扩展,使其适用于更加复杂的双边市场情境,如指标权重全部未知或部分未知的双边匹配环境、具有组合期望的双边匹配环境等.

参考文献(References):

[1]ROTH A E. Common and conflicting interests in Two-sided matching markets [J].EuropeanEconomicReview, 1985, 27(1): 75-96.

[2]GALE D, SHAPLEY L. College admissions and the stability of marriage [J].AmericanMathematicalMonthly, 1962, 69(1): 9-15.

[3]ROTH A E. On the allocation of residents to rural hospitals: A general property of two-sides matching markets [J].Econometrica, 1986, 54(2): 425-427.

[4]VATE V, JOHN H. Linear programming brings marital bliss [J].OperationsResearchLetters, 1989, 8(3): 1-23.

[5]ROTH A E, ROTHBLUM U G, VATE V. Stable matching, optimal assignments and linear programming [J].MathematicsofOperationsResearch, 1993, 18(4): 803-828.

[7]乐琦. 基于不完全序关系信息的双边匹配决策方法[J].浙江大学学报(理学版), 2014, 41(5): 523-527.

YUE Q. Decision method for two-sided matching based on incomplete order relation information [J].JournalofZhejiangUniversity(ScienceEdition), 2014, 41(5): 523-527.

[8]JIANG Z Z, ZHANG R, FAN Z P, et al. A fuzzy matching model with Hurwicz criteria for one-shot multi-attribute exchanges in e-brokerage [J].FuzzyOptimization&DecisionMaking, 2015, 14(1): 77-96.

[9]陈圣群, 王应明, 施海柳. 多属性匹配决策的等级置信度融合法[J].系统工程学报, 2015, 30(1): 25-33.

CHEN S Q , WANG Y M , SHI H L. Rank belief degrees fusion method for multi-attribute matching decision-making [J].JournalofSystemsEngineering, 2015, 30(1): 25-33.

[10]乐琦, 樊治平. 基于不完全序值信息的双边匹配决策方法[J].管理科学学报, 2015, 18(2): 23-35.

YUE Q, FAN Z P. Decision method for two-sided matching based on incomplete ordinal number information [J].JournalofManagementScienceinChina, 2015, 18(2): 23-35.

[11]蒋忠中,樊治平,汪定伟,等. 具模糊信息的多数量多属性电子交易匹配问题[J].管理科学学报, 2014, 17(5): 52-65.

JIANG Z Z, FAN Z P, WANG D W, et al. Matching model and algorithm for multi-unit multi-attribute exchanges with fuzzy information in e-brokerage [J].JournalofManagementScienceinChina, 2014, 17(5): 52-65.

[12]乐琦. 得分信息下考虑不确定心理行为的双边匹配[J].浙江大学学报(理学版), 2016, 43(2): 242-246.

YUE Q. Two-sided matching considering uncertain psychological behavior with score information [J].JournalofZhejiangUniversity(ScienceEdition), 2016, 43(2): 242-246.

[13]CHEN X, LI Z W, FAN Z P, et al. Matching demanders and suppliers in knowledge service: A method based on fuzzy axiomatic design [J].InformationSciences, 2016, 346/347: 130-145.

[14]LIN Y, WANG Y M, CHEN S Q. Hesitant fuzzy multi-attribute matching decision making based on regret theory with uncertain weights [J].InternationalJournalofFuzzySystems, 2016: 1-12.

[15]陈圣群, 王应明, 郑晶,等. 考虑同群效应的志愿者与应急任务匹配方法[J].中国安全科学学报, 2015, 25(11): 156-162.

CHEN S Q, WANG Y M, ZHENG J, et al. A method considering peer effect for matching volunteers with emergence tasks [J].ChinaSafetyScienceJournal, 2015, 25(11): 156-162.

[16]樊治平, 乐琦. 基于完全偏好序信息的严格双边匹配方法[J].管理科学学报, 2014, 17(1): 21-34.

FAN Z P, YUE Q. Strict two-sided matching method based on complete preference ordinal information [J].JournalofManagementScienceinChina, 2014, 17(1): 21-34.

[17]JIANG Z Z, IP W H, LAU H C W, et al. Multi-objective optimization matching for one-shot multi-attribute exchanges with quantity discounts in e-brokerage [J].ExpertSystemswithApplications,2011, 38(4): 4169-4180.

[18]蒋忠中,樊治平,汪定伟. 电子中介中具有模糊信息且需求不可分的多属性商品交易匹配问题[J].系统工程理论与实践, 2011, 31(12): 2355-2366.

JIANG Z Z, FAN Z P, WANG D W. Trade matching for multi-attribute exchanges with fuzzy information and indivisible demand in e-brokerage [J].SystemsEngineering-Theory&Practice, 2011, 31(12): 2355-2366.

[19]樊治平, 陈希. 电子中介中基于公理设计的多属性交易匹配研究[J].管理科学, 2009, 22(3): 83-88.

FAN Z P, CHEN X. Research on multi-attribute trade matching problem in electronic broker based on axiomatic design [J].JournalofManagementScience, 2009, 22(3): 83-88.

[20]梁海明, 姜艳萍. 二手房组合交易匹配决策方法[J].系统工程理论与实践, 2015, 35(2): 358-367.

LIANG H M, JIANG Y P. Decision-making method on second-hand house combination matching [J].SystemsEngineering-Theory&Practice, 2015, 35(2): 358-367.

[21]陈希, 韩菁, 张晓. 考虑心理期望与感知的多属性匹配决策方法[J].控制与决策, 2014, 29(11): 2027-2033.

CHEN X, HAN J, ZHANG X. Method for multiple attribute matching decision making considering matching body’s psychological aspiration and perception [J].ControlandDecision, 2014, 29(11): 2007-2033.

[22]BELL D E. Disappointment in decision making under uncertainty [J].OperationsResearch, 1985, 33(1): 1-27.

[23]GUL F. A theory of disappointment aversion [J].Econometrica, 1991, 59(3): 667-686.

[24]GRANT S, KAJII A. AUSI expected utility: An anticipated utility theory of relative disappointment aversion [J].JournalofEconomicBehaviorandOrganization, 1998, 37: 277-290.

[25]LACIANA C E, WEBER E U. Correcting expected utility for comparisons between alternative outside: A unified parameterization of regret and disappointment [J].JournalofRiskandUncertainty, 2008, 36(1): 1-17.

[26]COHON J L.Multi-ObjectiveProgrammingandPlanning[M]. New York: Academic Press, 1978.

猜你喜欢

双边决策岗位
为可持续决策提供依据
决策为什么失误了
在保洁岗位上兢兢业业
电子产品回收供应链的双边匹配策略
走进“90后”岗位能手
新型自适应稳健双边滤波图像分割
双边同步驱动焊接夹具设计
实施HR岗位轮换 打造复合型HRM团队
张晓东:倒在岗位上
中厚板双边剪模拟剪切的研究