半高导叶端面间隙对离心泵水力性能影响的数值模拟与验证
2017-11-01陈帝伊秦钰祺王玉川
江 伟,陈帝伊,秦钰祺,王玉川
半高导叶端面间隙对离心泵水力性能影响的数值模拟与验证
江 伟,陈帝伊※,秦钰祺,王玉川
(西北农林科技大学水利与建筑工程学院,杨凌 712100)
离心泵中存在各种间隙,其间隙流动极其复杂,易出现泄漏流、间隙涡等复杂湍流,影响离心泵的水力性能及运行稳定性。该文结合数值模拟与试验方法,采用SST湍流模型,研究半高导叶端面间隙对离心泵水力性能及内部流场的影响规律,重点探讨半高导叶端面间隙对离心泵水力性能的影响机理。结果表明,适当的半高导叶端面间隙能有效改善离心泵水力性能,拓宽其高效区,导叶叶高为1.0时,最高效率点流量37.5 m3/h处,而导叶叶高为0~0.8时,其最高效率点流量42.5 m3/h处;导叶端面间隙为0.4~0.6导叶叶高时,离心泵的效率与扬程最优,且最大效率为57.5%;在0.6倍设计工况、0.8倍设计工况和1.0倍设计工况时,带半高导叶端面间隙的离心泵中叶轮做功和导叶内总压损失均高于普通导叶式离心泵,在0.6倍设计工况,导叶叶高为1.0时叶轮做功比导叶叶高为0~0.8时叶轮做功低将近7 m水头,且在0.6倍设计工况和0.8倍设计工况下,导叶叶高为0时导叶内总压损失平均值比导叶叶高为1.0时分别高6.66 m、4.62 m水头;在1.2倍设计工况和1.4倍设计工况时,其叶轮做功和导叶内总压损失均低于普通导叶式离心泵;在各流量工况下,带导叶端面间隙的离心泵中蜗壳内总压损失均小于普通导叶式离心泵;随着流量增加,带半高导叶端面间隙的离心泵中叶轮-导叶动静干涉作用在逐渐减弱,叶轮-蜗壳动静干涉作用逐渐凸显。研究结果为离心泵导叶优化设计提供参考。
离心泵;水力模型;性能;总压损失;动静干涉
0 引 言
离心泵广泛的应用于化工、核电、石油、航天等领域。随着社会进步与科技发展,离心泵水力性能与运行稳定性的要求越来越高[1]。离心泵中存在各种间隙,如口环间隙、叶顶间隙及平衡盘间隙等。间隙流动极其复杂,易发生间隙涡、间隙汽蚀等现象,导致泄漏损失与流体激振,降低离心泵的水力效率,影响其稳定运行[2-3]。
目前国内外许多学者多集中研究叶顶间隙、口环间隙及平衡盘间隙对离心泵性能的影响。叶顶间隙内部泄漏流与二次流影响离心泵流体传输、内部非定常流场和汽蚀等性能[4-6]。适当的叶顶间隙可有效地提高离心泵水力性能、改善其稳定运行,但过大的叶顶间隙易产生湍振、旋转失速等现象,从而影响离心泵的性能[7-9]。Wu等[10-11]采用数值模拟的方法对叶顶间隙涡及其运动轨迹进行了分析,建立了泄漏堵塞量与泄漏损失的计算理论式。口环间隙不仅导致离心泵产生容积损失,降低其水力效率,且改变泵内部流场,引起离心泵不稳定运行[12-14]。口环间隙使叶轮受力不均,并诱导其内部流动产生周期性的激励特性[15-17];不同流量工况时,口环间隙处泄漏流体与叶轮进口处流体混合,影响叶轮前盖板区域涡量分布[18-19]。离心泵叶轮前口环与后口环对其内部非稳态流动与水力性能的影响程度不同,其中叶轮前口环间隙流对泵的水力效率与泄漏损失的影响大于后口环间隙对其影响[20-23]。平衡盘主要应用于多级离心泵中,利用其轴向与径向间隙产生的压力差来平衡叶轮上轴向力,但其间隙会导致级间泄漏,降低离心泵的水力效率[24-26]。针对半高导叶端面间隙对叶轮机械性能的影响研究主要集中于压缩机或风机[27-29]。Sitaram等[30-33]采用数值模拟与试验方法通过对盖侧半高导叶扩压器内部流动进行了研究,表明半高导叶扩压器能使流动在轴向更均匀,提高扩压器的压力恢复系数;半高导叶扩压器叶片的最佳高度为0.4~0.5倍的扩压器通道宽度。
离心泵中叶顶间隙、口环间隙及平衡盘间隙研究比较多,其间隙流动机理和间隙对离心泵性能的影响规律比较清晰,而针对半高导叶端面间隙对离心泵水力性能与内部流场的影响研究极少,对离心泵整体性能的影响规律并不是明确。本文把半高导叶扩压器引进于离心泵中,采用数值模拟与试验的方法深入分析半高导叶端面间隙对离心泵水力性能及内部流场的影响规律,为离心泵导叶优化设计提供理论依据与参考。
1 基本参数与数值模型
离心泵基本参数:流量=40 m3/h,扬程=60 m,转速=2 900 r/min,比转速N=53。设计参数:叶轮外径2=223 mm、叶轮叶片出口宽度2=8 mm、叶轮叶片数=6;导叶进口直径3=228 mm、导叶叶片宽度3=10 mm、导叶出口直径4=283 mm、导叶叶片数=5;蜗壳基圆直径5=284 mm、蜗壳进口宽度4=19 mm。半高导叶扩压器是无叶扩压器到有叶扩压器的过渡形式,如图1所示,为叶片宽度、为导叶叶高。保证导叶流道宽度不变,对导叶叶片宽度进行切割,表1为半高导叶端面间隙数值分析方案。
注:B为导叶叶高;b为导叶宽度。
表1 导叶端面间隙数值分析方案
注:B/b为离心泵导叶叶高与导叶叶片宽度比值。
Note: B/b refers to ratio of centrifugal pump guide blade height to blade width.
采用ICEM对模型泵进行前处理得到结构化网格,如图2所示,其中叶轮、导叶与蜗壳网格数分别为468 761、465 337、581 295,前后泵腔网格分别为321 802、348 013。湍流模型采用SST模型,稳态数值计算边界条件采用压力进口,质量流量出口边界条件,壁面无滑移边界条件。以稳态计算做为瞬态数值计算的初始条件,叶轮每转过3°为1时间步,其时间步长0.000 172 414,1个周期迭代120步,迭代6个周期,选最后1周期进行流场分析。
a. 过流部件a. Flow passage componentb. 后泵腔b. Rear pump chamberc. 前泵腔c. Front pump chamber
2 试验验证
图3为模型试验泵。模型泵中蜗壳、导叶、叶轮采用3D打印技术进行加工制造。为与普通导叶式离心泵性能进行对比,在对半高导叶扩压器离心泵性能进行试验研究时,保证半高导叶扩压器中导叶的安装位置、导叶与蜗壳内各监测点位置都一样,且试验采用的方案与数值模拟方案相同。采用JN338 型扭矩传感器对扭矩进行测量,量程为0.01~100 N·m,测量精度为±0.2 N·m;运用AE215型流量计测量试验回路流量,量程为0~100 m3/h,测量精度为±0.5 m3/h;采用EJA510A型压力传感器对模型泵进出口压力进行测量,量程分别为0~300 kPa和0~1 MPa,测量精度分别为±0.0225和±0.075 kPa。
注:P1~P4为试验时压力脉动监测点。
图4为不同导叶端面间隙的离心泵外特性曲线。由图可知,当/=1.0时,离心泵扬程曲线较陡,下降较快,其中=37.5 m3/h时,效率最大,为55.5%;当/=0~0.8时,离心泵扬程曲线较平缓,下降较慢,效率最高点向大流量偏移,且按/从1.0、0.8、0、0.6、0.5的顺序逐渐向大流量偏移,其中效率最高点位于=42.5 m3/h,为57.5%,主要原因是导叶端面间隙增加其喉部面积,使其高效点向大流量工况偏移。在各流量工况下,当/=0.8时,离心泵的扬程与效率最小。在小流量工况(=18~37 m3/h)下,当/=1.0时,离心泵的扬程、效率最高;在大流量工况(>37 m3/h)下,当/=1.0时,离心泵的扬程与效率远低于其它导叶端面间隙下泵的扬程与效率,其中=0.5~0.6时离心泵的水力性能最好,表明适当的导叶叶片与盖板之间的端面间隙能改善离心泵水力性能。
图4 不同导叶端面间隙离心泵外特性试验
图5为不同导叶端面间隙时离心泵外特性数值模拟与试验对比。由图5可知,数值模拟与试验值吻合较好,尤其在/des=1.0工况附近时,其扬程与效率误差在5%以内,说明数值模拟在设计工况附近存在一定的准确性;在远离设计工况时(/des=0.6、/des=1.4),其误差较大,主要原因是在小流量或大流量工况时,泵内部流场易出现剧烈的湍流、回流现象,从而导致数值模拟与试验结果相差较大。
注:Qdes为离心泵设计工况下的流量。
3 结果分析
3.1 导叶端面间隙对离心泵水力性能影响
图6分别为不同导叶端面间隙时叶轮瞬时做功和导叶与蜗壳内总压损失瞬态分布。由图6 a-图6c可知,在整个导叶端面间隙几何参数的变化范围内,叶轮做功随着流量增加而逐渐降低。当=1.0时,叶轮做功波动幅值(波峰与波谷差值)随着流量增加而逐渐增加,在/des=0.8、/des=1.0、/des=1.2工况时,波峰与波谷差值分别为1.4、1.7、2 m水头;当/=0~0.8时,在各流量工况下,叶轮做功波动幅值随着流量改变而几乎不变,在各流量工况下,其差值均不超过1 m水头。在同一流量工况下,当=1.0时,叶轮做功的波动相对于=0~0.8时的波动更剧烈,两波峰之间出现多个波峰与波谷,并且随着导叶叶片与盖板端面间隙的增加,呈现出多个波峰与波谷现象逐渐消失,波动较平缓,由此表明导叶端面间隙可降低叶轮与导叶动静干涉作用影响,但叶轮与蜗壳隔舍动静干涉作用影响逐渐凸显。不同流量工况时,不同的导叶端面间隙对叶轮做功的影响不同。随着流量的增加,导叶间隙增加对叶轮做功的影响程度在逐渐降低。由表2可知,在des=0.6工况下,=1.0时叶轮做功比=0~0.8时叶轮做功低将近3.87~5.32 m水头;在des=0.8~1.4工况下,不同时,叶轮做功差值不超过1.5 m水头,表明在小流量工况下,叶轮做功对不同导叶端面间隙的离心泵中扬程与效率存在一定影响,而在较大流量工况时,叶轮做功对其离心泵扬程与效率影响甚微。
表2 不同流量工况下,叶轮做功瞬时平均值
由图6d-图6f可知,随着流量增加,当=1.0时,导叶内总压损失在逐渐增加,且各流量工况下波动幅值几乎相同,即波峰与波谷差值为3.5 m水头,而当=0~0.8时,导叶内总压损失随着流量增加而逐渐减小,在各流量工况时,波峰与波谷差值不超过0.5 m水头,波峰与波峰之间不存在二次波动,因此当导叶端面间隙减小时,导叶内总压损失受叶轮与导叶之间动静干涉作用影响逐渐减弱,叶轮与蜗壳动静干涉作用影响逐渐增强。不同流量工况时,不同导叶端面间隙对导叶内总压损失的影响程度不同。由表3可知,在des=0.6和des=0.8工况下,当=0~0.8时导叶内总压损失平均值明显大于=1.0,其中在des=0.6工况下,/=0.3时总压损失平均值最大,与=1.0时总压损失差值为6.66 m水头,在des=0.8工况时=0.8时总压损失平均值最大,其差值4.62 m水头;在des=1.0流量工况下,=0.4~0.6与=1.0时导叶内总压损失平均值几乎相等,分别为7.54 m、7.33 m、7.23 m和7.43 m水头,而=0.8与=0~0.3时导叶内总压损失平均值高于其它间隙系数下导叶内的总压损失,其中=0.8时总压损失平均值最大,与=0.6相比,其差值为1.96 m水头;在des=1.2与des=1.4工况下,当=0~0.8时,导叶内总压损失均小于=1.0。在各流量工况下,随着导叶端面间隙的增加,导叶内总压损失先逐渐减小而后逐渐增加,其中当=0.8时导叶内总压损失最大,=0.4~0.6时导叶内总压损失最小,表明适当的导叶端面间隙能改善其水力性能。
注:im=(tout-tin)/,loss=(tin-tout)/;im、dloss、vloss分别为叶轮做功、导叶内总压损失、蜗壳内总压损失,tin和tout分别为进口和出口平均总压。
Note:im=(tout-tin)/,loss=(tin-tout)/;im,dlossandvlossare power of impeller, total pressure in diffuser or volute, respectively. Andtin,toutare the average total pressure in inlet and outlet.
图6 不同流量工况,不同导叶端面间隙时叶轮瞬时做功及导叶和蜗壳内总压损失分布
Fig.6 Instantaneous impeller power and total pressure loss in diffuser or volute under different flow rates and guide vane end clearance
表3 不同流量工况下,导叶瞬时总压损失平均值
由图6g-图6i可知,随着流量增加,不同导叶端面间隙下蜗壳内的总压损失在逐渐增加,呈现出较好的周期性,两波峰之间不存在二次波动,说明蜗壳内部流场主要受叶轮与蜗壳隔舍动静干涉作用影响,而受叶轮与导叶动静干涉作用影响甚小。在各流量下,当=1.0时蜗壳内总压损失明显大于=0~0.8时,且随着流量增加,最大与最小总压损失差值在明显增加。由表4可知,在des=0.6、des=0.8工况时,最大(=1.0)与最小(=0.8)总压损失差值分别为1 m、1.9 m水头,在des=1.0、des=1.2、des=1.4工况时,最大(=1.0)与最小(=0)总压损失差值分别为2.6、3.7、3.5 m水头(如表4所示)。在=0~0.8时,在不同流量工况下,导叶端面间隙几何参数大小对蜗壳内总压损失的影响程度有所不同,并且其影响程度随着流量增加更加明显,在des=0.6和des=0.8工况时,蜗壳内总压损失最大为=0,最小为=0.8,差值分别为0.47、0.57 m水头,而在des=1.0~1.4工况时,蜗壳内总压损失最大为=0.8时,最小为=0时,其差值分别为1.28、1.64、2.79 m。
表4 不同流量工况下,蜗壳瞬时总压损失平均值
图7分别为不同导叶端面间隙时导叶和蜗壳扩压瞬时分布。由图可知,在不同流量工况下,当/=1.0时,离心泵中扩压作用主要由导叶完成,蜗壳几乎不存在扩压作用,而/=0~0.8时,导叶与蜗壳共同起扩压作用。随着流量增加,导叶与蜗壳扩压作用在逐渐降低,但当/=1.0时其扩压作用的降低程度明显大于/=0~0.8。在des=0.8、des=1.0工况下,当/=1.0时导叶扩压作用大于/=0~0.8,而在des=1.2流量工况下,当/=0~0.8时,其导叶扩压作用优于=1.0;在各流量工况下,当/=0~0.8时蜗壳扩压作用均高于/=1.0。
注:dd和dv分别为导叶与蜗壳扩压,且计算公式相同.dd=(out-in)/;in和out分别为进口和出口平均静压。
Note:dd,dvare the diffuser in guide and volute respectively, and the calculation formula can be the same;dd=(out-in)/Andin,outare the average pressure in inlet and outlet.
图7 不同流量工况,不同导叶端面间隙时导叶与蜗壳扩压性能
Fig.7 Effect of boosting pressure in diffuser and volute under different flow rates and guide vane end clearance
3.2 半高导叶对离心泵内部流场影响
图8分别为/des=1.0流量工况下,不同导叶端面间隙时离心泵叶轮、导叶、蜗壳中截面静压分布。由图8a-图8c可知,随着导叶端面间隙增加,叶轮出口高压区域分布位置在变化,当/1.0时,叶轮出口高压区域主要集中于靠近蜗壳隔舌处的叶轮流道区域,而当/0~0.8时,其高压区域主要集中于靠近蜗壳较小过流断面处叶轮流道;随着导叶端面间隙增加减小,位于导叶前缘附近叶轮出口区域压力在逐渐降低,表明叶轮出口处静压分布受叶轮尾缘与导叶前缘共同影响逐渐减弱。由图8d-图8f可知,在各导叶端面间隙下,导叶进口至出口,静压在逐渐增加,且位于蜗壳较小过流断面处导叶流道静压高于其区域,因动静干涉作用影响,导叶前缘处静压梯度变化最大,分布不均。当/=1.0时,导叶流道中静压大于其它位置,且分布极其不均;随着导叶端面间隙增加,导叶前缘与位于叶轮尾缘区域的静压在逐渐降低,梯度变化逐渐更均匀,由此表明叶轮与导叶动静干涉作用影响在逐渐减弱。由图8g-图8i可知,不同导叶端面间隙对蜗壳内静压分布影响很大,且规律性不明显,当/=1.0时,蜗壳整个流道内静压最大,而/=0.8时静压最小,且静压梯度变化最大,尤其位于蜗壳较大过流断面处;当/=0~0.6时,除蜗壳出口区域外,其它过流断面处静压分布类似,即位于导叶尾缘附近、蜗壳较大过流断面处静压较小,梯度变化较大。
注:a′~e′为导叶叶片;1~6为叶轮叶片。
Note: a′-e′ are diffuser vanes; 1-6 are impeller blades.
图8 设计流量工况,不同导叶端面间隙时叶轮、导叶及蜗壳内静压分布
Fig.8 Static pressure distribution in impeller, diffuser and volute under design flow with different guide vane end clearance
图9分别为不同导叶端面间隙时叶轮叶片和导叶叶片中截面静压分布。由图9a-图9c可知,不同流量,不同导叶端面间隙时,叶轮叶片中截面静压分布相似,即叶片表面静压沿流动方向逐渐增加,同时,因叶轮出口尾迹流-射流与动静干涉作用共同影响,靠近叶轮出口附近区域叶片压力面静压突然低于吸力面;随着流量增加,压力面与吸力面静压差值在逐渐增加,且吸力面大于压力面静压位置逐渐向叶轮出口移动,说明随着流量增加,叶轮出口附近流场渐稳定,受尾迹流-射流影响逐渐减弱。在各流量工况下,当/=1.0时叶片压力面大于吸力面压力差值远小于其它/,由此说明当/=1.0时叶轮内流场较稳定,叶轮受力较小;在des=0.8、des=1.0、des=1.2工况,=1.0时叶片吸力面大于压力面静压位置分布位于=0.93、0.97、0.1 m,而其它/时其位于叶片出口附近,因此随着导叶端面间隙减小,叶轮出口附近区域流动受尾迹流-射流影响在逐渐减弱,间接表明叶轮出口附近区域流场分布逐渐更均匀,改善叶轮的水力性能。
由图9d-图9f可知在不同流量工况下,不同导叶端面间隙时,导叶叶片进口至导叶出口,压力在逐渐增加,导叶将叶轮中流出的高速液体动能逐渐转化为压力能,但在导叶前缘附近,压力突然增加,流动比较混乱,可能导致导叶内存在较大流动损失。随着流量增加,当/=1.0时导叶叶片表面压力在逐渐降低,且叶片压力面与吸力面静压差值逐渐增加,由此可间接说明导叶扩压作用在逐渐降低,导叶内部流场逐渐不稳定,叶片受流体的作用力在增加,但当/=0.8、0.6、0.5、0.3时,导叶叶片压力面与工作面静压差值几乎不变,因此说明导叶扩压作用随着流量的增加而不变。
4 结 论
本文结合数值模拟与试验方法,采用SST湍流模型,研究了半高导叶端面间隙对离心泵水力性能及内部流场的影响规律,主要结论有:
1)随着导叶端面间隙增加,离心泵的扬程与效率先逐渐增加而后逐渐减小。当导叶端面间隙在0.4~0.6导叶叶高时,离心泵中扬程曲线较平缓,下降较慢,效率较高,其中导叶叶高为1.0时,最高效率点位于流量37.5 m3/h处,导叶叶高为0~0.8时,其最高效率点位于流量42.5 m3/h处,并且导叶端面间隙为0.4~0.6导叶叶高时,离心泵的效率最大,为57.5%,因此适当的半高导叶间隙能改善离心泵水力性能。
2)随着导叶端面间隙逐渐减小,叶轮-导叶动静干涉作用影响逐渐降低,离心泵中叶轮做功、导叶及蜗壳内能量损失瞬时波动更平缓,且普通导叶式离心泵叶轮做功、导叶内能量损失逐渐高于带导叶端面间隙的离心泵;在各流量工况时,导叶端面间隙能降低离心泵蜗壳内能量损失,改善蜗壳的水力性能。
3)动静干涉作用是影响普通导叶式离心泵内部流场的主要原因,而蜗壳不对称几何形状是影响含导叶端面间隙的离心泵内部流场的主要因素,远超过叶轮-导叶动静干涉作用影响。
4)普通导叶式离心泵中叶轮叶片载荷受尾迹流-射流影响较大,叶片压力面载荷低于吸力面的位置位于叶片出口前段处,而存在导叶端面间隙时此类现象主要发生在叶片出口。
[1] 刘厚林,崔建保,谈明高,等. 离心泵内部流动时序效应的CFD计算[J]. 农业工程学报,2013,29(14):67-73.
Liu Houlin, Cui Jianbao, Tan Minggao, et al. CFD calculation of clocking effect on centrifugal pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(14): 67-73. (in Chinese with English abstract)
[2] 高波,王震,杨丽,等. 不同口环间隙离心泵性能及水力激励特性分析及试验[J]. 农业工程学报,2016,34(7):79-85.
Gao Bo, Wang Zhen, Yang Li, et al. Analysis and test of performance and hydraulic excitation characteristics of centrifugal pump with different seal ring clearances [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 34(7): 79-85. (in Chinese) With English abstract.
[3] 黎义斌,胡鹏林,李仁年,等. 不同叶顶间隙对斜流泵性能影响的数值分析[J]. 农业工程学报,2014,30(23):86-93.
Li Yibin, Hu Penglin, Li Rennian, et al. Numerical analysis for effects of different blade tip clearance on performance in mixed-flow pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(23): 86-93. (in Chinese with English abstract)
[4] Gao X F, Shi W D, Zhang D S, et al. Calculation and analysis of submersible well pump clearance leakage loss[J]. Applied Mechanics & Materials, 2013, 456(21): 225-229.
[5] Zhang D, Shi L, Zhao R, et al. Study on unsteady tip leakage vortex cavitation in an axial-flow pump using an improved filter-based model[J]. Journal of Mechanical Science & Technology, 2017, 31(2): 659-667.
[6] Li W, Shi W D, Xu Y D, et al. Effects of guide vane thickness on pressure pulsation of mixed-flow pump in pumped-storage power station[J]. Journal of Vibroengineering, 2013, 15(3): 1177-1185.
[7] Liu H, Ding J, Dai H, et al. Investigation into transient flow in a centrifugal pump with wear ring clearance variation[J]. Advances in Mechanical Engineering, 2014, 2014(2): 693097.
[8] Zhang D, Shi L, Shi W, et al. Numerical analysis of unsteady tip leakage vortex cavitation cloud and unstable suction-side- perpendicular cavitation vortices in an axial flow pump[J]. International Journal of Multiphase Flow, 2015, 77: 244-259.
[9] Ahmadi-Baloutaki M, Carriveau R, Ting S K. An experimental study on the interaction between free-stream turbulence and a wing-tip vortex in the near-field[J]. Aerospace Science & Technology, 2015, 43(1): 395-405.
[10] Wu H X, Miorini R L, Katz J. Measurements of the tip leakage vortex structures and turbulence in the meridional plane of an axial water-jet pump[J]. Experiments in Fluids, 2011, 50(4): 989-1003.
[11] Zhang D S, Shi W D, Esch B P M V, et al. Numerical and experimental investigation of tip leakage vortex trajectory and dynamics in an axial flow pump[J]. Computers & Fluids, 2015, 112(1): 61-71.
[12] 贾晓奇,聂小林,涂必成,等. 半开式离心泵变工况叶顶间隙的流动特性[J]. 农业工程学报,2015,31(4):91-96.
Jia Xiaoqi, Nie Xiaolin, Tu Bicheng, et al. Flow characteristics of blade tip clearance in semi-open centrifugal pump in variable condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 91-96. (in Chinese with English abstract)
[13] Guo X M, Zhu Z C, Cui B L, et al. Effects of the number of inducer blades on the anti-cavitation characteristics and external performance of a centrifugal pump[J]. Journal of Mechanical Science and Technology, 2016, 30(7): 3173-3181.
[14] Zhao W G, Li Y B, Wang X Y, et al. Research on the effect of wear-ring clearances to the performance of centrifugal pump[J]. Iop Conference, 2012, 15(7): 1-7.
[15] Li W G. An Experimental study on the effect of oil viscosity and wear-ring clearance on the performance of an Industrial centrifugal pump[J]. Journal of Fluids Engineering, 2012, 134(1): 014501.
[16] 马波,朱俊,张明. 多级离心泵叶轮口环磨损监测方法研究[J]. 中国机械工程,2016,27(21):2909-2914.
Ma Bo, Zhu Jun, Zhang Ming. Monitoring method analysis of multistage centrifugal pump seal ring wear[J]. China Mechanical Engineering, 2016, 27(21): 2909-2914. (in Chinese with English abstract)
[17] Baragetti S, Villa F. Effects of geometrical clearances, supports friction, and wear rings on hydraulic actuators bending behavior[J]. Mathematical Problems in Engineering, 2016, 2016: 1-17.
[18] 刘在伦,许立中,贾晓,等. 离心泵浮动叶轮轴向间隙的液体流动分析及轴向力计算[J]. 农业工程学报,2013,29(12):79-85.
Liu Zailun, Xu Lizhong, Jia Xiao, et al. Analysis of liquid flow and axial force calculation in axial clearance for floating impeller of centrifugal pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(12): 79-85. (in Chinese with English abstract)
[19] Li W G. Impeller trimming of an industrial centrifugal viscous oil pump[J]. Majlesi Journal of Mechanical Engineering, 2013(1): 1-10.
[20] 吴大转,许斌杰,武鹏,等. 多级离心泵内部间隙流动与泄漏损失[J]. 浙江大学学报:工学版,2011,45(8):1393-1398.
Wu Dazhuan, Xu Binjie, Wu Peng, et al. Internal clearance flow and leakage loss in multi-stage centrifugal pump[J]. Journal of Zhejiang University: Engineering Science, 2011, 45(8): 1393-1398. (in Chinese with English abstract)
[21] Coutier-Delgosha O, Fortes-Patella R, Reboud J L, et al. Experimental and numerical studies in a centrifugal pump with two-dimensional curved blades in cavitation condition[J]. Postgraduate Medical Journal, 2003, 51(598): 492-497.
[22] Barrio R, Parrondo J, Blanco E. Numerical analysis of the unsteady flow in the near-tongue region in a volute-type centrifugal pump for different operating points[J]. Computers & Fluids, 2010, 39(5): 859-870.
[23] 黄先北,刘竹青,杨魏. 离心泵口环间隙附近的空化特性研究[J]. 农业机械学报,2015,46(2):59-63.
Huang Xianbei, Liu Zhuqing, Yang Wei. Cavitation characteristics of centrifugal pump near wear-ring clearance[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 59-63. (in Chinese with English abstract)
[24] 赵万勇,王钊,王磊,等. 多级泵平衡盘动态平衡研究与数值仿真[J]. 机械工程学报,2013,49(4):163-167.
Zhao Wanyong, Wang Zhao, Wang Lei, et al. Study and numerical simulation on dynamic equilibrium of balance disc in multi-stage centrifugal pump[J]. Journal of Mechanical Engineering, 2013, 49(4): 163-167. (in Chinese with English abstract)
[25] 李景悦,严敬,赖喜德,等. 离心叶轮平衡机构轴向力的计算与分析[J]. 西华大学学报:自然科学版,2015,34(3):73-76.
Li Jingyue, Yan Jing, Lai Xide, et al. Calculation and analysis of axial thrust due to balance mechanics of centrifugal impellers[J]. Journal of Xihua University: Natural Science Edition, 2015, 34(3): 73-76. (in Chinese with English abstract)
[26] 刘在伦,魏烈江,齐学义,等. 新型轴向力平衡装置间隙泄漏量的计算[J]. 农业机械学报,2005,36(12):74-76.
Liu Zailun, Wei Liejiang, Qi Xueyi, et al. Calculation of gap leakage flow rate in new axial trust device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 36(12): 74-76. (in Chinese with English abstract)
[27] Takao M, Kuma H, Maeda T, et al. A straight-bladed vertical axis wind turbine with a directed guide vane row effect of guide vane geometry on the performance[J]. Journal of Thermal Science, 2009, 3(1): 54-57.
[28] Hoshino M, Ohki H, Yoshinaga Y. The effect of guide vane height on the diffuser flow in centrifugal compressors[J]. Transactions of the Japan Society of Mechanical Engineers B, 1985, 51(470): 3366-3369.
[29] Oshinaga Y, Kaneki T, Kobayashi H, et al. A study of performance improvement for high specific speed centrifugal compressors by using diffusers with half guide vanes[J]. Journal of Fluids Engineering, 1987, 109(4): 359-367.
[30] Sitaram N, Issac JM, Sitaram N, et al. An experimental investigation of a centrifugal compressor with hub vane diffusers[J]. Proceedings of the Institution of Mechanical Engineers Part A Journal of Power & Energy, 1997, 211(5): 411-427.
[31] 刘宝军,贺利生,雷明洋,等. 低稠度半高叶片扩压器的模型级性能研究[J]. 风机技术,2011(2):10-14.
[32] Issac J M, Sitaram N, Govardhan M, et al. Effect of diffuser vane height and position on the performance of a centrifugal compressor[J]. Proceedings of the Institution of Mechanical Engineers Part A Journal of Power & Energy, 2004, 218(8): 647-654.
[33] Zhang W, Gong W, Fan X, et al. The Effect of half vane diffuser on the noise generated from a centrifugal Fan[J]. Experimental Techniques, 2012, 36(3): 5-13.
Numerical simulation and validation of influence of end clearance in half vane diffuser on hydraulic performance for centrifugal pump
Jiang Wei, Chen Diyi※, Qin Yuqi, Wang Yuchuan
(712100)
Centrifugal pumps are widely used in general machines and the demand of the efficiency and the stable operation can be higher. All kinds of clearances appear easily in the centrifugal pump, such as the tip clearance and wear-ring clearance. Meantime, the gap flow of tip clearance and wear-ring clearance results in the complicated turbulent flow and clearance vortex easily which has a great effect on the hydraulic performance and operation stability of a centrifugal pump. Thus, the study on mechanism of the gap clearance flow in the centrifugal pump is important. The half-height diffuser can be widely used in compressors and fans and can improve the performance of the compressors and fans. However, the application of the half-height diffuser in the centrifugal pump is seldom and the influence law of the clearance of the half-height guide vane on the hydraulic performance of the centrifugal pump is not clear. For the first time, the half-height diffuser is introduced into the centrifugal pump in this paper. Based on the numerical simulation and experimental methods, using SST-model, research on effect of the half-height guide vane end clearance on the hydraulic performance and the internal flow field of centrifugal pump was conducted. The results show that the appropriate half-height guide vane end clearance can effectively improve the centrifugal pump’s hydraulic performance, and broaden its high efficient area. When the guide vane height is 1.0, the maximum efficiency occurs at the position with the flow of 37.5 m3/h, however, it can be at 42.5 m3/h when the guide vane height is 0-0.8. The effect of the interaction between rotor and stator can be the main reason for the internal flow field of the general guide vane centrifugal pump, and the high pressure zone of the impeller outlet channel occurs when the impeller blade is near the leading edge of the guide vane. The asymmetric geometry of the volute is the main factor, which influences the internal flow field of the centrifugal pump with the end face gap. The impeller blade load in the conventional guide vane centrifugal pump is affected by the wake flow-jet flow and is higher than that of the centrifugal pump with the half-height guide vane. With guide vane end gap of 0.4-0.6 guide vane height, the efficiency and the head of the centrifugal pump are the optimal, and the maximum efficiency is 57.5%. In low flow condition, the hydraulic performance of impeller and diffuser is the key influence factor to hydraulic performance of centrifugal pump. The total pressure loss of the impeller in the centrifugal pump with the half-height guide vane end gap is higher than that of the ordinary diffuser centrifugal pump at the flow condition of 0.6, 0.8 and 1.0 time, however, the total pressure loss of the impeller in the centrifugal pump with the half-height guide vane end gap is lower than that of the ordinary guide vane centrifugal pump at 1.2 and 1.4 times flow condition. The performance of the impeller when guide vane height is 1.0 can be 7 m lower than that when guide vane height is 0-0.8 at the 0.6 flow condition. Meantime, the total pressure loss of diffuser while guide vane height is 0 can be 6.66 and 4.47 m higher than those with 1.0 guide vane height at the 0.6 and 0.8 flow condition, respectively. The total pressure loss of the volute in the centrifugal pump with the end clearance of the guide vane is less than that of the ordinary guide vane centrifugal pump. With the flow rate increasing, the influence of the interaction between impeller and diffuser on the centrifugal pump with the half-height guide vane decreases gradually, and the effect of the interaction between impeller and volute tongue on the centrifugal pump with the half-height guide vane increases gradually. The results provide theoretical basis and new ideas for the design and reconstruction of the guide vanes in centrifugal pumps.
centrifugal pump; hydraulic model; performance; total pressure loss; rotor-stator interaction
10.11975/j.issn.1002-6819.2017.17.010
TK311
A
1002-6819(2017)-17-0073-09
2017-04-24
2017-08-24
国家自然基金(51479173,51509209);西北农林科技大学科研启动经费(Z109021642);陕西水利科技计划项目(2017slkj-5);中央高校基本科研业务费专项资金项目(Z109021705)
江伟,讲师,博士,主要从事流体机械内部流动特性研究。杨凌 西北农林科技大学水利与建筑工程学院,712100。 Email:weijianglut@126.com
陈帝伊,教授,博士生导师,主要从事水力机械系统运行稳定性分析。杨凌 西北农林科技大学水利与建筑工程学院,712100。Email:nwsuafdychen@163.com