APP下载

浅析数形结合思想在小学数学课堂中的应用

2017-12-12郭清霞

读写算·教研版 2017年4期
关键词:植树数形算式

郭清霞

中图分类号:G622 文献标识码:B 文章编号:1002-7661(2017)04-118-01

数形结合思想是数学中最重要、最基本的思想方法之一,是解决许多数学问题的有效思想。数学家华罗庚曾说:“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休 ”。利用数形结合能使“数”和“形”统一起来。以形助数、以数辅形,可以使许多数学问题变得简易化。那么如何在教学中有效渗透数形结合的思想。结合我的教学实践谈一些粗浅的认识。

一、在理解算理过程中渗透数形结合思想

小学数学内容中,有相当部分的内容是计算问题,计算教学要引导学生理解算理。算理就是计算方法的道理,学生不明白道理又怎么能更好的掌握计算方法呢?在教学时,教师应以清晰的理论指导学生理解算理,在理解算理的基础上掌握计算方法,正所谓“知其然、知其所以然。” 根据教学内容的不同,引导学生理解算理的策略也是不同的,数形结合是帮助学生理解算理的一种很好的方式。 首先在情境中,先让学生理解分数乘整数的意义及计算方法,然后通过直观演示,依次折出长方形纸条的二分之一,二分之一的二分之一,并让学生用乘法算式来表示这个过程,初步感受分数乘分数的意义和计算方法,然后让学生猜想,由于学生已有了分数乘整数的基础,所以不难猜出结果,接着就让学生在实际操作中,借助图形语言,體会分数乘分数的意义,感受分数乘分数为什么是用“分子乘分子,分母乘分母”的方法,学生在折纸的过程中,再借助教材中“讨论”的问题,鼓励学生讨论算式与图形之间的关系,通过类似几道题的“折一折、想一想、算一算”,让学生运用自己的语言小结分数乘分数的方法。在计算法则的发现上,因为在前面花费了许多的笔墨,到法则的形成时,就让学生根据黑板上的五个算式让学生观察“积的分子、分母与两个因数的分子、分母有什么关系?得出分数乘分数的计算方法。

这样让学生亲身经历、体验 “数形结合”的过程,学生就会看到算式就联想到图形,看到图形能联想到算式,更加有效地理解分数乘分数的算理。如果教师的教学流于形式,学生的脑中就不会真正地建立起“数和形”的联系。

二、渗透数形结合的思想,培养学生借助图形解决问题的意识

植树问题的思维有一定的复杂性,学生刚接触这个内容,很有难度。所以我是这样导入新课的,师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)(课件出示)师:张开的五指中有几个空隙?(4个)数学中我们把这个“空隙”叫“间隔”。(板书)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?引出间隔和间隔数。接着,师出示:在操场边,有一条20米长的小路。学校计划在小路一边种树,要求每隔5米栽一棵。特聘请校园设计师数名,要求设计植树方案一份,择优录取。通过小组讨论和直观的观察初步感知三种情况:两端都栽“棵树=间隔数+1”,只栽一端“棵树=间隔数”,两端都不栽“棵树=间隔数-1”。之后,再引导学生用“一一对应”的思想,分析植树问题三种不同的情况,即“两端都栽”“只栽一端”与“两端都不栽”,从而真正理解这三种情况下,棵数与间隔数的关系。数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;初步理解间隔数与植树棵数之间的规律时,我采用数形结合的方法——画图解决问题,从而逐步提高学生解决问题的能力。由于使用了数形结合的方法,植树中棵树和间隔数之间的关系便迎刃而解,且容易理解。数学的思想方法是数学的灵魂。本册安排“植树问题”的目的之一就是向学生渗透复杂问题从简单入手的思想,“复杂问题简单化”的解题过程。再次,联系生活拓展思维。有意义的学习是学生在具体情景中体验自主建构,体验和建构是学生学习的关键。体验是建构的基础,没有体验,建构就没有意义。体验是学生从旧知向隐含的新知迁移的过程。设计中,虽然创设了情景,但一次的体验不能达到继续建构学习的水平。所以,这节课我多次向学生提供体验的机会,而且创设能够激发学生共鸣的情境。从自身、教室、做操、楼房等身边熟悉的事物,引发学习兴趣,产生共鸣,激发探究欲

三、助于化解学习难点

数形结合不仅是一种数学思想,也是一种很好的学习方法。把数量关系和空间形式结合起来去分析问题、解决问题,这就是数与形结合思想。 引导学生在学习中了解认识、感悟运用数形结合的思想来解决问题,可化难为易,可促进学生形象思维和抽象思维的协调发展,更能促进学生的可持续发展。例如,教学“1-1/2-1/4-1/8-1/16-1/32-…=”,对于小学生来说由于逻辑推理有一定的难度,一批中下学生不容易明白,如果采用几何模型进行教学,学生都轻松的掌握了。将上面的算式构造成下面的几何模型图,把一个大正方形看成单位“1”,一次又一次地进行平均分,从图上很容易看出1-1/2-1/4-1/8-1/16-1/32-…=运用数形结合思想方法可以把代数与几何沟通了,使形直观地反映数内在的联系,拓宽思路,把复杂问题简单化,从而顺利且快速的解决问题,使数学知识变的更有生命力,让人回味无穷。我们提倡多种方式来渗透数形结合思想,要培养学生胸中有图见数想图,以开拓学生的思维视野。

总之,在小学数学教学中,数形结合能不失时机地为学生提供恰当的形象材料,可以将抽象的数量关系具体化,把无形的解题思路形象化,不仅有利于学生顺利的、高效率的学好数学知识,更有利于学生学习兴趣的培养、智力的开发、能力的增强,使教学收到事半功倍之效。最关键一点,能使抽象枯燥的数学知识,形象化具体化,使得数学教学充满乐趣,相信巧妙地运用数形结合,一定会引导学生由怕数学变成爱数学。endprint

猜你喜欢

植树数形算式
数形结合 理解坐标
数形结合 相得益彰
数形结合百般好
植树
怎么写算式
植树鸟的来信
好玩的算式谜
一道加法算式
一道减法算式