APP下载

航天器姿态机动优化容错控制

2018-01-19高直孔维宾

软件导刊 2018年10期

高直 孔维宾

摘 要:针对存在未知时变惯量不确定性、外部干扰力矩和执行机构衰退故障的非刚体航天器系统,研究了非刚体航天器自适应优化容错控制问题。首先,为了根据误差变量优化控制增益,设计一种动态增益调整函数实时优化控制增益;然后,基于非线性鲁棒控制方法、动态增益函数调整方法、自适应方法、容错控制理论与参数估计方法,提出一种新颖的自适应优化姿态跟踪容错控制器。所设计的控制器克服了执行器故障、惯量不确定性以及外界干扰的影响,保证航天器姿态及角速度能够跟踪时变的参考轨迹,实现跟踪误差系统最终一致有界稳定;最后,数字仿真结果验证了所提出方法的有效性,而且与已有控制方法相比,该方法具有更高的控制精度和稳定性。

关键词:未知时变惯量;执行机构衰退;非刚体航天器;优化容错控制;动态调整函数

DOIDOI:10.11907/rjdk.181545

中图分类号:TP319

文献标识码:A 文章编号:1672-7800(2018)010-0148-05

英文摘要Abstract:This paper investigates an adaptive optimal fault-tolerant control problem for non-rigid spacecraft attitude maneuver with unknown time-varying inertia,external disturbance and actuator fading.Firstly,a dynamic gain adjustment function is designed to optimize the control gain according to the error variables.Secondly,based on nonlinear robust control,the dynamic adjustment function,adaptive approach,fault-tolerant control theory and parameter estimation method,a novel adaptive optimal attitude tracking fault-tolerant controller is proposed.The proposed controller overcomes the influence of actuator fault,inertia uncertainty and external disturbance, andit can guarantee the attitude and angular velocity to track the reference time-varying trajectory and guarantee that the uniformly ultimately bounded stability of the error system is achieved.Finally,simulation results validate the effectiveness of the presented control algorithm and demonstrate higher control precision and better performance of the designed control approach compared with existing methods.

英文關键词Key Words:unknown time-varying inertia;actuator fading;non-rigid spacecraft;optimal fault-tolerant control;dynamic adjustment function

0 引言

航天器执行在轨维护、空间通信和对地观测等航天任务时,要求能够快速准确地跟踪参考姿态轨迹。近年来,航天器的姿态控制问题得到广泛关注,国内外学者在该领域取得了大量研究成果[1-9]。

此外,伴随着航天器在轨任务的多样化与复杂化,对其姿态控制系统的安全性及可靠性也提出了更高要求。其要求当航天器执行机构及系统内部元器件发生故障时,能够实现对这些故障的容错控制,从而提高航天器的自主性。由于航天器长期工作在强辐射和高低温的恶劣环境下,长时间工作将使机载元器件逐渐老化,最终导致执行机构产生功能性衰退及其它故障,进而影响系统稳定性。因此,航天器容错控制问题已成为近年来的研究热点之一[10-13]。文献[11]、[12]在惯量为定常条件下考虑系统容错控制问题。文献[11]针对执行机构损失部分效能的情况,设计一种自适应反步控制策略,使航天器在存在干扰的环境中达到姿态稳定;文献[12]在不考虑外界干扰的情况下,针对执行机构功能衰退故障设计一种自适应容错姿态控制逻辑;文献[13]针对具有未知常数惯量不确定性和外界干扰的航天器,设计一种有限时间自适应滑模姿态跟踪控制器,使航天器姿态能够在有限时间内跟踪上期望姿态。

与此同时,航天器在执行任务时,由于受燃料持续消耗、液体晃动、太阳帆板运动等客观因素影响,航天器惯量是未知且时变的[14-15],而且由于太空环境的多样性,在轨运行的航天器不可避免地会受到外界干扰力矩影响[16-17]。然而,上述容错控制策略仅考虑存在时变惯量、执行机构性能损失和外界干扰等情况下的刚体航天器姿态容错控制问题。受上述问题启发,本文针对非刚体航天器在轨运行时同时受到惯量未知时变性、外界持续干扰以及执行机构部分失效等影响,设计一种姿态跟踪机动的自适应优化容错控制律,使航天器姿态及角速度跟踪上参考轨迹。所提出的控制律结构简单,易于工程实现,理论分析和数值仿真验证了该控制策略的有效性,且该方法可同时用于刚体航天器的自适应姿态跟踪容错控制,在控制律设计部分对此进行详细说明。

1 问题描述

1.1 航天器系统模型

4 结语

本文基于非线性系统鲁棒控制方法、自适应方法、动态增益调整优化方法及参数估计方法,设计了一种姿态机动自适应优化容错控制方法,并通过对航天器跟踪误差系统的仿真研究,验证了该方法的可行性及鲁棒性。该控制器克服了执行器衰退、惯量不确定性及外界干扰对系统稳定性的影响,且具有结构简单、易于工程实现等优点。

参考文献:

[1] ZOU A M,KUMAR K D,HOU Z G.Quaternion-based adaptive output feedback attitude control of spacecraft using chebyshev neural networks[J].IEEE Transactions on Neural Networks,2010,21(9):1457-1471.

[2] WU S H,RADICE G,GAO Y S,SUN Z W.Quaternion-based finite time control for spacecraft attitude tracking[J].Acta Astronautica,2011,69(1):48-58.

[3] 李波,胡庆雷,石忠,等.基于反步法与动态控制分配的航天器姿态机动控制[J].控制理论与应用,2012,29(11):1419-1425.

[4] ZHU Z H,GUO Y.Adaptive fault-tolerant attitude tracking control for spacecraft formation with unknown inertia[J].International Journal of Adaptive Control and Signal Processing,2018,32(1):13-26.

[5] 殷春武,侯明善,李明翔.姿态变化一致有界的姿态稳定控制器设计[J].控制与决策,2016,31(8):1493-1498.

[6] CONG B L,LIU X D,CHEN Z.Backstepping based adaptive sliding mode control for spacecraft attitude maneuvers[J].Aerospace Science and Technology,2013,30(1):1-7.

[7] ZHU Z H,GUO Y.Distributed attitude coordination tracking control for spacecraft formation with time-varying delays[J].Transactions of the Institute of Measurement and Control,2018,40(6):2082-2087.

[8] TIWARI P M,JANARDHANAN S,NABI M U.Rigid spacecraft attitude control using adaptive integral second order sliding mode[J].Aerospace Science and Technology,2015,42:50-57.

[9] HUO B Y,XIA YQ,LU KF,FU M Y.Adaptive fuzzy finite-time fault-tolerant attitude control of rigid spacecraft[J].Journal of the Franklin Institute,2015,352(10):4225-4246.

[10] 李涛,张斌,乔建忠.执行机构部分失效的挠性航天器多界依赖容错控制[J].控制理论与应用,2017,34(3):383-392.

[11] HU Q L,XIAO B,ZHANG Y M.Fault-tolerant attitude control for spacecraft under loss of actuator effectiveness[J].Journal of Guidance Control and Dynamics,2011,34(3):927-932.

[12] HAN Y,BIGGS J D,CUI N G.Adaptive fault-tolerant control of spacecraft attitude dynamics with actuator failures[J].Journal of Guidance Control and Dynamics,2015,38(10):2033-2042.

[13] XIAO B,HU Q L,Zhang Y M.Finite-time attitude tracking of spacecraft with fault-tolerant capability[J].IEEE Transactions on Control Systems Technology,2015,23(4):1338-1350.

[14] SIDI M J.Spacecraft dynamics and control:a practical engineering approach[M].New York:Cambridge University Press,1997.

[15] WALLSGROVE R J,AKELLA M R.Globally stabilizing saturated attitude control in the presence of bounded unknown disturbances[J].Journal of Guidance Control and Dynamics,2005,28(5):957-963.

[16] 李隆,侯建文,史小平,等.航天器姿态跟踪系统自适应滑模控制[J].电机与控制学报,2015,19(2):96-108.

[17] PARK Y.Robust and optimal attitude control of spacecraft with disturbances[J].International Journal of Systems Science,2015,46(7):1222-1233.

[18] THAKUR D,SRIKANT S,AKELLA M R.Adaptive attitude-tracking control of spacecraft with uncertain time-varying inertia parameters[J].Journal of Guidance Control and Dynamics,2015,38(1):41-51.

[19] QU Z H,DAWSON D M,LIM S Y,DORSEY J F.A new class of robust control laws for tracking of robots[J].International Journal of Robotics Research,1994,13(4):355-363.

[20] 王衛杰,任元,李怡勇,等.航天器非线性鲁棒自适应姿态机动控制律[J].系统工程与电子技术,2015,37(1):135-140.

[21] CAI W C,LIAO X H,SONG D Y.Indirect robust adaptive fault-tolerant control for attitude tracking of spacecraft[J].Journal of Guidance Control and Dynamics,2008,31(5):1456-1463.

(责任编辑:黄 健)