一类具有非齐次核的Hilbert型积分不等式成立的充要条件及其应用
2018-03-27温雅敏
洪 勇, 温雅敏
(广东财经大学 统计与数学学院, 广州 510320)
1 引言与引理
设r>1,α是常数, 定义函数空间
为Hilbert型积分不等式.
Hilbert型积分不等式在分析学及算子理论中应用广泛[1]. 当积分核K(x,y)为齐次函数时, 对Hilbert型不等式的研究已有很多结果[2-19]; 但当K(x,y)为非齐次函数时, 目前研究报道相对较少. 本文研究具有非齐次核的Hilbert型积分不等式成立的充要条件及其最佳常数因子.
设K(x,y)=G(xλ1yλ2)(λ1>0,λ2>0), 则显然K(x,y)是一个非齐次函数, 且对t>0满足:
K(tx,y)=K(x,tλ1/λ2y),K(x,ty)=K(tλ2/λ1x,y).
做变换xλ1/λ2y=t, 有
类似地可得ω2(y)=y(λ2/λ1)((α+1)/p-1)W2.
2 主要结果
1) 存在常数M, 对一切f(x)∈Lp,α(0,+∞),g(y)∈Lq,β(0,+∞), 使Hilbert型不等式
(1)
则有
(2)
同时, 又有
由式(1)~(3), 得
(4)
若c<0, 对足够小的ε>0, 令
则类似地可得
(5)
(6)
对足够小的ε>0及δ>0, 取
则有
(7)
由式(6)~(8)得
令ε→0+, 得
再令δ→0+, 得
3 在算子理论中的应用
设K(x,y)非负可测,f(x)∈Lr,α(0,+∞), 定义奇异积分算子T:
(9)
则T是一个线性算子. 若存在常数M, 使得∀f(x)∈Lr,α(0,+∞), 有
‖T(f)‖r,γ≤M‖f‖r,α,
则称T是从Lr,α(0,+∞)到Lr,γ(0,+∞)的有界线性算子. 此时, 定义T的算子范数为
特别地, 当T是从Lr,α(0,+∞)到自身的有界线性算子时, 则称T是Lr,α(0,+∞)中的有界线性算子.
证明: 只需证明‖T(f)‖p,(1-p)β≤M‖f‖p,α与式(1)等价即可. 若式(1)成立, 令
则有
于是‖T(f)‖p,(1-p)β≤M‖f‖p,α.
反之, 若‖T(f)‖p,(1-p)β≤M‖f‖p,α, 则易得式(1), 因而式(1)与‖T(f)‖p,(1-p)β≤M‖f‖p,α等价. 证毕.
在定理2中, 取α=β=0, 则可得到以下推论.
则:
2) 若T是Lp(0,+∞)中的有界线性算子, 则T的范数
其中B(·,·)是Beta函数.
同理
根据推论1知定理3成立.
[1] Hardy G H, Littlewood J E, Pólya G. Inequalities [M]. 2nd ed. Cambridge: Cambridge University Press, 1952.
[2] 和炳, 曹俊飞, 杨必成. 一个全新的多重Hilbert型积分不等式 [J]. 数学学报(中文版), 2015, 58(4): 661-672. (HE Bing, CAO Junfei, YANG Bicheng. A Brand New Multiple Hilbert-Type Integral Inequality [J]. Acta Mathematics Sinica (Chinese Series), 2015, 58(4): 661-672.)
[3] 洪勇. 一类具有准齐次核的涉及多个函数的Hilbert型积分不等式 [J]. 数学学报(中文版), 2014, 57(5): 833-840. (HONG Yong. A Hilbert-Type Integral Inequality with Quasi-homoeneous Kernel and Several Functions [J]. Acta Mathematics Sinica (Chinese Series), 2014, 57(5): 833-840.)
[5] ZHONG Wuyi, YANG Bicheng. On a Multiple Hilbert-Type Integral Inequality with the Symmetric Kernel [J/OL]. J Inequal Appl, 2007-11-13. https://doi.org/10.1155/2007/27962.
[6] XIN Dongmei, YANG Bicheng, CHEN Qiang. A Discrete Hilbert-Type Inequality in the Whole Plane [J/OL]. J Inequal Appl, 2016-05-05. https://link.springer.com/article/10.1186/s13660-016-1075-3.
[7] 匡继昌. 常用不等式 [M]. 济南: 山东科学技术出版社, 2004. (KUANG Jichang. Applied Inequalities [M]. Jinan: Shangdong Science and Technology Press, 2004.)
[8] YANG Bicheng, CHEN Qiang. On a Hardy-Hilbert-Type Inequality with Paremeters [J/OL]. J Inequal Appl, 2015-10-24. https://link.springer.com/article/10.1186/s13660-015-0861-7.
[9] YANG Bicheng, CHEN Qiang. A New Extension of Hardy-Hilbert’s Inequality in the Whole Plane [J/OL]. J Funct Spaces, 2016-06-30. http://dx.doi.org/10.1155/2016/9197476.
[10] YANG Bicheng. On an Extension of Hilbert’s Integral Inequality with Some Parameters [J]. Aust J Math Anal Appl, 2004, 1(1): 1-8.
[11] Rassias M Th, YANG Bicheng. On a Hardy-Hilbert-Type Inequality with a General Homogeneous Kernel [J]. Int J Nonlinear Anal Appl, 2015, 7(1): 249-269.
[12] CHEN Qiang, SHI Yanping, YANG Bicheng. A Relation between Two Simple Hardy-Mulholland-Type Inequalities with Parameters [J/OL]. J Inequal Appl, 2016-02-24. https://link.springer.com/article/10.1186/s13660-016-1020-5.
[13] 洪勇, 温雅敏. 齐次核的Hilbert型级数不等式取最佳常数因子的充要条件 [J]. 数学年刊(中文版), 2016, 37A(3): 329-336. (HONG Yong, WEN Yamin. A Necessary and Sufficient Condition of That Hilbert Type Series Inequality with Homogeneous Kernel Has the Best Constant Factor [J]. Chinese Annals of Mathematics, 2016, 37A(3): 329-336.)
[14] YANG Bicheng, CHEN Qiang. On a More Accurate Hardy-Mulholland-Type Inequality [J/OL]. J Inequal Appl, 2016-03-02. https://link.springer.com/article/10.1186/s13660-016-1026-z.
[15] GAO Mingzhe, YANG Bicheng. On the Extended Hilbert’s Inequality [J]. Proc Amer Math Soc, 1998, 126(3): 751-759.
[16] YANG Bicheng. On a More Accurate Multidimensional Hilbrt-Type Inequality with Parameters [J]. Math Inequal Appl, 2015, 18(2): 429-441.
[17] HONG Yong. On Multiple Hardy-Hilbert Integral Inequalities with Some Parameters [J/OL]. J Inequal Appl, 2006-09-20. https://link.springer.com/article/10.1155/JIA/2006/94960.
[18] HUANG Qiliang, YANG Bicheng. On a Multiple Hilbert-Type Integral Operator and Applications [J/OL]. J Inequal Appl, 2009-12-09. https://doi.org/10.1155/2009/192197.
[19] 杨必成. 算子范数与Hilbert型不等式 [M]. 北京: 科学出版社, 2009. (YANG Bicheng. The Norm of Operator and Hilbert-Type Inequalities [M]. Beijing: Science Press, 2009.)