植物褪黑素研究
2018-01-19程大伟张威远郭西智陈锦永
张 杰,顾 红,程大伟,张威远,郭西智,张 洋,陈锦永
(中国农业科学院 郑州果树研究所/果树生长发育与品质控制实验室,河南 郑州 450009)
褪黑素(N-乙酰-5-甲氧基色胺),又名松果素、美拉托宁,是一种低分子量(232.27)的吲哚胺类物质,1958年于牛的松果体中被首次发现[1],之后近40年,相关学者均将其作为一种仅存在于动物体内的神经激素进行研究[2]。在动物中,褪黑素的合成起始于色氨酸,并通过色氨酸脱羧酶(tryptophan decarboxylase, TDC)、色胺5-羟化酶(tryptamine 5-hydroxylase, T5H)、5-羟色胺N-乙酰转移酶(serotoninN-acetyltransferase, SNAT)以及乙酰5-羟色胺甲基转移酶(acetylserotonin methyl transferase, ASMT)参与的酶促反应最终合成[3-4]。褪黑素在动物中参与了众多的生理过程,包括影响昼夜节律、睡眠、情绪、体温、活动能力、进食、视网膜生理活动、性行为、繁殖能力以及免疫系统。另外,褪黑素还能够为大脑及周围淋巴组织提供信号,作为一种内源的生理节律同步器[5-9]。直至1995年,Dubbels等通过放射免疫测定以及液质联用技术检测到了烟草以及5种可食植物提取物中褪黑素的存在[10]。两个月之后,Hattori等通过放射免疫测定、高效液相色谱以及荧光检测等方法证实了可食植物中褪黑素的存在[11]。自此之后,一系列研究证明褪黑素普遍存在于植物界当中,并发挥着重要的调控作用。本文就近些年来植物中褪黑素的合成、含量及功能进行了综述,以期为褪黑素作为一种植物生长调节物质应用于农业生产提供一定的理论依据。
1 植物中褪黑素的合成
已有大量研究证明,不同物种中的褪黑素生物合成途径是类似的。通过放射性同位素示踪法,Murch等首次发现植物中褪黑素生物合成的主要前体物质是色氨酸[12]。由于色氨酸也是植物激素生长素以及其它一些次级代谢物生物合成的起始物质,这就使得褪黑素的合成不仅能够影响植物体内的激素平衡,也成为了植物次生代谢的一个重要分支点[13]。植物中褪黑素的合成途径与动物类似,均由色氨酸脱羧酶(TDC)、色胺5-羟化酶(T5H)、5-羟色胺N-乙酰转移酶(SNAT)以及乙酰5-羟色胺甲基转移酶(ASMT)参与催化合成[14-17]。色氨酸首先在TDC的作用下生成色胺;色胺作为底物,在T5H的催化下生成5-羟色胺;SNAT继而以5-羟色胺为底物催化生成N-乙酰5-羟色胺;最后在ASMT的作用下最终合成褪黑素。但在由5-羟色胺转化为褪黑素的过程中存在着两条途径。主要途径中,5-羟色胺经过SNAT催化生成N-乙酰5-羟色胺,继而在ASMT的作用下合成褪黑素[18];而在另一条替代途径中,5-羟色胺与褪黑素之间的中间产物为5-甲氧色胺,另外,该途径中还引入了一个苯丙烷类代谢过程中的催化酶——咖啡酸O-甲基转移酶(caffeic acid O-methyltransferase, COMT),它不仅能够催化5-羟色胺转化为5-甲氧色胺,也能够替代ASMT催化N-乙酰5-羟色胺合成褪黑素[3,19-21]。褪黑素生物合成途经中的中间产物均在不同的亚细胞组分(细胞质、内质网、叶绿体等)中合成。因此,细胞器之间的交流与运输也决定了褪黑素合成的酶促反应效率[22]。
2 植物中褪黑素含量
许多植物的根、叶、花、果实、种子等器官均富含褪黑素。中果咖啡新鲜种子中的褪黑素含量高达115.25 μg/g[23]。蔷薇科、葡萄科、禾本科、伞形科以及十字花科的植物均含有褪黑素,而对于一些尚未开展研究的植物而言,其体内褪黑素的含量可能会更高。不同植物之间褪黑素的含量存在差异,同一物种不同品种之间褪黑素的含量亦有所不同。究其原因,可能与以下几种因素相关:(1)植物的基因型;(2)植物所处的外界环境;(3)植物所处的生长发育阶段;(4)褪黑素提取及检测方法。
褪黑素已在140多种植物及其加工产品中被检测到,这些植物的基因型不尽相同,其所含褪黑素含量亦高低有别[24-25]。在一些禾本科作物,如:水稻、大麦、玉米以及燕麦中,褪黑素含量较高,而在一些多年生植物中褪黑素含量则有所不及[11,26]。另外,Wang等[27]在相同的地理环境下分别种植了58个不同品种的玉米和25个不同品种的水稻,对其中的褪黑素含量进行测定发现,58个玉米品种中褪黑素含量区间为11~2034 ng/g,25个水稻品种中褪黑素含量区间为11~264 ng/g。以上数据所显示的褪黑素含量差异在很大程度上是由植物基因型不同所导致的。
植物中褪黑素的合成也存在一个昼夜节律现象。在自然条件下,凤眼兰中褪黑素的水平显示出了明显的昼夜节律性,其含量高峰出现在光周期的最后阶段,将植株移至黑暗条件下,褪黑素的含量明显下降,因此,相关研究者认为凤眼兰中褪黑素的水平在日落之前达到最高,说明其在整个日照周期内均在进行褪黑素的合成和积累,而在黑暗条件下其合成速率降低或停止[28]。对于短花期植物红叶藜而言,其体内褪黑素的合成同样具有一定的节律性,但其规律恰与凤眼兰相反,褪黑素含量高峰出现在夜晚,而白天的褪黑素含量则维持在一个较低的水平[29-30]。将水稻小苗放置在黑暗且高温的条件下,能够促进其体内褪黑素的合成[31]。类似的,将番茄植株移至黑暗条件下,同样能够增加其体内褪黑素的含量[32]。甜樱桃中的褪黑素含量在一天中出现两次明显的高峰,一次在凌晨5:00左右,一次在14:00左右。第一次高峰的出现得益于夜晚的黑暗条件,第二次高峰则与高温及高光强有关[33]。依据目前所取得的研究结果来看,外界环境,尤其是光与温度也能够影响植物体内褪黑素的合成与积累。
据已有报道,植物内源褪黑素水平与其所处的生长发育阶段也有一定的关系。白曼陀罗花芽中含有高水平的褪黑素,但是随着花发育进程的推进,其褪黑素含量逐渐减少[34]。对于传统药用植物甘草而言,褪黑素在3~6个月植株的根中可以检测到,但在1个月植株的根组织中却检测不到褪黑素的存在[35]。另外,果实的成熟程度也对褪黑素的含量存在一定的影响。甜樱桃果实发育第一阶段中,其果实内褪黑素的含量约为15 ng/g;第二阶段中褪黑素的含量大幅升高至36.6~124.7 ng/g;而在第三阶段,褪黑素的含量又下降至10~20 ng/g[36]。番茄果实成熟分为以下6个时期:青熟期、破色期、转色期、粉红期、浅红期以及红熟期,采用高效液相色谱测定番茄不同成熟阶段果实中褪黑素含量发现,青熟期的番茄果实中褪黑素含量最低,而红熟期的果实中含量最高[37]。因此,植物及其果实所处的不同发育阶段,也是其内源褪黑素含量具有差异的原因之一。
随着科学技术的进步,越来越多的检测方法可以应用于植物中褪黑素的检测,包括放射性免疫测定(radioimmunoassay, RIA)、酶联免疫吸附检测(enzyme-linked immunosorbent assay, ELISA)、气质联用检测(gas chromatography-mass spectrometry, GC-MS)、高效液相色谱-电化学测定(high performance liquid chromatography-electrochemical detection, HPLC-ECD)、高效液相色谱-荧光测定(HPLC-fluorescence detection, HPLC-FD)以及高效液相色谱质谱联用检测(HPLC-MS)等。这些方法检测的结果依据提取方法以及检测的敏感度而有所不同[36]。对于动物样本而言,可以取其血液或尿液,利用RIA或HPLC来直接测定褪黑素的含量。相较于动物褪黑素测定的简单直接,植物褪黑素的测定则要复杂得多。首先要破碎植物组织样本进行褪黑素抽提,由于植物组织中化学成分复杂,常含有大量碳水化合物、脂质物以及色素等,因此在粗提之后需要进一步的纯化才能进行检测[38]。有些植物组织材料较大,需要在抽提之前将其干燥,使之更易破碎,但在此过程中,褪黑素的含量就会发生改变。Murch等以新鲜的、冻干的以及烘干的小白菊叶片作为提取材料,并对其中褪黑素的含量进行测定发现,与新鲜叶片相比,冻干叶片及烘干叶片中褪黑素的含量分别减少了15%和30%[39]。另外,在破碎植物组织过程中,会产生高水平的氧化物,如H2O2及一些超氧阴离子,这些氧化物能够轻易破坏植物中的褪黑素,使之测定产生偏差[40]。由于褪黑素较易粘附在玻璃、聚乙烯聚吡咯烷酮以及尼龙膜等材质上,在提取及纯化过程中也会出现褪黑素的损失[41]。囿于褪黑素纯化技术,用于检测的植物内源褪黑素中或多或少都会含有一些初级或次级代谢产物,这些代谢产物所具有的药理学或抗氧化特性,与褪黑素具有较高的相似度或与一些免疫检测物质发生交叉反应,均能给RIA、ELISA、HPLC以及与HPLC联用的检测方法带来一定的误差[38,42-44]。
为了获得更加可靠的研究结果,相关研究者会将植物样本的组织特性、生长地点、所处环境以及成熟程度等因素考虑在内,从而选择与之相适应的提取纯化及检测方法,减小植物褪黑素的检测误差,从而获得全面和准确的测量数据,更加真实地反映褪黑素在植物中的分布及含量。
3 褪黑素在植物中的功能
褪黑素广泛存在于植物体中,其功能涉及植物的整个生长发育阶段,从促进种子萌发到延缓叶片衰老,显示了其在植物体内功能的多效型[45-48]。
3.1 调控植物的生长发育
3.1.1 调控营养器官的生长发育 调控植物的生长发育是褪黑素与生长素极为相似的特性。早在2001年,Murch等发现改变植物内源褪黑素的含量并限制褪黑素的转运,能够抑制生长素诱导的根的发生和细胞分裂素诱导的芽的生长,并据此提出褪黑素有可能是一种潜在的植物生长调节物质的假说[49-50]。此后,大量的研究证实了该假说的真实性。以黄化的羽扇豆为材料,将其下胚轴浸入一系列浓度梯度的褪黑素和生长素溶液中,低浓度的褪黑素和生长素均能够促进羽扇豆下胚轴的伸长,而高浓度的两种激素则表现出生长抑制效应[51]。类似的研究结果在一些单子叶植物中也有报道。以生长素对胚芽鞘生长的促进作用作为对照(100%),褪黑素对燕麦胚芽鞘生长的促进作用为10%,小麦的为20%,加纳利虉草的为32%,大麦的为55%。在高浓度褪黑素条件下,单子叶植物也出现生长受阻的现象[52]。此外,褪黑素还能够促进植物侧根和不定根的形成,但对主根的生长及根毛的发育,影响效果不甚明显[53],且该结论已在甜樱桃[54]、石榴[55]、番茄[56]等植物中得到了验证。褪黑素在植物芽的生长过程中也发挥着重要作用。同时使用吲哚乙酸、吲哚丁酸以及褪黑素对蓝莓芽体进行体外培养,发现褪黑素和吲哚乙酸效果更为相似,且均优于吲哚丁酸,能够促进蓝莓腋芽及不定芽的形成[57]。使用100 μmol/L褪黑素处理含羞草外植体,能够促进70%的外植体进行芽的增殖;若使用褪黑素及5 mmol/L的Ca2+进行处理,75%~80%的外植体均能够发生芽体增殖,说明褪黑素有可能是通过Ca2+途径来促进芽的生长与增殖[58]。目前,褪黑素的生长促进活性在越来越多的植物中得到了证实,包括水稻[59]、辣椒[60]、黑麦草[61]、黄瓜[62]以及豆类作物[63]等。
3.1.2 调控生殖器官的生长发育 据已有报道,褪黑素在调控植物开花、生殖器官发育等方面也发挥着重要作用。在日落之前以及半夜对短日照植物红叶藜外源施加褪黑素处理,能够明显减少红叶藜的开花数量[64]。在此之前,Wolf等研究指出红叶藜体内的褪黑素水平会随着光照时间的长短而发生变化,证明了内源褪黑素能够调控开花的假说[30]。在水稻中转入SNAT基因,能够增加转基因株系体内褪黑素含量,进而影响植株的开花时间和谷物产量,再次证实褪黑素能够影响植物的开花,且这种效应可能普遍存在于植物界中[45]。植物的生殖活动是其生命延续的保证,因此植物的生殖器官是十分重要的,但又是十分脆弱的。过长的休眠以及快速的生长和发育均能够改变植物生殖器官中的氧化环境,如果没有相应的保护机制,势必会导致植物的生殖活动失败[34,65]。研究发现,在发育中的花和种子中存在有高浓度的褪黑素,充当着保护生殖器官的角色,该结论已在羽扇豆[66]、贯叶连翘[67]、苹果[68]、葡萄[69]以及番茄[70]中得到了证实,且其在生殖器官中的含量远远高于营养器官。除了保护作用之外,褪黑素与赤霉酸(gibberellic acid, GA)[71]和脱落酸(abscisic acid, ABA)[72]类似,极有可能作为一种生殖发育信号存在于植物的生殖器官中。梅洛葡萄中褪黑素的含量随着葡萄果实的成熟不断增加[69];白曼陀罗中褪黑素的含量在花后10 d不断增加,而此时的胚珠刚好达到成熟[34];苹果果实中褪黑素的含量高峰出现在果实生长发育明显加快的时期[68]。另外,在水稻和苹果中,褪黑素能够调控一些与生殖发育相关的基因的表达,从而维持植物的正常生殖发育水平[68,73-74]。
3.1.3 调控光合效率及叶片衰老 研究证明,褪黑素在增加光合效率、延缓叶片衰老方面亦是功不可没。与浸在水中的大麦叶片相比,使用不同浓度褪黑素处理后的叶片,其受黑暗诱导的衰老进程出现了明显的放缓迹象,同时叶绿体的损失亦明显减少。分别使用激动素和脱落酸处理大麦叶片能够加速其衰老,但同时加入褪黑素,受到激动素和脱落酸诱导的叶片衰老速度有所减慢,叶绿体的减少也得到了明显的抑制[75]。褪黑素的这种抗衰老效应在其它植物中也得到了证实,如苹果[76-77]、水稻[78]、桃[79]、黑麦草[80]、木薯[81]以及拟南芥[82]等。在拟南芥中,褪黑素能够下调两个叶绿素降解酶(叶绿素酶和脱镁叶绿酸加氧酶)基因的表达[82]。在苹果中,褪黑素能够抑制一些衰老相关基因以及脱镁叶绿酸加氧酶的上调表达[76],说明褪黑素在植物叶片衰老过程中起着一定的调控作用。褪黑素不仅能够保护叶绿素不受降解,也能够减少其它光合色素,如类胡萝卜素的损失,增加气孔导度以及CO2的吸收能力,增强植物光合效率,减轻环境胁迫对光合作用的抑制效应[22,83]。近来有文章报道,褪黑素处理的番茄小苗能够增加光合系统II的“开放”程度、有效量子产量以及光化学淬灭系数,从而减轻盐胁迫对光合系统II电子传递链的伤害。另外,褪黑素预处理能够维持D1蛋白的可利用率,进而对盐胁迫造成的光合系统II的损伤进行修复[84]。Arnao等通过转录组分析发现,褪黑素能够上调一些与光合作用、碳水化合物、脂肪酸代谢以及维生素C合成相关的基因的表达,暗示着褪黑素在这些生理过程中发挥着一定的作用[85]。
3.2 增强植物对胁迫的耐受性
在动物中,褪黑素已被证明是一种有效的自由基清除剂和广谱的抗氧化剂[86]。鉴于动物中的研究结果,褪黑素在植物中被发现后,关于其在植物中能否作为抗氧化剂参与植物应对外界生物和非生物胁迫的验证工作就很快展开了。最初的研究工作是利用胡萝卜的悬浮培养细胞进行的,研究者们使用外源褪黑素对悬浮细胞进行处理,发现受到冷诱导的细胞凋亡现象明显减少,并由此提出了褪黑素能够帮助植物抵抗非生物胁迫的假说[87]。随后,大量的研究结果证实了该假说的真实性。
3.2.1 增强植物对冷热胁迫的耐受性 极端的温度(冷和热)不仅在宏观上能够导致农作物的减产,而且在微观上能够影响植物细胞膜的流动性和体内酶活性的高低,进而改变植物的生理生化状态[88-89]。褪黑素能够明显减轻极端温度对多种植物带来的不良影响。黄瓜种子使用褪黑素处理之后能够增强其在寒冷环境中的萌发率[90]。使用褪黑素对3 d的绿豆苗进行处理,在低温条件下,处理后的绿豆苗根中脂质过氧化物的含量低于对照组,质体受到了更好的保护,根部生长受到的负面影响更小[91]。在预培养以及再生培养基中加入0.1~0.5 μmol/L的褪黑素能够增强冻存的美洲榆树芽外植体的再生[92]。在4 ℃生长条件下,使用褪黑素处理后的拟南芥比对照组具有更好的鲜重、主根以及芽的长度[88]。转化有人类SNAT基因的转基因水稻小苗表现出比野生型更好的抗寒性[93]。法色草种子对光照和高温十分敏感,强光照和高温能够抑制种子的萌发和生长,褪黑素处理能够减轻这些抑制效应[94]。在高温条件下,褪黑素处理后的拟南芥种子的萌发率可以达到60%左右,明显高于对照组[95]。褪黑素能够增强植物对极端温度的耐受性,同时,冷热胁迫也能够增加植物内源褪黑素的水平。分别将羽扇豆种植在6 ℃和24 ℃条件下,一段时间后测定其体内褪黑素的含量,发现6 ℃条件下生长的羽扇豆中内源褪黑素的含量是24 ℃的2.5倍[96]。在高温条件下,水稻和绿藻中褪黑素的水平均有所升高[31,97]。由此再次证明,褪黑素能够增强植物对冷热环境的耐受性。
3.2.2 增强植物对渗透胁迫的耐受性 外界环境盐度过高或干旱均会对植物造成渗透胁迫,进而引起水分缺失,而且会扰乱植物细胞中的生化进程,从而影响植物正常的生长发育[98]。使用褪黑素对植物进行预处理,能够有效减缓或逆转这些不良影响。使用褪黑素对45 d的苹果小苗进行处理,之后置于高盐环境下生长,处理组的嫩芽高度、叶片数量、叶绿素含量以及电解质泄漏率等参数均优于未使用褪黑素处理的对照组;另外,处理组植株中H2O2含量明显低于对照组,活性氧代谢相关酶类,如抗坏血酸过氧化物酶、过氧化氢酶等的活性受到诱导,Na+、K+转运体相关基因的表达得到上调,从而减轻盐胁迫带来的生长抑制效应[99]。在黄瓜种子播种之前进行褪黑素处理,能够大幅提高种子中抗氧化酶的活性,进而促进种子在盐胁迫条件下的萌发效率及后续的生长[100]。在干旱条件下,使用褪黑素对苹果叶片进行预处理,处理后的叶片中ABA含量是未处理叶片的一半左右,同时,与ABA代谢相关的一些酶类的活性也受到了不同程度的上调或下调,而由褪黑素处理所引起的ABA含量降低能够促进气孔保持合适的孔径,从而更好地应对干旱胁迫[101]。在樱桃芽尖外植体培养基中加入适量褪黑素,经过一段时间的培养,樱桃外植体中脯氨酸含量是对照组的5倍,总碳水化合物含量是对照组的3~4倍,这些物质的积累能够增加樱桃外植体对渗透胁迫的耐受力[102]。对过量表达羊SNAT和HIOMT基因的转基因番茄进行干旱处理,20 d之后对转基因和对照组植株浇水,转基因植株恢复生长,而对照组植株全部死亡;另外在干旱条件下,对照组植株叶片的失水速率明显高于转基因植株,这可能是导致对照组植株死亡的原因之一[103]。使用适宜浓度的褪黑素溶液浸泡大豆种子能够优化后续一系列的生长参数,如小苗生长情况、叶片大小、植株高度、生物质含量、荚果以及种子数量等,并能够增强植株对盐和干旱胁迫的抗性[48]。外源施加褪黑素对狗牙根进行处理,能够激活狗牙根的内在保护机制,使其更好地应对外界的渗透胁迫[104]。近年来,类似的研究结果在酸橙[105]、向日葵[106]、轮藻[107]、葡萄[108]中亦有获得。
3.2.3 增强植物对氧化胁迫的耐受性 动物中,褪黑素的抗氧化活性使其能够应对各种氧化胁迫[109]。当植物处于氧化胁迫时,如紫外线照射、土壤重金属污染等,褪黑素仍然能够起到保护的作用。紫外辐射能够破坏植物体内的生物大分子,如DNA和蛋白质,从而产生活性氧物质,阻碍细胞的正常生理活性[110]。生长在高山和地中海地区的植物经常暴露在大量的紫外线照射之下,它们体内的褪黑素含量远远高于生长在低紫外辐射地区的同种植物[111]。类似的结果在甘草中也有所体现,与低强度紫外线相比,使用高强度的紫外线照射甘草,能够更加有效地刺激植株体内褪黑素水平的提高[35]。另外,在藻类和一些高等植物中,褪黑素能够为植株提供光保护,从而减轻或消除紫外线带来的负面效应[28,112]。由此,相关研究者认为紫外辐射能够促进植物体内褪黑素的合成,而增加的褪黑素含量则能够保护植物免受由紫外线带来的氧化自由基损害[44,113]。土壤中的重金属离子,如铜、锌等,是植物维持正常生长状态所必需的,但是过量的重金属离子不仅能够破坏蛋白的结构和活性,而且能够引发对生物大分子的氧化伤害[114]。从已有的报道来看,褪黑素能够有效保护植物免受重金属离子的伤害。在播种之前使用褪黑素处理红球甘蓝的种子,能够抑制铜离子在种子萌发及小苗早期生长中的毒副作用[115]。土壤中的铜离子对豌豆种子具有致命的伤害,但在土壤中加入适量的褪黑素后,明显增强了豌豆种子对重金属污染的耐受力并增加了其存活率[116]。另外,使用硫酸锌处理大麦,与对照组相比,处理组根中的褪黑素含量增加了6倍,意味着褪黑素在植物面对重金属胁迫时具有一定的保护作用[117]。水葫芦能够清理水体中的重金属离子,有研究者认为这与其体内高水平的褪黑素含量相关[28,118]。
3.2.4 增强植物对病菌胁迫的耐受性 植物病菌能够引发农业产量和经济损失,通过各种策略来预防和控制植物病菌已成为农业生产的重中之重。近年来,褪黑素在植物生物胁迫中的应用越发受到重视。使用不同浓度的褪黑素溶液对苹果树进行灌根,能够有效增强苹果树对苹果褐斑病的抗性;处理后的苹果树受害叶片更少,叶片中叶绿素含量更高,落叶更少[119]。Arnao等研究发现,不同浓度的褪黑素能够抑制多种植物真菌性病原菌的活性,如链格孢菌、葡萄孢菌、镰刀霉菌等。另外,褪黑素还能够降低青霉菌侵染羽扇豆种子的速率[85]。褪黑素能够大幅降低丁香假单胞菌侵染拟南芥叶片后的毒力,使用褪黑素处理拟南芥和烟草叶片,能够诱导多种发病机理相关基因及水杨酸、茉莉酸、乙烯参与的植物防御应答途径中相关基因的表达。值得注意的是褪黑素对防御基因的快速诱导仅需0.5 h,而在处理3 h后,基因的表达就达到了高峰[120]。此外,在SNAT的拟南芥突变体植株中发现,随着内源褪黑素的减少,水杨酸的水平也有所下降,一些防御基因的表达受到强烈抑制[121]。通过对多种拟南芥突变体的研究发现,褪黑素位于防御基因信号途径以及水杨酸、茉莉酸、乙烯合成途径的上游,它们共同作用形成植物的抗病网络[122]。近年来已有报道,丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)能够参与植物应答ABA信号的途径中,而褪黑素介导的植物先天免疫反应需要丝裂原活化蛋白激酶信号级联途径参与其中,暗示着褪黑素可能与茉莉酸及ABA协作,充当着植物免疫反应的信号分子[123-126]。
4 结语及展望
在过去的20年时间里,已有数百篇与褪黑素研究相关的文献得到了发表,这些文章不仅扩展了褪黑素的研究物种,而且鉴定了褪黑素的代谢途径及大量的生理功能。即便如此,仍有许多未知之处有待阐明。由于褪黑素的理化性质并不十分稳定,因此其在植物组织器官中的合成部位及运输情况尚不明确。尽管Tan等通过研究指出,线粒体和叶绿体有可能是褪黑素合成的主要细胞器[127],但支持该假说的证据有限,褪黑素确切的合成位置仍属未知;褪黑素合成途径中有许多同工酶,不同植物以及同一植物不同组织器官中不同含量的褪黑素与这些同工酶之间的关系仍需进一步阐明;褪黑素在植物中具有多种功能,但目前植物中褪黑素受体及结合位点仍然不清楚。动物中褪黑素受体的各种亚型已得到认定,与之相关的基因亦被测序[128],因此植物细胞中特异的褪黑素受体以及信号传导将会是未来褪黑素研究的重要方面。将动物中与褪黑素合成相关的基因转入植物当中已能够稳定表达并提升植物当中的褪黑素水平,鉴于褪黑素对人畜无害,且适量摄入具有一定的保健作用,未来,褪黑素相关的转基因植物,尤其是农作物可能得到广泛研究,此举不仅能够提高植物本身抵抗外界生物和非生物胁迫的能力,减少化学制剂及杀虫剂的使用,确保作物的产量和质量,而且能够获得一些超富集植物品种,一方面用于药用褪黑素的提取,另一方面可以作为土壤、水体污染的“清洁工”,清除重金属离子等有毒物质。将来,褪黑素作为一种新型植物生长调节物质,在农业及环境保护中必定具有广阔的应用空间和应用前景。
参考文献:
[1] Lerner A B, Case J D, Takahashi Y, et al. Isolation of melatonin, a pineal factor that lightens melanocytes [J]. Journal of the American Chemical Society, 1958, 80(10): 2587.
[2] Reiter R J. Pineal melatonin: cell biology of its synthesis and of its physiological interactions [J]. Endocrine Reviews, 1991, 12(2): 151-180.
[3] Tan D X, Hardeland R, Back K, et al. On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species [J]. Journal of Pineal Research, 2016, 61(1): 27-40.
[4] Wei Y, Zeng H, Hu W, et al. Comparative transcriptional profiling of melatonin synthesis and catabolic genes indicates the possible role of melatonin in development and stress responses in rice [J]. Frontiers in Plant Science, 2016, 7: 676.
[5] Pandi-Perumal S R, Trakht I, Srinivasan V, et al. Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways [J]. Progress in Neurobiology, 2008, 85(3): 335-353.
[6] Hardeland R, Madrid J A, Tan D X, et al. Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling [J]. Journal of Pineal Research, 2012, 52(2): 139-166.
[7] Carrillo-Vico A, Lardone P J, Alvarez-Sánchez N, et al. Melatonin: buffering the immune system [J]. International Journal of Molecular Sciences, 2013, 14(4): 8638-8683.
[8] Singh M, Jadhav H R. Melatonin: functions and ligands [J]. Drug Discovery Today, 2014, 19(9): 1410-1418.
[9] Surbhi, Kumari Y, Rani S, et al. Duration of melatonin regulates seasonal plasticity in subtropical Indian weaver bird,Ploceusphilippinus[J]. General and Comparative Endocrinology, 2015, 220: 46-54.
[10] Dubbels R, Reiter R J, Klenke E, et al. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry [J]. Journal of Pineal Research, 1995, 18(1): 28-31.
[11] Hattori A, Migitaka H, Iigo M, et al. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates [J]. Biochemistry and Molecular Biology International, 1995, 35(3): 627-634.
[12] Murch S J, Krishnaraj S, Saxena P K. Tryptophan is a precursor for melatonin and serotonin biosynthesis ininvitroregenerated St John’s wort(HypericumperforatumL. cv. Anthos) plants [J]. Plant Cell Reports, 2000, 19(7): 698-704.
[13] Radwanski E R, Last R L. Tryptophan biosynthesis and metabolism: biochemical and molecular genetics [J]. Plant Cell, 1995, 7(7): 921-934.
[14] Fujiwara T, Maisonneuve S, Isshiki M, et al. Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice [J]. Journal of Biological Chemistry, 2010, 285(15): 11308-11313.
[15] Kang K, Kong K, Park S, et al. Molecular cloning of a plant N-acetylserotonin methyltransferase and its expression characteristics in rice [J]. Journal of Pineal Research, 2011, 50(3): 304-309.
[16] Kang K, Lee K, Park S, et al. Molecular cloning of rice serotonin N-acetyltransferase, the penultimate gene in plant melatonin biosynthesis [J]. Journal of Pineal Research, 2013, 55(1): 7-13.
[17] Park S, Byeon Y, Back K. Functional analyses of three ASMT gene family members in rice plants [J]. Journal of Pineal Research, 2013, 55(4): 409-415.
[18] Byeon Y, Back K. Low melatonin production by suppression of either serotonin N-acetyltransferase or N-acetylserotonin methyltransferase in rice causes seedling growth retardation with yield penalty, abiotic stress susceptibility, and enhanced coleoptile growth under anoxic conditions [J]. Journal of Pineal Research, 2016, 60(3): 348-359.
[19] Byeon Y, Lee H Y, Lee K, et al. Caffeic acid O-methyltransferase is involved in the synthesis of melatonin by methylating N-acetylserotonin inArabidopsis[J]. Journal of Pineal Research, 2014, 57(2): 219-227.
[20] Lee H Y, Byeon Y, Lee K, et al. Cloning ofArabidopsisserotonin N-acetyltransferase and its role with caffeic acid O-methyltransferase in the biosynthesis of melatonininvitrodespite their different subcellular localizations [J]. Journal of Pineal Research, 2014, 57(4): 418-426.
[21] Byeon Y, Back K. Melatonin production inEscherichiacoliby dual expression of serotonin N-acetyltransferase and caffeic acid O-methyltransferase [J]. Applied Microbiology and Biotechnology, 2016, 100(15): 6683-6691.
[22] Arnao M B, Hernández-Ruiz J. Melatonin: plant growth regulator and/or biostimulator during stress? [J]. Trends in Plant Science, 2014, 19(12): 789-797.
[23] Ramakrishma A, Giridhart P, Sankar K U, et al. Endogenous profiles of indoleamines: serotonin and melatonin in different tissues ofCoffeacanephoraP ex Fr. as analyzed by HPLC and LC-MS-ESI [J]. Acta Physiologiae Plantarum, 2012, 34(1): 393-396.
[24] Posmyk M M, Janas K M. Melatonin in plants [J]. Acta Physiologiae Plantarum, 2009, 31(1): 1.
[25] Fernandez-Mar M I, Mateos R, Garcia-Perilla M C, et al. Bioactive compounds in wine: resveratrol, hydroxytyrosol and melatonin: a review [J]. Food Chemistry, 2012, 130(4): 797-813.
[26] Zohar R, Izhaki I, Koplovich A, et al. Phytomelatonin in the leaves and fruits of wild perennial plants [J]. Phytochemistry Letters, 2011, 4(3): 222-226.
[27] Wang J, Liang C, Li S, et al. Study on analysis method of melatonin and melatonin content in corn and rice seeds [J]. Chinese Agricultural Science Bulletin, 2009, 25: 20-24.
[28] Tan D X, Manchester L C, Di M P, et al. Novel rhythms of N1-acetyl-N2-formyl-5-methoxykynuramine and its precursor melatonin in water hyacinth: importance for phytoremediation [J]. FASEB Journal, 2007, 21(8): 1724-1729.
[29] Kolar J, Machackova I, Eder J, et al. Melatonin: occurrence and daily rhythm inChenopodiumrubrum[J]. Phytochemistry, 1997, 44(8): 1407-1413.
[30] Wolf K, Kolar J, Witters E, et al. Daily profile of melatonin levels inChenopodiumrubrumL. depends on photoperiod [J]. Journal of Plant Physiology, 2001, 158(11): 1491-1493.
[31] Byeon Y, Back K. Melatonin synthesis in rice seedlingsinvivois enhanced at high temperatures and under dark conditions due to increased serotonin N-acetyltransferase and N-acetylserotonin methyltransferase activities [J]. Journal of Pineal Research, 2014, 56(2): 189-195.
[32] Riga P, Medina S, García-Flores L A, et al. Melatonin content of pepper and tomato fruits: effects of cultivar and solar radiation [J]. Food Chemistry, 2014, 156: 347-352.
[33] Zhao Y, Tan D X, Lei Q, et al. Melatonin and its potential biological functions in the fruits of sweet cherry [J]. Journal of Pineal Research, 2013, 55(1): 79-88.
[34] Murch S J, Alan A R, Cao J, et al. Melatonin and serotonin in flowers and fruits ofDaturametelL. [J]. Journal of Pineal Research, 2009, 47(3): 277-283.
[35] Afreen F, Zobayed S M, Kozai T. Melatonin inGlycyrrhizauralensis: response of plant roots to spectral quality of light and UV-B radiation [J]. Journal of Pineal Research, 2006, 41(2): 108-115.
[36] Feng X, Wang M, Zhao Y, et al. Melatonin from different fruit sources, functional roles, and analytical methods [J]. Trends in Food Science & Technology, 2014, 37(1): 21-31.
[37] Van Tassel D L, Roberts N, Lewy A, et al. Melatonin in plant organs [J]. Journal of Pineal Research, 2001, 31(1): 8-15.
[38] Van Tassel D L, O’Neill S D. Putative regulatory molecules in plants: evaluating melatonin [J]. Journal of Pineal Research, 2001, 31(1): 1-7.
[39] Murch S J, Simmons C B, Saxena P K. Melatonin in feverfew and other medicinal plants [J]. Lancet, 1997, 350(9091): 1598-1599.
[40] Poeggeler B, Hardeland R. Detection and quantification of melatonin in a dinoflagellate,Gonyaulaxpolyedra. Solutions to the problem of methoxyindole destruction in non-vertebrate material [J]. Journal of Pineal Research, 1994, 17(1): 1-10.
[41] Van Tassel D L. Identification and quantification of melatonin in higher plants [D]. California: University of California, 1997.
[42] Caniato R, Pilippini R, Piovan A, et al. Melatonin in plants [J]. Advances in Experimental Medicine and Biology, 2003, 527: 593-597.
[43] Hardeland R, Poeggeler B. Non-vertebrate melatonin [J]. Journal of Pineal Research, 2003, 34(4): 233-241.
[44] Kolar J, Machackova I. Melatonin in higher plants: occurrence and possible functions [J]. Journal of Pineal Research, 2005, 39(4): 333-341.
[45] Byeon Y, Back K. An increase in melatonin in transgenic rice causes pleiotropic phenotypes, including enhanced seedling growth, delayed flowering, and low grain yield [J]. Journal of Pineal Research, 2014, 56(4): 408-414.
[46] Byeon Y, Lee H Y, Lee K, et al. Cellular localization and kinetics of the rice melatonin biosynthetic enzymes SNAT and ASMT [J]. Journal of Pineal Research, 2014, 56(1): 107-114.
[47] Chan Z, Shi H. Improved abiotic stress tolerance of bermudagrass by exogenous melatonin [J]. Plant Signaling & Behavior, 2015, 10(3): e991577.
[48] Wei W, Li Q T, Chu Y N, et al. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants [J]. Journal of Experimental Botany, 2015, 66(3): 695-707.
[49] Murch S J, Campbell S S, Saxena P K. The role of serotonin and melatonin in plant morphogenesis: regulation of auxin-induced root organogenesis ininvitro-cultured explants of St John’s wort(HypericumperforatumL.) [J]. In Vitro Cellular & Developmental Biology-Plant, 2001, 37(6): 786-793.
[50] Murch S J, Saxena P K. Melatonin: a potential regulator of plant growth and development? [J]. In Vitro Cellular & Developmental Biology-Plant, 2002, 38(6): 531-536.
[51] Hernández-Ruiz J, Cano A, Arnao M B. Melatonin: a growth-stimulating compound present in lupin tissues [J]. Planta, 2004, 220(1): 140-144.
[52] Hernández-Ruiz J, Cano A, Arnao M B. Melatonin acts as a growth-stimulating compound in some monocot species [J]. Journal of Pineal Research, 2005, 39(2): 137-142.
[53] Pelagio-Flores R, Muoz-Parra E, Ortiz-Castro R, et al. Melatonin regulatesArabidopsisroot system architecture likely acting independently of auxin signaling [J]. Journal of Pineal Research, 2012, 53(3): 279-288.
[54] Sarropoulou V N, Therios I N, Dimassi-Theriou K N. Melatonin promotes adventitious root regeneration ininvitroshoot tip explants of the commerical sweet cherry rootstocks CAB-6P(PrunuscerasusL.), Gisela 6(P.cerasus×P.canescens), and MxM 60(P.avium×P.mahaleb) [J]. Journal of Pineal Research, 2012, 52(1): 38-46.
[55] Sarrou E, Therios I, Dimassi-Theriou K. Melatonin and other factors that promote rooting and sprouting of shoot cuttings inPunicagranatumcv. Wonderful [J]. Turkish Journal of Botany, 2014, 38(2): 293-301.
[56] Wen D, Gong B, Sun S, et al. Promoting roles of melatonin in adventitious root development ofSolanumlycopersicumL. by regulating auxin and nitric oxide signaling [J]. Frontiers in Plant Science, 2016, 7: 718.
[57] Litwinczuk W, Wadas-Boron M. Development of highbush blueberry(VacciniumcorymbosumHort. non L.)invitroshoot cultures under the influence of melatonin [J]. Acta Scientiarum Polonorum-Hortorum Cultus, 2009, 8(3): 3-12.
[58] Ramakrishna A, Giridhar P, Ravishankar G A. Indoleamines and calcium channels influence morphogenesis ininvitrocultures ofMimosapudicaL. [J]. Plant Signaling & Behavior, 2009, 4(12): 1136-1141.
[59] Han Q H, Huang B, Ding C B, et al. Effects of melatonin on anti-oxidative systems and photosystem II in cold-stressed rice seedlings [J]. Frontiers in Plant Science, 2017, 8: 785.
[60] Korkmaz A, Karakas A, Kocacinar F, et al. The effects of seed treatment with melatonin on germination and emergence performance of pepper seeds under chilling stress [J]. Journal of Agricultural Sciences, 2017, 23(2): 167-176.
[61] Zhang J, Shi Y, Zhang X, et al. Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass(LoliumperenneL.) [J]. Enviromental & Experimental Botany, 2017, 138: 36-45.
[62] Zhang R, Sun Y, Liu Z, et al. Effects of melatonin on seedling growth, mineral nutrition, and nitrogen metabolism in cucumber under nitrate stress [J]. Journal of Pineal Research, 2017, 62(4): e12403.
[63] Aguilera Y, Herrera T, Liébana R, et al. Impact of melatonin enrichment during germination of legumes on bioactive compounds and antioxidant activity [J]. Journal of Agricultural & Food Chemistry, 2015, 63(36): 7967-7974.
[64] Kolar J, Johnson C H, Machackova I. Exogenously applied melatonin(N-acetyl-5-methoxytryptamine) affects flowering of the short-day plantChenopodiumrubrum[J]. Physiologia Plantarum, 2003, 118(4): 605-612.
[65] Manchester L C, Tan D X, Reiter R J, et al. High levels of melatonin in the seeds of edible plants: possible function in germ tissue protection [J]. Life Sciences, 2000, 67(25): 3023-3029.
[66] Hernández-Ruiz J, Arnao M B. Distribution of melatonin in different zones of lupin and barley plants at different ages in the presence and absence of light [J]. Journal of Agricultural & Food Chemistry, 2008, 56(22): 10567-10573.
[67] Murch S J, Saxena P K. Mammalian neurohormones: potential significance in reproductive physiology of St. John’s wort(HypericumperforatumL.)? [J]. Naturwissenschaften, 2002, 89(12): 555-560.
[68] Lei Q, Wang L, Tan D X, et al. Identification of genes for melatonin synthetic enzymes in “Red Fuji” apple (MalusdomesticaBorkh. cv. Red) and their expression and melatonin production during fruit development [J]. Journal of Pineal Research, 2013, 55(4): 443-451.
[69] Murch S J, Hall B A, Le C H, et al. Changes in the levels of indoleamine phytochemicals during veraison and ripening of wine grapes [J]. Journal of Pineal Research, 2010, 49(1): 95-100.
[70] Okazaki M, Ezura H. Profiling of melatonin in the model tomato (SolanumlycopersicumL.) cultivar Micro-Tom [J]. Journal of Pineal Research, 2009, 46(3): 338-343.
[71] 陈锦永,方金豹,顾红,等.环剥和GA处理对红地球葡萄果实性状的影响[J].果树学报,2005,22(6):610-614.
[72] 陈锦永,顾红,赵长竹,等.ABA促进巨峰葡萄着色和成熟试验简报[J].中外葡萄与葡萄酒,2010(1):43-44.
[73] Byeon Y, Park S, Kim Y S, et al. Microarray analysis of genes differentially expressed in melatonin-rich transgenic rice expressing a sheep serotonin N-acetyltransferase [J]. Journal of Pineal Research, 2013, 55(4): 357-363.
[74] Park S, Le T, Byeon Y, et al. Transient induction of melatonin biosynthesis in rice(OryzasativaL.) during the reproductive stage [J]. Journal of Pineal Research, 2013, 55(1): 40-45.
[75] Arnao M B, Hernández-Ruiz J. Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves [J]. Journal of Pineal Research, 2009, 46(1): 58-63.
[76] Wang P, Yin L, Liang D, et al. Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate-glutathione cycle [J]. Journal of Pineal Research, 2012, 53(1): 11-20.
[77] Wang P, Sun X, Li C, et al. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple [J]. Journal of Pineal Research, 2013, 54(3): 292-302.
[78] Liang C, Zheng G, Li W, et al. Melatonin delays leaf senescence and enhances salt stress tolerance in rice [J]. Journal of Pineal Research, 2015, 59(1): 91-101.
[79] Gao H, Zhang Z K, Chai H K, et al. Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit [J]. Postharvest Biology and Technology, 2016, 118: 103-110.
[80] Zhang J, Li H, Xu B, et al. Exogenous melatonin suppresses dark-induced leaf senescence by activating the superoxide dismutase-catalase antioxidant pathway and down-regulating chlorophyll degradation in excised leaves of perennial ryegrass (LoliumperenneL.) [J]. Frontiers in Plant Science, 2016(7): 1500.
[81] Hu W, Kong H, Guo Y, et al. Comparative physiological and transcriptomic analyses reveal the actions of melatonin in the delay of postharvest physiological deterioration of cassava [J]. Frontiers in Plant Science, 2016(7): 736.
[82] Shi H, Reiter R J, Tan D X, et al. Indole-3-acetic acid inducible 17 positively modulates natural leaf senescence through melatonin-mediated pathway inArabidopsis[J]. Journal of Pineal Research, 2015, 58(1): 26-33.
[83] Weeda S, Zhang N, Zhao X, et al.Arabidopsistranscriptome analysis reveals key roles of melatonin in plant defense systems [J]. Plos One, 2014, 9(3): e93462.
[84] Zhou X, Zhao H, Cao K, et al. Beneficial roles of melatonin on redox regulation of photosynthetic electron transport and synthesis of D1 protein in tomato seedlings under salt stress [J]. Frontiers in Plant Science, 2016(7): 18-23.
[85] Arnao M B, Hernández-Ruiz J. Functions of melatonin in plants: a review [J]. Journal of Pineal Research, 2015, 59(2): 133-150.
[86] Tan D X, Reiter R J, Manchester L C, et al. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger [J]. Current Topics in Medicinal Chemistry, 2002, 2(2): 181-197.
[87] Lei X Y, Zhu R Y, Zhang G Y, et al. Attenuation of cold-induced apoptosis by exogenous melatonin in carrot suspension cells: the possible involvement of polyamines [J]. Journal of Pineal Research, 2004, 36(2): 126-131.
[88] Bajwa V S, Shukla M R, Sherif S M, et al. Role of melatonin in alleviating cold stress inArabidopsisthaliana[J]. Journal of Pineal Research, 2014, 56(3): 238-245.
[89] Zhang N, Sun Q, Zhang H, et al. Roles of melatonin in abiotic stress resistance in plants [J]. Journal of Pineal Research, 2015, 66(3): 647-656.
[90] Posmyk M M, Balabusta M, Wieczorek M, et al. Melatonin applied to cucumber(CucumissativusL.) seeds improves germination during chilling stress [J]. Journal of Pineal Research, 2009, 46(2): 214-223.
[91] Szafrańska K, Glińska S, Janas K M. Ameliorative effect of melatonin on meristematic cells of chilled and re-warmedVignaradiataroots [J]. Biologia Plantarum, 2013, 57(1): 91-96.
[92] Uchendu E E, Shukla M R, Reed B M, et al. Melatonin enhances the recovery of cryopreserved shoot tips of American elm (UlmusamericanaL.) [J]. Journal of Pineal Research, 2013, 55(4): 435-442.
[93] Kang K, Lee K, Park S, et al. Enhanced production of melatonin by ectopic overexpression of human serotoninN-acetyltransferase plays a role in cold resistance in transgenic rice seedlings [J]. Journal of Pineal Research, 2010, 49(2): 176-182.
[94] Tiryaki I, Keles H. Reversal of the inhibitory effect of light and high temperature on germination ofPhaceliatanacetifoliaseeds by melatonin [J]. Journal of Pineal Research, 2012, 52(3): 332-339.
[95] Hernández I G, Gomez F J, Cerutti S, et al. Melatonin inArabidopsisthalianaacts as plant growth regulator at low concentrations and preserves seed viability at high concentrations [J]. Plant Physiology & Biochemistry, 2015, 94: 191-196.
[96] Arnao M B, Hernández-Ruiz J. Growth conditions determine different melatonin levels inLupinusalbusL. [J]. Journal of Pineal Research, 2013, 55(2): 149-155.
[97] Tal O, Haim A, Harel O, et al. Melatonin as an antioxidant and its semi-lunar rhythm in green macroalgaUlvasp. [J]. Journal of Experimental Botany, 2011, 62(6): 1903-1910.
[98] Allakhverdiev S I, Sakamoto A, Nishiyama Y, et al. Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II inSynechococcussp. [J]. Plant Physiology, 2000, 123(3): 1047-1056.
[99] Li C, Wang P, Wei Z, et al. The mitigation effects of exogenous melatonin on salinity-induced stress inMalushupehensis[J]. Journal of Pineal Research, 2012, 53(3): 298-306.
[100] Zhang H J, Zhang N, Yang R C, et al. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4interaction in cucumber (CucumissativusL.) [J]. Journal of Pineal Research, 2014, 57(3): 269-279.
[101] Li C, Tan D X, Liang D, et al. Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behavior in twoMalusspecies under drought stress [J]. Journal of Experimental Botany, 2015, 66(3): 669-680.
[102] Sarropoulou V, Dimassi-Theriou K, Therios I, et al. Melatonin enhances root regeneration, photosynthetic pigments, biomass, total carbohydrates and proline content in the cherry rootstock PHL-C(Prunusavium×Prunuscerasus) [J]. Plant Physiology and Biochemistry, 2012, 61: 162-168.
[103] Wang L, Zhao Y, Reiter R J, et al. Changes in melatonin levels in transgenic ‘Micro-Tom’ tomato overexpressing ovineAANATand ovineHIOMTgenes [J]. Journal of Pineal Research, 2014, 56(2): 134-142.
[104] Shi H, Jiang C, Ye T, et al. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodondactylon(L). Pers.] by exogenous melatonin [J]. Journal of Experimental Botany, 2015, 66(3): 681-694.
[105] Kostopoulou Z, Therios I, Roumeliotis E, et al. Melatonin combined with ascorbic acid provides salt adaptation inCitrusaurantiumL. seedlings [J]. Plant Physiology & Biochemistry, 2015, 86: 155-165.
[106] Mukherjee S, David A, Yadav S, et al. Salt stress-induced seedling growth inhibition coincides with differential distribution of serotonin and melatonin in sunflower seedling roots and cotyledons [J]. Physiologia Plantarum, 2014, 152(4): 714-728.
[107] Beilby M J, AI Khazaaly S, Bisson M A. Salinity-induced noise in membrane potential of CharaceaeCharaaustralis: effect of exogenous melatonin [J]. Journal of Membrane Biology, 2015, 248(1): 93-102.
[108] Meng J F, Xu T F, Wang Z Z, et al. The ameliorative effects of exogenous melatonin on grape cuttings under water-deficient stress: antioxidant metabolites, leaf anatomy, and chloroplast morphology [J]. Journal of Pineal Research, 2014, 57(2): 200-212.
[109] Wang H, Li L, Zhao M, et al. Melatonin alleviates lipopolysaccharide-induced placental cellular stress response in mice [J]. Journal of Pineal Research, 2011, 50(4): 418-426.
[110] Foyer C, Noctor G. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context [J]. Plant Cell & Enviroment, 2005, 28(8): 1056-1071.
[111] Tettamanti C, Cerabolini B, Gerola P, et al. Melatonin identification in medicinal plants [J]. Acta Phytotherapeutica, 2000(3): 137-144.
[112] Hardeland R. New actions of melatonin and their relevance to biometeorology [J]. International Journal of Biometeorology, 1997, 41(2): 47-57.
[113] Reiter R J, Tan D X. Melatonin: an antioxidant in edible plants [J]. Annals of the New York Academy of Sciences, 2002, 957(1): 341-344.
[114] Hall J. Cellular mechanisms for heavy metal detoxification and tolerance [J]. Journal of Experimental Botany, 2002, 53(366): 1-11.
[115] Posmyk M M, Kuran H, Marciniak K, et al. Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations [J]. Journal of Pineal Research, 2008, 45(1): 24-31.
[116] Tan D X, Manchester L C, Helton P, et al. Phytoremediative capacity of plants enriched with melatonin [J]. Plant Signalling and Behavior, 2007, 2(6): 514-516.
[117] Arnao M B, Hernández-Ruiz J. Chemical stress by different agents affects the melatonin content of barley roots [J]. Journal of Pineal Research, 2009, 46(3): 295-299.
[118] Riddle S G, Tran H H, Dewitt J G, et al. Field, laboratory, and X-ray absorption spectroscopic studies of mercury accumulation by water hyacinths [J]. Environmental Science and Technology, 2002, 36(9): 1965-1970.
[119] Yin L, Wang P, Li M, et al. Exogenous melatonin improvesMalusresistance toMarssoninaapple blotch [J]. Journal of Pineal Research, 2013, 54(4): 426-434.
[120] Lee H Y, Byeon Y, Back K. Melatonin as a signal molecule triggering defense responses against pathogen attack inArabidopsisand tobacco [J]. Journal of Pineal Research, 2014, 57(3): 262-268.
[121] Lee H Y, Byeon Y, Tan D X, et al.Arabidopsisserotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen [J]. Journal of Pineal Research, 2015, 58(3): 291-299.
[122] Zhu Z, Lee B. Friends or foes: new insights in jasmonate and ethylene co-actions [J]. Plant & Cell Physiology, 2015, 56(3): 414-420.
[123] Zhang J, Zou D, Li Y, et al. GhMPK17, a cotton mitogen-activated protein kinase, is involved in plant response to high salinity and osmotic stresses and ABA signaling [J]. Plos One, 2014, 9(4): e95642.
[124] Lee H Y, Back K. Mitogen-activated protein kinase pathways are required for melatonin -mediated defense responses in plants [J]. Journal of Pineal Research, 2016, 60(3): 327-335.
[125] Lee H Y, Back K. Melatonin is required for H2O2- and NO-mediated defense signalling through MAPKKK3 and OXI1 inArabidopsisthaliana[J]. Journal of Pineal Research, 2017, 62(2).
[126] Shyu C, Brutnell T P. Growth-defence balance in grass biomass production: the role of jasmonates [J]. Journal of Experimental Botany, 2015, 66(14): 4165-4176.
[127] Tan D X, Manchester L C, Liu X Y, et al. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes [J]. Journal of Pineal Research, 2013, 54(2): 127-138.
[128] Von Gall C, Stehle J, Weaver D. Mammalian melatonin receptors: molecular biology and signal transduction [J]. Cell & Tissue Research, 2002, 309(1): 151-162.