APP下载

右美托咪啶预处理经AMPK/SIRT1通路抑制大鼠脑缺血再灌注损伤的炎性反应

2018-03-07董海平周薇王震虹

中国医药导报 2018年1期
关键词:右美托咪啶脑缺血炎症

董海平+周薇+王震虹

[摘要] 目的 探討右美托咪啶(Dex)预处理对大鼠大脑缺血再灌注(I/R)损伤后炎性反应的作用机制。 方法 72只SD大鼠随机分为6组,每组12只。①假手术组(Sham组),大鼠经腹腔注射3%戊巴比妥钠(50 mg/kg)麻醉后,只游离右侧颈内动脉,不制作成大脑中动脉闭塞(MCAO)模型;②脑缺血组(IR组):造模后,大鼠脑缺血90 min后再灌注;③Dex10组及Dex50组:造模后,缺血前30 min分别腹腔内注射10、50 μg/kg Dex;④Dex50+Yoh组:造模后,在给予50 μg/kg Dex前10 min腹腔内注射育亨宾(Yoh)0.5 mg/kg;⑤Yoh组:造模后,缺血前30 min腹腔注射Yoh 0.5 mg/kg。对各组大鼠进行神经功能损伤评估、梗死面积评估、肿瘤坏死因子-α(TNF-α)及白介素-1β(IL-1β)水平测定、TUNEL染色及SIRT1蛋白检测和神经运动功能评分(TMS)检测。 结果 IR组的神经功能评分、梗死面积、TUNEL(+)细胞数、TNF-a和IL-1β水平及SIRT1蛋白表达量均明显高于Sham组,再灌注后第1、2、5天时TMS评分均明显低于Sham组,差异有高度统计学意义(P < 0.01)。Dex10组、Dex50组的神经功能评分、梗死面积、TUNEL(+)细胞数、脑匀浆中TNF-a和IL-1β水平均明显低于IR组、Dex50+YOH组、YOH组;TMS评分、SIRT1蛋白表达量均明显高于IR组、Dex50+YOH、YOH组,差异有高度统计学意义(P < 0.01)。Dex50组神经功能评分、梗死面积、TUNEL(+)细胞数、脑匀浆中TNF-a和IL-1β水平均明显低于Dex10组;再灌注后第1、2、5天时TMS评分、SIRT1蛋白表达量明显高于Dex10组(P < 0.01)。Dex50+YOH、YOH组间各项检测指标比较,差异无统计学意义(P > 0.05)。 结论 Dex预处理可激活α2受体通过AMPK/SIRT1通路抑制大鼠脑缺血再灌注损伤,减轻炎性反应并发挥神经保护作用。

[关键词] 右美托咪啶;炎症;再灌注损伤;脑缺血

[中图分类号] R734 [文献标识码] A [文章编号] 1673-7210(2018)01(a)-0004-06

[Abstract] Objective To investigate the mechanism of Dexmedetomidine (Dex) pretreatment on inflammation after cerebral ischemia/reperfusion (I/R) injury in rats. Methods Seventy-two SD rats were randomly divided into 6 groups (n=12). In sham group, after anesthesia by 3% Pentobarbital sodium (50 mg/kg), the rates were isolated the right internal carotid artery, but they were not made into the middle cerebral artery occlusion (MCAO) model. In IR group, after the molding, the rat brain was received reperfusion at 90 min after ischemia. In Dex10 and Dex50 groups, after the molding, they were intraperitoneal injected Dex (10 μg/kg or 50 μg/kg) at 30 min before ischemia. In Dex50+Yoh group, after the molding, they were intraperitoneal injected Yoh (0.5 mg/kg) before 50 μg/kg of Dex. In Yoh group, after the molding, they were intraperitoneal injected Yoh (0.5 mg/kg) before ischemia. The neurofunctional damage assessment, infarct area assessment, the levels of TNF-α and IL-1β, TUNEL staining, SIRT1 protein detection and Neuro-motor function score (TMS) in each group were detected respectively. Results In the IR group, neurofunctional scores, infarction area, TUNEL (+) cell count, levels of TNF-a and IL-1 β and SIRT1 protein expression were significantly higher than those in the sham group, while the TMS scores at 1, 2 and 5 days after reperfusion were lower than those in the sham group, with highly statistically significant difference (P < 0.01). The neurofunctional scores, infarction area, TUNEL (+) cell count, and TNF-a and IL-1 β levels in the Dex10 group and Dex50 group were significantly lower than those in the IR, Dex50+YOH and YOH group, while the TMS score and SIRT1 protein expression were higher than those in the IR, Dex50+YOH and YOH group, with highly statistically significant difference (P < 0.01). The nerve function scores, infarction area, TUNEL (+) cell count, and TNF-a and IL-1 β levels in the Dex50 group were significantly lower than those in the Dex10 group, TMS score and SIRT1 protein expression were significantly higher than those in the Dex10 group (P < 0.01). There was no statistically significant difference between the test indexes of Dex50+YOH group and YOH group (P > 0.05). Conclusion Dexmedetomidine preconditioning can activate α2 adrenergic receptor through AMPK/SIRT1 pathway to inhibit cerebral ischemia reperfusion injury in rats, and reduce the inflammation.endprint

[Key words] Dexmedetomidine; Inflammation; Reperfusion injury; Brain ischemia

脑卒中包括缺血性脑卒中和出血性脑卒中,有60%~80%是脑血管供血不足,即缺血性卒中或脑梗死[1]。脑缺血再灌注成为脑卒中发病及治疗过程中必然病理过程造成严重的脑损伤。右美托咪啶(Dex)是一种高选择性的α2-受体激动剂,为围术期和ICU中常用的镇静药物[2]。近年来的研究发现Dex同样具有脑保护功能[3-5],可能是通过改善脑缺血后的脑氧供平衡[6],减轻过氧化反应[7],调节HIF等基因表达[4],减少炎性因子的释放,缓解炎性反应等机制发挥作用[8-9]。炎性反应涉及很多方面的机制,其中细胞能量代谢异常已成为近年来研究炎性反应的重要环节[10]。腺苷酸激活的蛋白激酶(AMPK)是真核生物广泛存在的能量敏感性蛋白激酶,既往研究表明,AMPK的激活保护了全脑缺血和局灶性缺血[11-15]。本研究拟探讨Dex预处理经AMPK/SIRT1通路对大鼠脑缺血再灌注损伤炎性反应的影响。

1 材料与方法

1.1 动物

本实验采用72只成年健康雄性SD大鼠,体重200~250 g,购自上海交大动物实验中心,动物合格证号:SYXK(沪)2008-0106。

1.2 材料

Dex、育亨宾(Yoh,α受体拮抗剂)均购自江苏新晨医药有限公司(中国);TTC、戊巴比妥购自Sigma–Aldrich(St. Louis,MO,美国);AMPK抗体和ELISA试剂盒等购自R&D Germany(德国)。鼠抗SIRT1单克隆抗体购于美国Abcam公司。

1.3 动物处理与分组

1.3.1 大脑中动脉闭塞(MCAO)模型 大鼠腹腔内注射3%戊巴比妥钠(50 mg/kg)麻醉后,经颈部游离右侧颈内动脉,将线栓经颈内动脉入颅插入大脑前动脉,制作大脑中动脉闭塞(MCAO)模型[16]。缺血90 min后取出线栓,整个手术过程中使用加热毯和加热灯维持直肠温度为37°C左右。MCAO模型成功的入选标准参照文献[17]。

1.3.2 分组 72只SD大鼠随机分为6组,每组12只。①假手术组(Sham组):腹腔注射3%戊巴比妥钠(50 mg/kg)麻醉后,经颈部游离右侧颈内动脉,但不制作MCAO模型,其他手术过程同“1.3.1”;②脑缺血组(IR组):造模后,大鼠脑缺血90 min后再灌注;③Dex10组,造模后,缺血前30 min给予大鼠10 μg/kg Dex腹腔内注射;④Dex50组:造模后,缺血前30 min给予大鼠50 μg/kg Dex腹腔内注射;⑤Dex50+Yoh组:造模后,在给予50 μg/kg Dex前10 min,腹腔内注射Yoh 0.5 mg/kg;⑥Yoh组:造模后,缺血前30 min腹腔注射Yoh 0.5 mg/kg。所用药物剂量均参照文献[18-19]使用。

1.4 观察指标

每组分别取6只大鼠于缺血再灌注后24 h先进行神经功能损伤评估,处死后进行梗死面积评估、肿瘤坏死因子-α(TNF-α)及白介素-1β(IL-1β)水平测定、TUNEL染色及SIRT1蛋白检测。每组另取6只大鼠于再灌注后第1、2、5天进行神经运动功能评分(TMS)。

1.4.1 神经功能损伤评估 缺血再灌注后24 h对大鼠进行神经功能损伤评估(Longa评分)[17],评分标准:0分=无神经损伤,1分=左前肢伸展障碍,2分=向左打圈,3分=行走时向左侧倾倒,4分=意识昏迷,5分=死亡。

1.4.2 梗死面积评估 再灌注24 h后处死大鼠并取出脑组织,将大脑切成五个冠状切片(2 mm),置于1%氯化三苯基四氮唑(TTC)溶液中染色20 min后,用4%多聚甲醛固定。将TTC染色切片拍摄并数字图像进行分析,使用图像分析软件(Image-Pro Plus 6.0)。大脑半球病灶体积百分比[HLV(%)]由以下公式计算(tatlisumak,1998):HLV(%)=[总梗死體积-(体积完整的同侧半球-完整的对侧大脑半球的体积)]/对侧大脑半球的体积×100%。

1.4.3 TNF-α和IL-1β测定 取梗死灶脑组织,采用ELISA试剂盒检测脑组织匀浆中TNF-α和IL-1β的含量。

1.4.4 TUNEL染色 取脑组织用4%多聚甲醛固定后石蜡包埋切片,TUNEL染色后,阳性细胞发出绿色荧光。在40倍光镜下量化的TUNEL阳性细胞,缺血区域选取5个视野,通过规模校准对TUNEL阳性细胞平均百分比测定。

1.4.5 SIRT1蛋白检测 取脑组织匀浆,使用蛋白质免疫印迹法(Western Blot)检测SIRT1蛋白的表达。采用二喹啉甲酸(BCA)法进行蛋白定量。首先将标准蛋白加入96孔板中,再分别加入样品蛋白,及BCA工作液。酶标仪测定A562 nm处吸光光度值。取样品蛋白,加入缓冲液,水浴、冷却。将变性蛋白加入SDS-PAGE凝胶进行电泳。电泳完成后,根据参照蛋白marker指示相应蛋白分子量切取目的胶段后进行转膜。转膜完成后加入小鼠抗SIRT1单克隆抗体(1∶1000),4℃孵育过夜,次日TBST缓冲液洗涤,经Odyssey FC成像系统进行显影,应用Lab Work软件进行SIRT1蛋白定量分析。

1.4.6 TMS评分 再灌注后第1、2、5天进行TMS评分,检测项目包括:抓屏试验、平衡木试验及抓绳试验,评分范围0~9分,分数越高代表神经运动功能越完善[17]。

1.5 统计学方法

采用GraphPad Prism 5统计学软件进行数据分析,计量资料数据用均数±标准差(x±s)表示,多组间比较采用单因素方差分析,组间两两比较采用Tukey检验,以P < 0.05为差异有统计学意义。endprint

2 结果

2.1 各组神经功能评分、梗死面积、TUNEL染色结果比较

IR组的神经功能评分、梗死面积、TUNEL(+)细胞数均明显高于Sham组,差异有高度统计学意义(P < 0.01)。Dex10组、Dex50组的神经功能评分、梗死面积、TUNEL(+)细胞数均明显低于IR组、Dex50+YOH组、YOH组,差异有高度统计学意义(P < 0.01)。Dex50组神经功能评分、梗死面积、TUNEL(+)细胞数均明显低于Dex10组(P < 0.01)。Dex50+YOH、YOH组间神经功能评分、梗死面积、TUNEL(+)细胞数比较,差异无统计学意义(P > 0.05)。见图1。

2.2 各组再灌注后不同时间点的TMS评分比较

IR组再灌注后第1、2、5天TMS评分均明显低于Sham组,差异有高度统计学意义(P < 0.01)。Dex10、Dex50组再灌注后TMS评分均明显高于IR组、Dex50+YOH、YOH组,差异有高度统计学意义(P < 0.01)。Dex50组再灌注后第1、2、5天时TMS评分明显高于Dex10组(P < 0.01)。Dex50+YOH、YOH组间TMS评分比较,差异无统计学意义(P > 0.05)。见图2。

2.3 各组脑匀浆中TNF-a和IL-1β含量比较

IR组脑匀浆中TNF-a和IL-1β水平均明显高于Sham组,差异有高度统计学意义(P < 0.01)。Dex10组、Dex50组脑匀浆中TNF-a和IL-1β水平均明显低于IR组,差异有高度统计学意义(P < 0.01)。Dex50组脑匀浆中TNF-a和IL-1β水平明显低于Dex10组,差异有统计学意义(P < 0.01)。见图3。

2.4 各组SIRT1蛋白表达量比较

IR组SIRT1蛋白表达量明显高于Sham组,差异有高度统计学意义(P < 0.01)。Dex10组、Dex50组SIRT1蛋白表达量明显高于IR组、Dex50+YOH组、YOH组,差异有高度统计学意义(P < 0.01)。Dex50组SIRT1蛋白表达量明显高于Dex10组,差异有高度统计学意义(P < 0.01)。Dex50+YOH、YOH组间SIRT1蛋白表达量比较,差异无统计学意义(P > 0.05)。见图4。

3 讨论

Dex作为常用的镇静药,通过激活α2肾上腺素受体发挥神经保护的作用。本实验中,在MCAO术前30 min给予Dex,提示其能有效缓解MCAO导致的脑损伤,减轻了缺血导致的神经细胞凋亡,同时改善了再灌注后的行为等级,且有一定的剂量依赖性。本研究发现不同剂量(10、50 μg/kg)Dex能有效缓解大脑皮质区的损伤,减少皮质细胞凋亡、减轻脑组织炎症的影响。Dex能明显改善缺血再灌注运动功能。α2肾上腺素能受体拮抗剂的Yoh能抑制Dex的作用。局部的脑缺血再灌注损伤严重损害了大脑皮层功能,大鼠的运动功能在损伤后第1、2、5天逐渐减退。经Dex预处理的大鼠的运动功能在损伤后有明显改善,这种神经保护作用可被α2肾上腺素受体拮抗剂育亨宾逆转。

Dex脑保护作用机制目前已有初步进展,在缺血发生时作为神经保护剂为后续的治疗提供保障[8]。既往研究表明,在脑缺血再灌注损伤中,炎性反应与细胞凋亡参与了主要机制[20]。动物实验和离体细胞实验均证实α2肾上腺素受体激动剂对感染及非感染引起的炎性反应均有一定的抑制作用。有研究发现接受Dex治疗的脓毒血症患者的病死率,呼吸机辅助呼吸天数均下降,脑功能恢复也较好显示Dex有一定的抗炎作用[21]。应用α2-AR激动剂后脓毒血症大鼠肝脏的病理明显改善[22],肺组织损伤减轻,减少炎症介质TNF-α和IL-6的释放[23]。研究证实Dex在肺组织、肾脏组织及肠道组织缺血损伤中起到一定的抗炎作用[24-26]。本实验结果提示,在大鼠脑缺血后Dex也发挥了抗炎的作用,Dex预处理的大鼠脑缺血再灌注后TNF-α和IL-1β水平明显下降,大剂量的Dex(50 μg/kg)的抗炎作用比低剂量(10 μg/kg)更加明显。

有研究提示,心肌缺血后應用α2肾上腺素受体激动剂可以刺激AMPK表达,而使用α2-受体阻断剂后拮抗了Dex的作用,明显抑制了AMPK的表达水平[27]。AMP被认为是细胞能量代谢过程中的关键酶,AMPK是能量敏感的蛋白激酶,其广泛存在于真核细胞中,在炎症过程中发挥关键作用,激活AMPK(Thr172磷酸化)能明显抑制炎性反应[28-29]。SIRT1除了调节代谢、衰老、凋亡外,还可以在炎症中发挥重要作用[30]。一系列体内外的实验证实,SIRT1对炎症基因表达及组织炎性损伤具有显著的抑制效应[31];激活SIRT1可以减轻脑缺血后的炎性反应[32]。本实验中,不同剂量的Dex均能有效激活AMPK/SIRT1通路,大剂量的Dex对AMPK/SIRT1的激活程度明显高于小剂量Dex,然而α受体拮抗剂育亨宾有效地阻断了这个作用。最近的研究证实,cAMP-PKA通路可抑制AMPK,PKA抑制剂H89可有效增加AMPK的活性[33],Dex能够抑制PKA的产生。因此,推测Dex可激活AMPK,通过抑制PKA的产生减轻MCAO术后的炎性反应,降低炎性因子的水平。

综上所述,Dex可激活α受体通过AMPK/SIRT1通路抑制炎性因子生成,减轻脑损伤发挥神经保护作用。但是,目前的研究仍存在一定的局限性:首先,Dex的剂量有待进一步研究,包括缺血后及静脉注射剂量;其次,Dex对AMPK/SIRT1下游的激活的机制尚不清楚。今后的研究中将进一步探讨。

[参考文献]

[1] 丁洁,朱涛.围术期脑卒中危险因素的研究进展[J].医学综述,2014,20(2):268-270.

[2] 朱慧琛,何征宇,王祥瑞.右美托咪啶的神经保护作用及其临床应用[J].上海医学,2012,35(8):722-725.endprint

[3] Kuhmonen J,Haapalinna A,Sivenius J. Effects of Dexmedetomidine after transient and permanent occlusion of the middle cerebral artery in the rat [J]. J Neural Transm(Vienna),2001,108(3):261-271.

[4] Ding XD,Zheng NN,Cao YY,et al. Dexmedetomidine pre?conditioning attenuates global cerebral ischemic injury following asphyxial cardiac arrest [J]. Int J Neurosci,2016, 126(3):249-256.

[5] Rajakumaraswamy N,Ma D,Hossain M,et al. Neuroprotective interaction produced by xenon and Dexmedetomidine on in vitro and in vivo neuronal injury models [J]. Neurosci Lett,2006,409(2):128-133.

[6] Chi OZ,Grayson J,Barsoum S,et al. Effects of Dexmede?tomidine on microregional O2 balance during reperfusion after focal cerebral ischemia [J]. J Stroke Cerebrovasc Dis,2015,24(1):163-170.

[7] Wang Z,Kou D,Li Z,et al. Effects of propofol-Dexme?detomidine combination on ischemia reperfusion-induced cerebral injury [J]. Neuro Rehabilitation,2014,35(4):825-834.

[8] Rodríguez-González R,Sobrino T,Veiga S,et al. Neuroprotective effects of Dexmedetomidine conditioning strategies:evidences from an in vitro model of cerebral ischemia [J]. Life Sci,2016,144:162-169.

[9] Trendelenburg G. Molecular regulation of cell fate in cerebral ischemia:role of the inflammasome and connected pathways [J]. J Cereb Blood Flow Metab,2014,34(12):1857-1867.

[10] 王云杰,侯卓然,廖紅,等.能量代谢信号通路对缺血性脑卒中神经保护作用的研究进展[J].药学进展,2014, 38(9):665-671.

[11] Yang Y,Zhang XJ,Li LT,et al. Apelin-13 protects against apoptosis by activating AMP-activated protein kinase pathway in ischemia stroke [J]. Peptides,2016,75:96-100.

[12] Ashabi G,Khalaj L,Khodagholi F,et al. Pre-treatment with metformin activates Nrf2 antioxidant pathways and inhibits inflammatory responses through induction of AMPK after transient global cerebral ischemia [J]. Metab Brain Dis,2015,30(3):747-754.

[13] Ashabi G,Khodagholi F,Khalaj L,et al. Activation of AMP-activated protein kinase by metformin protects against global cerebral ischemia in male rats:interference of AMPK/PGC-1α pathway [J]. Metab Brain Dis,2014, 29(1):47-58.

[14] Venna VR,Li J,Hammond MD,et al. Chronic metformin treatment improves post-stroke angiogenesis and recovery after experimental stroke [J]. Eur J Neurosci,2014,39(12):2129-2138.

[15] Mulchandani N,Yang WL,Khan MM,et al. Stimulation of brain AMP-activated protein kinase attenuates inflammation and acute lung injury in sepsis [J]. Mol Med,2015, 21:637-644.endprint

[16] Belayev L,Alonso OF,Busto R,et al. Middle cerebral artery occlusion in the rat by intraluminal suture [J]. Stroke,1996,27(9):1616-1623.

[17] Longa EZ,Weinstein PR,Carlson S,et al. Reversible middle cerebral artery occlusion without craniectomy in rats [J]. Stroke,1989,20(1):84-91.

[18] Sato K,Kimura T,Nishikawa T,et al. Neuroprotective effects of a combination of Dexmedetomidine and hypothermia after incomplete cerebral ischemia in rats [J]. Acta Anaesthesiologica Scandinavica,2010,54(3):377-382.

[19] Laudenbach V,Mantz J,Lagercrantz H,et al. Effects of α2-adrenoceptor agonists on perinatal excitotoxic brain injury comparison of Clonidine and Dexmedetomidine [J]. Anesthesiology,2002,96(1):134-141.

[20] Giacoppo S,Galuppo M,De Nicola GR,et al. Tuscan black kale sprout extract bioactivated with myrosinase:a novel natural product for neuroprotection by inflammatory and oxidative response during cerebral ischemia/reperfusion injury in rat [J]. BMC Complement Altern Med,2015, 15:397.

[21] Pandharipande PP,Sanders RD,Girard TD,et al. Effect of Dexmedetomidine versus lorazepam on outcome in patients with sepsis:an a priori-designed analysis of the MENDS randomized controlled trial [J]. Crit Care,2010, 14(2):R38.

[22] Sezer A,Memi[s][?] D,Usta U,et al. The effect of Dexme?detomidine on liver histopathology in a rat sepsis model:an experimental pilot study [J]. Ulus Travma Acil Cerrahi Derg,2010,16(2):108-112.

[23] Gao S,Wang Y,Zhao J,et al. Effects of Dexmedetomidine pretreatment on heme oxygenase-1 expression and oxidative stress during one-lung ventilation [J]. Int J Clin Exp Pathol,2015,8(3):3144-3149.

[24] Shou-Shi W,Ting-Ting S,Ji-Shun N,et al. Preclinical efficacy of Dexmedetomidine on spinal cord injury provoked oxidative renal damage [J]. Ren Fail,2015,37(7):1190-1197.

[25] Ren X,Ma H,Zuo Z,et al. Dexmedetomidine postconditioning reduces brain injury after brain hypoxia-ischemia in neonatal rats [J]. J Neuroimmune Pharmacol,2016,11(2):238-247.

[26] Falkowska A,Gutowska I,Goschorska M,et al. Energy metabolism of the brain,including the cooperation between astrocytes and neurons,especially in the context of glycogen metabolism [J]. Int J Mol Sci,2015,16(11):25 959-25 981.

[27] Sun Y,Jiang C,Jiang J,et al. Dexmedetomidine protects mice against myocardium ischemic/reperfusion injury by activating an AMPK/PI3K/Akt/eNOS pathway [J]. Clin Exp Pharmacol Physiol,2017,44(9):946-953.endprint

[28] Cheng YF,Young GH,Lin JT,et al. Activation of AMP-activated protein kinase by adenine alleviates TNF-alpha-induced inflammation in human umbilical vein endothelial Cells [J]. PLoS One,2015,10(11):e0 142 283.

[29] Tian Y,Ma J,Wang W,et al. Resveratrol supplement inhibited the NF-κB inflammation pathway through activating AMPKα-SIRT1 pathway in mice with fatty liver [J]. Mol Cell Biochem,2016,422(1-2):75-84.

[30] Yoshizaki T,Milne JC,Imamura T,et al. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes [J]. Molecular and cellular biology,2009, 29(5):1363-1374.

[31] Lv H,Wang L,Shen J,et al. Salvianolic acid B attenuates apoptosis and inflammation via SIRT1 activation in experimental stroke rats [J]. Brain Res Bull,2015,115:30-36.

[32] He L,Chang E,Peng J,et al. Activation of the cAMP-PKA pathway antagonizes metformin suppression of hepatic glucose production [J]. J Biol Chem,2016,291(20):10 562-10 570.

[33] Gu XY,Liu BL,Zang KK,et al. Dexmedetomidine inhibits Tetrodotoxin-resistant Na.sub.v 1.8 sodium channel activity through G i/o-dependent pathway in rat dorsal root ganglion neurons [J]. Mol Brain,2015,8(1):15.

(收稿日期:2017-10-08 本文編辑:李岳泽)endprint

猜你喜欢

右美托咪啶脑缺血炎症
脯氨酰顺反异构酶Pin 1和免疫炎症
欢迎订阅《感染、炎症、修复》杂志
欢迎订阅《感染、炎症、修复》杂志
右美托咪啶剂量对诱导插管期老年高血压患者血流动力学的影响
原花青素对脑缺血再灌注损伤后肠道功能的保护作用
血必净对大鼠脑缺血再灌注损伤的保护作用及其机制
细胞外组蛋白与脑缺血再灌注损伤关系的初探
炎症小体与肾脏炎症研究进展
黄芪抗脑缺血再灌注损伤的作用机制