高速公路膨胀土路堤填筑施工工艺研究
2018-03-15冯永富
冯 永 富
(山西路桥建设集团有限公司,山西 太原 030006)
膨胀土在施工过程中,会通过吸收水分避免结构因失水出现裂缝,所以膨胀土的施工工艺与其他粘性土的施工工艺有着很大的区别,我国对于膨胀土的施工技术也做出了要求,其中对膨胀土施工的厚度、土团径粒、压实含水量等都有着明确的规定,但从实际的施工角度来讲,这些规定的内容可行性低,有些甚至无法应用到施工中,所以我国当前高速公路施工经常出现路堤整体或局部下沉、基床出现冒泥或两侧边坡稳定性下降的问题,严重的影响了施工质量和工程的安全性。为此文章以某高速公路膨胀土路堤填筑施工为例,论述了其在施工前试验段的施工工艺方案和实验结果,为日后其他的施工提供优化建议和质量控制指导。
1 高速公路膨胀土路堤填筑试验段施工工艺方案
1.1 填筑材料和填筑机械设备分析
填筑施工中需要的材料有两种:一种是膨胀土,另一种是石灰经过改良后的中性膨胀土,在试验过程中需要通过CBR实验进行材料性质检测,其中填筑施工中膨胀土的含水量为24%左右,每立方厘米膨胀土的最大干密度为1.68 g;石灰经过改良后的中性膨胀土的含水量在23.5%左右,每立方厘米膨胀土的最大干密度为1.58 g。
施工过程中应用到的主要机械设备有:陕建WBZ21路拌机,其宽度在2.1 m,能够实现的最大搅拌深度为0.4 m;宝马BW217D振动碾压机,吨位为18 t,最大振力为600 kN;成工PY165平地机,刀片的宽度为3.9 m。
1.2 填筑施工试验方案
此次试验分为两个区域:A区和B区,其中A区采用的是不改良包边施工,主要是在填芯阶段,B区采用的是石灰盖梁施工方式。为了在施工过程中获得准确的质量控制参数,在没有采用现场搅拌的前提下,对现场路拌的次数和松铺情况下铺设厚度、碾压次数以及碾压速度等施工参数进行了不同组合,大约有20种。其中A区试验有8种组合,B区试验有12种组合,具体数据见表1[1]。两个试验区的面积为25 m×2 m,通过对试验数据分析,可以选择最优的施工方式。
1.3 试验过程中的检测项目
本次试验过程中需要进行两项检测,一是路拌结束后对土团质量百分比的检测;二是在碾压过程中,前两次进行的是静压,后续需要进行的是振动碾压,而且从第四遍开始,每一次碾压过后,都要检测膨胀土的含水量和压实度[2]。
2 高速公路膨胀土路堤填筑试验段施工结果分析
2.1 施工中对控制含水量分析
在施工试验阶段,大部分操作都在室内进行,通过其反映出的膨胀土施工特性,得出以下结论:在路堤填筑施工中,膨胀土的含水量要比最合理的含水量稍高一些,但干密度略低[3]。如果将试验的施工工艺应用到实际施工中,能够满足高速公路的施工要求,也能保障工程的整体稳定性。
表1 试验区域各项施工控制参数组合表
通过对试验结果的分析,A试验区在进行压实后,其内部的含水量与设计要求的含水量基本相符,B试验区的含水量要比设计的含水量要求过高,而且试验阶段的压实次数完全能够满足施工中压实度的要求,如果当施工中膨胀土结构的含水量超过设计要求时,可以通过增加碾压次数,提高结构的压实度来控制含水量。但在使用这种方法前,要通过击实试验和CBR实验检测出施工要求的含水量,这样才能有效的控制施工质量;而且得到含水量的上下限范围后,对于施工按年度的降低也有一定的帮助,此次试验过程中,对于两个试验区含水量的控制是有区别的,A试验区采用的重型击实和湿法施工,所以含水量可以在1%上下进行浮动,但在施工中可能出现含水量未达到设计要求,但也能满足施工压实度的要求,这种施工中由于CBR的强度较低,不建议采用这种方式;B试验区含水量可以在2%上下浮动,而且在不同的施工位置上,含水量的浮动范围可以扩大到4%。这种结合实际施工情况进行含水量控制的方式,不仅能够提升施工的水稳定性,还有利于提高施工效率[4]。
2.2 施工中松铺厚度和路拌次数分析
在我国施工规范中规定,膨胀土及改性的膨胀土在施工过程中土团的最大粒径不能超过5 cm,而土团粒径是施工中影响结构均匀度和压实度的最主要因素,所以施工中土团粒径越小才能获得更高质量的施工结果。为此,在试验过程中,进行了土团粒径合格百分比检测,发现无论路拌的次数是否相同,只要随着松铺厚度的提升,均匀度都会有所下降,其中路拌次数是1的时候,随着松铺厚度的增加,均匀度会有明显的下降;但在后续的第二次路拌或第三次时,均匀度下降的表现并不明显。
在试验过程中,虽热均匀度会随着路拌次数发生变化,但两种施工材料在具体的变化上又存在着较大的差异,例如当松铺厚度达到了25 cm~30 cm,那么均匀度的平均值与路拌次数呈现出的是正比例关系,而且变化较大;如果路拌次数只有一次或两次,而且松铺厚度不变,那么经过改性的膨胀土变化幅度上要比膨胀土小很多,也可以说变化非常不明显。
通过上述论述的分析发现,当含水量在合理的范围内时,不改良包边施工中最合理的路拌次数为1次~2次,松铺厚度最好控制在27 cm;石灰改良施工最合理的路拌次数为2次,松铺厚度最好控制在26 cm~30 cm范围内。
2.3 施工中碾压次数、速度与压实度之间的关系分析
在相同的碾压次数下,松铺厚度如果持续增加,那么压实度会随着下降,但松铺厚度在25 cm~30 cm范围对压实度的影响较小。而碾压次数与压实度之间呈现的是正比例关系,也就是说碾压次数的增加,压实度也会随着增加,但在达到上限后,压实度的变化非常小。而碾压速度与压实度之间的关系较小,但受到压实功的影响,当碾压速度在2 km/h~3 km/h范围内时,对压实度的影响是最小的,所以在施工中可以将碾压速度控制在此范围内[5]。需要注意的是,在分析碾压次数与对压实度的影响时,还要考虑松铺厚度和不均匀性因素造成的影响。
3 结语
从当前高速公路的实际情况来看,用膨胀土进行路堤填筑施工在质量上还无法实现有效的控制和保障,需要通过结合多项参数进行实验才能完成路堤填筑施工,为此,文章通过对高速公路膨胀土路堤填筑施工工艺参数的研究,希望能够为实际施工提供参考和借鉴。
[1] 唐咸远,杨和平,肖 杰,等.包芯法填筑膨胀土路堤的施工技术研究[J].公路,2012,23(12):52-55.
[2] 彭华中,王 涛.膨胀土地区公路路堤填筑施工技术[J].科技创新导报,2013,24(18):97-98.
[3] 周勇明,顾 生.膨胀土路堤物理处治技术的应用研究[J].西部交通科技,2013,19(5):10-13,55.
[4] 张柯宏.高速铁路膨胀土路堤沉降变形及湿热性状监测与分析[D].成都:西南交通大学,2015.
[5] 王媛媛,郭晓东.包芯法填筑膨胀土路堤的施工技术研究[J].民营科技,2013,20(12):195.