APP下载

从两道教材习题的教学谈教材习题改编的有效性

2018-02-26江苏高邮市第一实验小学225600

小学教学参考 2018年2期
关键词:原题矩形长方形

江苏高邮市第一实验小学(225600)

苏教版教材六年级上册P88“探索与实践”中有两道习题:

5.画一个长6厘米、宽4厘米的长方形。

(1)这个长方形的长和宽分别增加1/2后,各是多少厘米?先算一算,再画一画。

(2)现在长方形的面积是多少平方厘米?现在长方形的面积是原来的几分之几?

6.任意画一个长方形,再把长方形的长和宽分别增加1/2,先算出现在长方形的长和宽,再算出现在长方形的面积是原来的几分之几。

笔者在备课时觉得这两题很简单,不足为虑,至少有90%以上的学生能做对,于是对习题进行了改编。

一、第一次改编

呈现问题:一个矩形的长和宽都扩延方后,现有面积是原图面积的几分之几?

学生给出了四种方案:一部分学生赋予长和宽实际数值,具体计算出面积,再求出面积比为9/4;一部分学生将原图形的长和宽视为单位“1”,根据扩延后的长和宽分别为原来的3/2,推算出面积比为9/4;还有部分学生别出心裁,将原图形的长和宽设为单位“2”,现在的长和宽设为单位“3”,直接得出面积比为9/4。仅一位学生使用绘图法。

就教学效果来看,尽管解题方法多样,但是大部分学生一开始毫无头绪,绝大多数学生都不约而同地采取保守策略,用老办法走老路,直接赋值求解。在用比值法来解答的学生分享了自己的心得后,其他学生也是懵懵懂懂。

二、第二次改编

将教材第5题改编为:“绘制一个长6厘米、宽4厘米的矩形,长、宽同步扩增1/2,新的矩形面积是多少?是原矩形面积的几分之几?”对于此题,学生能轻易解答。笔者追问:“那任意一个矩形,长和宽都扩增1/2,面积会扩增到原图形的几分之几?你是怎么进行研究的?”

生1:既然矩形不确定,我就随便画一个矩形,照题目条件操作就是。

生2:不妨设定长度和宽度是2的倍数。

师:根据你们的计算结果,能发现什么规律?

生3:无论长、宽怎么变,新图形的面积均为原图形面积的9/4。只要把矩形的长和宽都扩增1/2,新图形的面积就是原有面积的9/4。

师:除了赋值法,还能用别的方法来验证吗?

生4:把原图形的长、宽都视为单位“1”,那扩延后的长、宽就都是原来的3/2,那新图形的面积就是原图形的面积的9/4。

生5:可以用图示法。先绘制一个矩形,把长和宽都规划为2个不同的单位长度,然后长和宽都扩延相应的一个单位长度。看图就能得出比例为9/4。

师:这些方法有什么共同点?

生6:都是从分数1/2的意义着手的。

师:如果1/2把改成1/3,你还会做吗?

三、改编后的教学反思

无论是照本宣科,还是维新求变,都必须以教材为纲。上述题目编排在分数四则混合运算这一章节,就是考虑到学生已经掌握了稍复杂的分数应用题。第5题是一道典型的分数应用题,学生能正确解答是基本的教学目标。笔者认为,第一次试教的失败是因为曲解了编者的意图。编者是以此题来帮助学生巩固技能,而笔者却随意删去原题,陡然提高题目难度,欲速则不达,没有做到循序渐进。

六年级学生仍处于直观思维向抽象思维转型的阶段,让他们把长、宽视作单位“1”或概数还是颇为困难。鉴于此,保留原题体例很有必要,但原题难度系数小,仅能巩固已掌握的知识。因此,第二次改编时删去部分问题,保留原题中的绘画法,既方便学生理解,也为图示法提供更大的推广空间。

习题的设计本意是让学生学会举一反三、触类旁通。如果拘泥于教材中的两道题,不做发散拓展,学生只能获得暂时性的结论,没能获得永久性的方法。

在第二次改编中,笔者引导学生剥离数据,深入数理,使学生摆脱数值的制约。一题多解并非只取答案的多样性,也并非只取思路的多元化,更重要的是融会贯通。四种方法的本质是相通的,均可视为假设法,都体现1/2这个分数的意义所在,由此,准确把握分数意义是解决这类问题的关键。

总而言之,教师要想充分开发有限的教材习题资源,实现教材习题价值的最大化,就必须对教材、学生、习题的研究做到三位一体。

猜你喜欢

原题矩形长方形
我爱长方形
解法一真的不适合学生吗?
两矩形上的全偏差
化归矩形证直角
分类数 不出错
巧替换 妙解答
从矩形内一点说起
长方形的困惑
一道高考试题的四次拓展
让思维的花朵更绚烂