基于改进径流曲线数模型的北京密云坡地径流估算
2017-11-20宋伯岩王世雷王奋忠
焦 剑,宋伯岩,王世雷,王奋忠,张 婷
基于改进径流曲线数模型的北京密云坡地径流估算
焦 剑1,宋伯岩2,王世雷2,王奋忠2,张 婷1
(1. 中国水利水电科学研究院,北京 100048;2. 北京市密云区水土保持工作站,密云101500)
密云区是北京重要的地表饮用水源地,准确模拟地表径流量,对于分析泥沙和污染物的运移十分重要。近年来,学者们运用径流曲线数(soil conservation service curve number,SCS-CN)模型计算本区地表径流量,但预报精度不理想;未考虑降雨过程和雨强对于产流过程的影响,可能是造成预报误差的重要原因。该文利用密云石匣小流域5个坡面径流小区共201场降雨产流资料,提出次产流径流曲线数计算方法,以改进SCS-CN模型并分析改进后模型模拟效果。结果表明,次产流径流曲线数与多年平均径流曲线数的比值和最大30 min降雨量与次雨量的比值之间呈显著幂函数递增关系,据此提出计算次产流径流曲线数的幂函数方程,以改进SCS-CN模型。当曲线数为0.02时,改进后模型模拟效果最好,效率系数为0.693,明显高于未改进的SCS-CN模型。改进后模型对裸地和耕地的产流模拟效果较好,但对林地的产流模拟效果不理想。今后需在深入分析产流机理的基础上,进一步提出与土壤特性有关的模型参数优化方法。
径流;模型;土地利用;径流曲线数模型;径流曲线数;密云
0 引 言
土壤侵蚀是世界范围的环境问题之一。土壤侵蚀预报是评价土壤流失状况及其对环境影响的有效技术和方法。由于降雨径流是引起土壤侵蚀的主要动力[1],因此在土壤侵蚀预报中,地表径流计算不仅是水文计算的重要组成部分,也是泥沙运移计算的基础。目前常见的径流计算方法有Green-Ampt入渗曲线[2]、Philip入渗曲线[3]、Horton入渗曲线[4]等,但这些方法涉及参数多,且不易获取,故限制了其广泛应用。美国农业部根据美国气候特征和水文径流资料研发的径流曲线数(soil conservation service curve number,SCS-CN)模型结构简单、所需参数少,被广泛应用于降雨地表径流预测中[5-6]。
SCS-CN模型中有2个重要参数:1)产生地表径流之前的初损率,包括地面填洼、截流和下渗;2)径流曲线数CN,反映不同土壤-覆被组合地表产流能力的综合指标。中国学者自20世纪80年代开始利用SCS- CN模型预报径流量以来,依据径流小区降雨产流观测资料,结合中国的土壤特征,对模型的和CN进行了修订和优化,以提高模型模拟精度。在取值研究方面,Fu等[7-8]提出了黄土高原地区取值;Shi等[9]计算了长江三峡库区变化范围;陈正维等[10]提出紫色土坡地取值;贺宝根等[11]提出上海地区取值。在CN取值方面,罗利芳等[12]计算了黄土高原地区不同下垫面的CN值;Huang等[13-14]分析了黄土高原地区坡度和不同土层深度土壤含水率对CN值的影响;符素华等[15]提出了北京地区不同水文土壤组和土地利用下的CN值;夏立忠等[16]建立浅层紫色土坡面降雨量与CN值的二次函数回归方程。
密云区位于北京市东北部,是北京市重要的地表饮用水源地。虽然市政府在生态建设和环境保护方面做了大量工作,但在部分地区,由于农业生产和基本建设活动较为集中,地表坡度较大,土壤流失问题仍非常突 出[17-18],直接威胁包括密云水库等地表饮用水源水质[19]。因此,准确模拟径流量,对于分析泥沙和水体污染物的运移十分重要。近年来,学者们开始尝试利用SCS-CN模型预测本区的地表径流量。符素华等[15]利用64个坡面径流小区的降雨径流资料,计算出不同水文土壤组及地表覆盖下的CN值。但是,运用SCS-CN模型计算本区地表径流量,其预报精度并不理想[20-21]。已有研究表明,CN是SCS-CN模型中最敏感的参数, 10%的CN值变化,可能造成计算结果出现45%~55%的误差[22]。在模型应用中,学者们发现在同一土壤-覆被条件下的不同降雨产流事件中,CN值差别很大[20];而现有研究在北京山区应用SCS-CN模型时,并未考虑降雨过程和特征对其影响。实际上,地表径流量不仅受降雨量影响,还受雨强、雨型等因素影响;密云区地貌以山地为主,局地强对流和锋面活动均为引起暴雨的重要原因,如果不考虑降雨过程对产流的影响,可能造成模型预报的误差。鉴于此,本文在充分考虑降雨过程和特征对地表产流影响的基础上,提出次产流径流曲线数CN计算方法,从而改进径流曲线数模型,以提高其预报精度,使之适用于北京地表饮用水源地保护区,为本区水土资源评价提供技术支持。
1 材料与方法
1.1 研究区概况
密云县高岭镇石匣小流域位于密云水库东北部,位处117°01¢~117°07¢E、47°32¢~47°38¢N之间,流域面积33 km2,处于潮河流域下游。该流域地貌为土石浅山丘陵,海拔160~353 m。流域内岩石类型主要为片麻岩,主要土壤类型为褐土。气候类型为暖温带季风气候,多年平均降水量660 mm,降雨集中于夏季,6—9月降雨量占全年降水总量约75%。
1.2 观测资料
为改进径流曲线数模型[23],并评价改进后模型的应用效果,从1994—2015年22 a密云石匣小流域22个径流小区中选取土地利用和管理方式保持不变的5个小区,搜集各小区实测的降雨过程和径流量资料进行研究。各小区基本情况和土壤基本性质见表1。其中,采用各小区1994—2000年共127场降雨径流资料改进径流曲线数模型;采用各径流小区2013—2015年共74场降雨径流资料分析改进后模型的模拟效果。
表1 密云石匣小流域径流小区基本情况
1.3 径流曲线数模型改进方法
1.3.1 径流曲线数模型介绍
径流曲线数法是以水量平衡(式(1))和2个基本假定为基础建立的。第1个假定:直接径流与潜在最大径流的比等于入渗和潜在最大保持量的比(式(2));第2个假定:初损量与潜在最大保持量成比例(式(3))。
=I++(1)
/ (–I) =/(2)
I=·(3)
式中为降雨量,mm;I为初损,mm;为实际保持量,mm;为地表径流量,mm;为潜在蓄水能力,mm;为初损率。结合式(1)~(3)可得的表达式:
=(–)2/(+(1–)) (>)
=0 (≤) (4)
为了实际应用方便,可采用径流曲线数CN计算:
= 254 00/CN―254, 0≤CN≤100 (5)
利用观测资料,在获得次降雨和的情况下,可利用式(4)和式(5)分别反推出式(6)和式(7),以计算出CN值。
CN= 254 00/(254+) (7)
根据前5 d降雨量将土壤前期湿度条件(antecedent soil moisture condition,AMC)划分为3个等级[23](表2):AMCⅠ为干旱情况,AMCⅡ为一般情况,AMC Ⅲ为湿润情况,其划分界限对应土壤凋萎湿度和田间持水量;其中,AMCⅠ对应的土壤湿度接近、达到或低于凋萎湿度,AMC Ⅲ对应的土壤湿度接近或达到田间持水量,AMCⅡ则介于两者之间[23-24]。AMCⅠ、AMCⅡ和AMC Ⅲ对应的CN值分别为CN1,CN2和CN3。CN值的确定首先由水文土壤组定义指标确定土壤类型,然后查SCS手册得到不同土地利用状况下的CN值。根据查得的CN2利用SCS手册提供的方程计算CN1和CN3。美国土壤保持局将土壤划分为A、B、C、D 4大类型,其土壤入渗能力依次减弱[23]。北京山区主要水文土壤组为B类,降雨产流前期湿度条件以干旱居多[15],为使结果更具有实用性,研究采用干旱条件下的径流曲线数值即CN1作为径流预报参数。
表2 土壤前期湿度条件分类
1.3.2 次产流径流曲线数计算方法
在降雨过程中,最大30 min雨强对于地表产流和土壤侵蚀具有重要影响[24-25],可见降雨在时间上集中程度对于地表产流过程的影响不容忽视。本文拟采用最大 30 min降雨量与次雨量的比值(30/)反映次降雨在时间上集中程度。根据已有的研究成果[7-11],本文设定SCS-CN模型中取值范围为0~0.30,以0.01为步长,利用式(6)和式(7),可计算各小区多年平均径流曲线数的值,即CN1。同时,分析次产流的径流曲线数CN与CN1的比值(CN/CN1)与(30/)之间的函数关系(式(8)),进而提出利用降雨在时间上集中程度计算CN的方法,以改进径流曲线数模型。
(CN/CN1)=(30/) (8)
式中和30分别为次雨量和该次降雨过程中最大30 min雨量,mm。
1.3.3 改进后模型的初损率确定和模拟效果分析
为了应用方便,模型中统一赋值。将不同取值下模型的模拟效果进行比较,模型取模拟效果最佳时的值。
采用Nash模型效率系数E[26]、相关系数和平均相对误差(mean relative error,MRE)对预测和实测径流深做比较,检验改进后模型的模拟效果。
2 结果与分析
2.1 次产流径流曲线数计算公式
依据小区实测降雨径流资料可发现,CN/CN1与30/之间呈显著的幂函数递增关系,两者拟合的幂函数方程决定系数因小区下垫面和取值不同而有所差异(图1)。对于1、4和18号小区,拟合的幂函数方程决定系数R均大于0.4(<0.001);对于2和5号小区,拟合的幂函数方程R变化于0.2~0.3(=0.006~0.026);利用全部样本拟合的幂函数方程2在0.4附近变化(< 0.001)。对于同一小区,不同取值下幂函数方程2差别并不明显:1号小区2最大值和最小值之差为0.14;其他小区2最大值和最小值之差均小于0.08。为提高预报精度,本文分不同小区拟合幂函数方程,得出式(9)中和的取值。
CN= CN1··(30/)(9)
注:CNt为次产流的径流曲线数;CN1为多年平均径流曲线数;P30为该次降雨过程最大30 min降雨量(mm);Pr为次雨量(mm)。
2.2 改进后的SCS-CN模型初损率取值和模拟效果
本文将不同取值下,改进的径流曲线数模型预测的径流量和实测径流量做了比较。改进后模型的效率系数E随着增加而降低,从0.708递减至0.067(图2a)。径流量预测值和实测值相关系数在=0.02时值最大,为0.859,此后随增加而逐步降低(图2b)。模型MRE则随增加而递增(图2c),从1.55%递增至25.62%。整体而言,改进后模型的模拟效果在取值为0.01和0.02时,均较为理想。在保证获得较高E值的基础上,考虑预测值和实测值相关程度尽可能密切,故本文选择0.02作为改进后模型的取值。此时模型的E为0.693,为0.859,MRE为4.21%;各小区CN1、和的取值见表3。美国的农业小流域在应用SCS-CN模型时,取值一般为 0.20,这主要因为其降雨年内分布较均匀,约70%的降雨通过入渗进入土壤;而在季风气候显著的地区,降雨季节变化较大,且雨季多暴雨,降雨通过入渗进入土壤的比例明显降低。因此,在运用SCS-CN模型时,取值多不超过0.05[27-28]。
图2 改进后和未改进的SCS-CN模型模拟效果比较
表3 改进的径流曲线数模型参数取值
本文将没有改进的径流曲线数模型预测径流量和实测径流量做了比较(图2)。相对于改进的径流曲线数模型,其模拟精度有明显差距:E最大值仅为0.253;且当≥0.05时,E均小于0;也明显降低,MRE变化于–16.51%~–5.29%。图3为=0.02时,改进后(图3a)和未改进(图3b)模型预测值和实测值比较。整体而言,未改进的模型预测值与1∶1线相比有明显偏差。可见在北京山区预测地表径流量时,若不考虑降雨过程特征和雨强的影响,会造成较大的预测误差。
注:λ=0.02。
2.3 改进后的SCS-CN模型影响因素分析
对影响改进后的SCS-CN模型模拟效果的主要因素进行了分析。首先,分析了改进后的模型对于不同土壤前期湿度条件下产流事件的模拟效果。对2013—2015年小区产流事件按前期土壤湿度条件进行划分,条件为AMCⅠ、AMCⅡ和AMCⅢ的产流次数分别占总产流次数的73%、23%和4%。可见产流前小区土壤湿度条件以干旱居多,AMCⅠ条件下坡面产流方式以超渗产流为主,降雨强度是影响径流量多寡的重要因素。改进后的模型考虑了最大30 min雨强对于产流的影响,但未将雨强直接作为模型变量,因此对于AMCⅠ条件下径流量模拟精度有所降低,其E= 0.508,=0.747,MRE =10.94%(图4a)。但改进后的模型对于AMCⅡ和Ⅲ条件下径流量模拟精度相对较高,其E=0. 794,=0.916,MRE=0.33%。这种条件下土壤含水率相对增加,产流过程中土壤含水率易在较短时间内达到田间持水量,超渗产流和蓄满产流皆有发生,与前期土壤湿度条件为干旱的产流事件相比,降雨量对径流量多寡的影响更为显著。
图4 改进后SCS-CN模型在不同土壤前期湿度条件和土地利用下预测和实测径流比较
本文分析了改进后的模型对于不同土地利用类型下产流事件的模拟效果(图4b)。该模型对于裸地(4号小区)和耕地(1、18号小区)的产流模拟效果相对较好。裸地的E=0.713,= 0.870,MRE=13.67%;耕地的E=0.735,= 0.880,MRE =–0.16%。在雨滴打击和水滴击溅作用下,裸露地表上易产生许多微小洼地;在多次降雨产流过程的进一步击溅和冲刷作用下,微小的洼地会被贯通形成细沟。而种植玉米的小区由于耕作管理中采用除草措施,使得地表除玉米茎秆外,裸露面积较大,为细沟侵蚀的形成和发展创造条件。坡面地表裸露程度较高,其整体糙度也相应降低,随着细沟数量和长度、宽度的增加,易形成较为稳定的汇流路径。
改进后的模型对于林地的产流模拟效果不理想。2013—2015年,乔木(2号小区)和灌木林地(5号小区)总计产流12次,模型模拟的E仅为–4.53。由于乔木和灌木林小区产流次数少,仅占所有产流事件的16.2%;且次产流平均径流深仅为3.68 mm,为其他小区平均值的47.3%,因此乔木和灌木林小区的模拟误差对于所有产流事件的整体模拟效果影响不十分显著。需要注意的是,本文采用1994—2000年的降雨径流资料改进模型,用2013—2015年的降雨径流资料分析其模拟效果;而在这2段时期内,2个小区产流的径流系数存在显著差异。2号小区由1994—2000年的0.057降至2013—2015年的0.032,5号小区则由0.058增至0.140。植物根系的生长发育过程及枯枝落叶层的形成分解过程有助于土壤理化性质逐步改善,其有机质和腐殖质含量、根系活动可使土壤孔隙度增加,使剖面上渗透能力提高。而植物冠层的年际变化也是影响地表径流量变化的重要原因。植被覆盖度越低,地表径流量越大[23]。实际上,林地的产流机制较为复杂,在特定降雨条件下可能形成超渗超持的产流过程,即超渗产生地表径流,且土壤蓄水量超过田间持水量产生壤中流和地下径流。今后需在深入分析产流机理的基础上,合理选择土壤数据,提出模型参数优化方法[29-30]。
3 结 论
在改进SCS-CN模型时,本文考虑了降雨过程对于地表产流的影响,采用最大30 min降雨量30与次雨量的比值(30/)反映次降雨在时间上集中程度。研究区次降雨产流过程径流曲线数CN与多年平均径流曲线数CN1的比值(CN/CN1)和(30/)之间呈显著的幂函数递增关系。因此,本文提出了计算CN的幂函数方程,并提出不同土地利用类型下该方程的参数CN1取值,以改进SCS-CN模型。采用Nash模型效率系数E、相关系数和平均相对误差MRE对预测径流深和实测径流深做比较,分析不同取值下改进后SCS-CN模型的模拟效果。结果表明,=0.02时模型模拟效果最好,此时E= 0.693,= 0.859,MRE = 4.21%;而未改进的SCS-CN模型在=0.02时,E仅为0.151,可见改进后模型模拟精度显著提高。
改进后模型对于裸地和耕地的产流模拟效果相对较好,裸地的E=0.713,= 0.870,MRE=13.67%;耕地的E=0.735,= 0.880,MRE=–0.16%。但模型对于林地的产流模拟效果不理想。林地的产流机制较复杂,在特定降雨条件下可能形成超渗超持的产流过程。今后需在深入分析产流机理的基础上,进一步提出与土壤特性有关的模型参数优化方法。
[1] Wischmeier W H, Smith D D. Rainfall energy and its relationship to soil loss[J]. Transactions American Geophysical Union, 1958, 39(2): 285-291.
[2] Viji R, Prasanna P R, Ilangovan R. Modified SCS-CN and green-ampt methods in surface runoff modelling for the Kundahpallam Watershed, Nilgiris, Western Ghats, India[J]. Aquatic Procedia, 2015, 4: 677-684
[3] Philip J R. The theory of infiltration: 1. the infiltration equation and its solution[J] .Soil Science, 1957, 8(3): 345-357.
[4] Chow V T, Maidment D R, Mays L W. Applied Hydrology[M]. New York: McGraw-Hill Book Company, 1988: 109.
[5] Li Jun, Liu Changming, Wang Zhonggen, et al. Two universal runoff yield models: SCS vs. LCM[J]. Journal of Geographical Science. 2015, 25(3): 311-318.
[6] Lal M, Mishra S K, Pandey A. Physical verification of the effect of land features and antecedent moisture on runoff curve number[J]. Catena, 2015, 133: 318-327.
[7] Fu Suhua, Zhang Guanghui, Wang Nan, et al. Initial abstraction ratio in the SCS-CN method in the Loess Plateau of China[J]. Transactions of the ASABE, 2011, 54(1): 163-169.
[8] Xiao Bo, Wang Qinghai, Fan Jun, et al. Application of the SCS-CN model to runoff estimation in a small watershed with high spatial heterogeneity[J]. Pedosphere, 2011, 21(6): 738-749.
[9] Shi Zhihua, Chen Liding, Fang Nufang, et al. Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China[J]. Catena, 2009, 77(1): 1-7.
[10] 陈正维,刘兴年,朱波. 基于 SCS-CN 模型的紫色土坡地径流预测[J]. 农业工程学报,2014,30(7):72-81. Chen Zhengwei, Liu Xingnian, Zhu Bo. Runoff estimation in hillslope cropland of purple soil based on SCS-CN model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(7): 72-81. (in Chinese with English abstract)
[11] 贺宝根,周乃晟,高效江,等. 农田非点源污染研究中的降雨径流关系:SCS法的修正[J]. 环境科学研究,2001,14(3):49-51.He Baogen, Zhou Naisheng, Gao Xiaojiang, et al. Precipitation- runoff relationship in farmland nonpoint source pollution research: Amending coeffcient of SCS hydrologic method[J]. Research of Environmental Sciences, 2001, 14(3): 49-51. (in Chinese with English abstract)
[12] 罗利芳,张科利,符素华. 径流曲线数法在黄土高原地表径流量计算中的应用[J]. 水土保持通报,2002,22(3):58-61,68. Luo Lifang, Zhang Keli, Fu Suhua. Application of runoff curve number method on Loess Plateau[J]. Bulletin of Soil and Water Conservation, 2002, 22(3): 58-61, 68. (in Chinese with English abstract)
[13] Huang M B, Gallichand J, Wang Z L, et al. A modification to the Soil Conservation Service curve number method for steep slopes in the Loess Plateau of China[J]. Hydrological Processes. 2006, 20(3): 579-589.
[14] Huang M B, Gallichand J, Dong C Y, et al. Use of soil moisture data and curve number method for estimating runoff in the Loess Plateau of China[J]. Hydrological Processes, 2007, 21(11): 1471-1481.
[15] 符素华,王红叶,王向亮,等. 北京地区径流曲线数模型中的径流曲线数[J]. 地理研究,2013,32(5):797-807. Fu Suhua, Wang Hongye, Wang Xiangliang, et al. The runoff curve number of SCS-CN method in Beijing[J]. Geographical Research, 2013, 32(5): 797-807. (in Chinese with English abstract)
[16] 夏立忠,李运东,马力,等. 基于SCS模型的浅层紫色土柑桔园坡面径流的计算参数确定[J]. 土壤,2010,42(6):1003-1008.Xia Lizhong, Li Yundong, Ma Li, et al. Parameters calibration of SCS method for calculation of surface rainfall runoff from slope citrus land with thin layer of sandy loam purple soil[J]. Soils, 2010, 42(6): 1003-1008. (in Chinese with English abstract)
[17] 刘宝元,毕小刚,符素华,等. 北京土壤流失方程[M]. 北京:科学出版社,2010.
[18] Li Xiaosong, Wu Bingfang, Zhang Lei. Dynamic monitoring of soil erosion for upper streams of Miyun Reservoir in the last 30 years[J]. Journal of Mountain Science, 2013, 10(5): 801-811.
[19] Jiao Jian, Du Pengfei, Lang Cong. Nutrients concentrations and fluxes in the upper catchment of the Miyun Reservoir, China, and potential nutrient reduction strategies[J]. Environmental Monitoring and Assessment, 2015, 187(3): 110-124.
[20] 符素华,王向亮,王红叶,等. SCS-CN径流模型中CN值确定方法研究[J]. 干旱区地理,2012,35(3):415-421. Fu Suhua, Wang Xiangliang, Wang Hongye, et al. Method of determining CN value in the SCS-CN method [J]. Arid Land Geography, 2012, 35(3): 415-421. (in Chinese with English abstract)
[21] 何杨洋,王晓燕,段淑怀. 密云水库上游流域径流曲线模型的参数修订[J]. 水土保持学报,2016,30(6):134-138,146. He Yangyang, Wang Xiaoyan, Duan Shuhuai. Revision of CN value and initial abstract ratio in the SCS-CN model in upper reaches of Miyun Reservoir[J]. Journal of Soil and Water Conservation. 2016, 30(6): 134-138, 146. (in Chinese with English abstract)
[22] Boughton W C. A review of the USDA SCS curve number method[J]. Australian Journal of Soil Research, 1989, 27 (3): 511-523.
[23] U S Department of Agriculture-Soil Conservation Service. SCS National Engineering Handbook, Section 4: Hydrology [M]. Washington D C: U S Department of Agriculture, 1972.
[24] Neitsch S L, Arnold J G, Kiniry J R, et al. Soil and water assessment tool: Theoretical documentation, version 2005[M]. Temple, Texas: Grassland, Soil and Water Research Laboratory, Agriculture Research Service & Blackland Research Centre, Texas Agriculture Experiment Station, 2005: 252-255.
[25] Wischmeier W H, D D Smith. Predicting rainfall erosion losses: A guide to conservation planning[M]//Agriculture Handbook. No.537. Washington D C: U S Department of Agriculture, 1978.
[26] Nash J E, Sutcliffe J V. River flow forecasting through conceptual models Part I: A discussion of principles[J]. Journal of Hydrology. 1970, 10(3): 282–290.
[27] 蒋尚明,金菊良,许浒,等. 基于径流曲线数模型的江淮丘陵区塘坝复蓄次数计算模型[J]. 农业程学报,2013,29(18):117-124.
Jiang Shangming, Jin Juliang, Xu Hu, et al. Computational model of pond re-storage times in Jianghuai hilly area based on SCS model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(18): 117-124. (in Chinese with English abstract)
[28] Ajmal M, Moon G W, Ahn J H, et al. Investigation of SCS- CN and its inspired modified models for runoff estimation in South Korean watersheds[J]. Journal of Hydro-environment Research 2015, 9(4): 592-603.
[29] Sorooshian S, Hsu K L, Coppola E, et al. Hydrological modeling and the water cycle: Coupling the atmospheric and hydrological models[M]. Berlin: Springer Berlin Heidelberg, 2008.
[30] Durán-Barroso P, González J, Valdés J B. Improvement of the integration of soil moisture accounting into the NRCS- CN model[J]. Journal of Hydrology, 2016, 542: 809-819.
焦 剑,宋伯岩,王世雷,王奋忠,张 婷. 基于改进径流曲线数模型的北京密云坡地径流估算[J]. 农业工程学报,2017,33(21):194-199. doi:10.11975/j.issn.1002-6819.2017.21.023 http://www.tcsae.org
Jiao Jian, Song Boyan, Wang Shilei, Wang Fenzhong, Zhang Ting. Runoff estimation for hillslope land in Miyun based on improved model of soil conservation service curve number[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 194-199. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.21.023 http://www.tcsae.org
Runoff estimation for hillslope land in Miyun based on improved model of soil conservation service curve number
Jiao Jian1, Song Boyan2, Wang Shilei2, Wang Fenzhong2, Zhang Ting1
(1.100048,;2.101500,)
Miyun District is in the region for drinking water source for Beijing, which is a mountainous region. Because of steep slopes there, there may be severe soil erosion during storms. To analyze the movement of sediments and nutrients, accurate estimation of surface runoff is important. In recent years, the soil conservation service curve number (SCS-CN) model has been used in the mountainous region of Beijing, but model accuracy is unsatisfactory. In various storm events, the parameter–runoff curve number varied over a wide range. If the influence of rainfall processes and characteristics is not considered, simulation error for the surface runoff can be large. In the present study, data observed for rainfall and runoff depth during 201 rainfall-runoff events from experimental plots with various land cover and management were used to improve the SCS-CN model and test modeling accuracy. The 5 experimental plots were in the Shixia watershed, northeast of Miyun Reservoir, covering117°01¢-117°07¢E, 47°32¢-47°38¢NObserved runoff depth data for 127 rainfall-runoff events were used to improve the SCS-CN model; the other runoff depth data for 74 events were used to test modeling accuracy. Based on analyses of the influence of rainfall processes and intensity on the runoff and curve number for each rainfall event, a method for calculating curve number for each rainfall eventwas proposed. This indicated that the ratio of curve number for each rainfall event to the annual mean curve number increased with the ratio of maximum 30-minute rainfall to total rainfall for the event, with a power function relationship. The power function for curve number for each rainfall eventcalculation improved SCS-CN modeling accuracy. Nash-Sutcliffe efficiency, correlation coefficient, and mean relative error (MRE) were used in the examination of simulation results. To achieve optimum modeling accuracy, a range of initial abstraction ratio values from 0.01 to 0.30 was tested for the improved model. An initial abstract ratio 0.02 was used in the improved SCS-CN model so that Nash-Sutcliffe efficiency was 0.693,was 0.859, and MRE was 4.21%. The Nash-Sutcliffe efficiencyfor the SCS-CN model without improvement was only 0.151. Because the study area is dominated by a monsoon climate, in the rainy season, storms with relatively high rainfall intensity were common. The ratio for rainfall that infiltrated was smaller, so the initial abstract ratio value was smaller than that in the USA. Simulation results for different antecedent moisture conditions (AMCs) were as follows. For dry conditions, instead of total rainfall amount, rainfall intensity may be more important to the process of infiltration excess runoff. For humid conditions with greater soil moisture contents, rainfall amount may be more important to surface runoff formation. Simulation results for various land uses were different with the Nash-Sutcliffe efficiency of 0.713 and 0.735 for the improved SCS-CN model used for bare land and cropland, respectively. On the surface of the bare land with little vegetation and cropland with low vegetation cover (except for corn stems), from the effect of rainfall splashing and surface runoff scouring, rills formed provided runoff paths. The Nash-Sutcliffe efficiency was low for woodland because the formation mechanism of surface runoff was complex, and excess infiltration–saturation runoff may occur during certain rainfall events. Moreover, interannual variability of vegetation cover for shrubland and woodland may alter the runoff coefficient. In 1994 and 2000, the runoff coefficients for shrubland and woodland were 0.058 and 0.057 respectively; in 2013 and 2015, the runoff coefficients were 0.140 and 0.032 respectively. Optimization of parameters related to soil properties is needed in future research on the improved model.
runoff; models; land use; soil conservation service-curve number model; curve number; Miyun District
10.11975/j.issn.1002-6819.2017.21.023
TV121+.2
A
1002-6819(2017)-21-0194-06
2017-07-15
2017-10-10
国家自然科学基金项目(41401560)
焦 剑,陕西西安人,高级工程师,博士,主要从事土壤侵蚀和非点源污染研究。Email:68283847@qq.com